南海琼东上升流区过去1 900年海洋生产力记录

计超, 徐利强, 张一辉, 郭敏, 孔德明

计超, 徐利强, 张一辉, 郭敏, 孔德明. 南海琼东上升流区过去1 900年海洋生产力记录[J]. 海洋地质与第四纪地质, 2020, 40(5): 97-106. DOI: 10.16562/j.cnki.0256-1492.2019092502
引用本文: 计超, 徐利强, 张一辉, 郭敏, 孔德明. 南海琼东上升流区过去1 900年海洋生产力记录[J]. 海洋地质与第四纪地质, 2020, 40(5): 97-106. DOI: 10.16562/j.cnki.0256-1492.2019092502
JI Chao, XU Liqiang, ZHANG Yihui, GUO Min, KONG Deming. A 1 900-year record of marine productivity in the upwelling area of east continental shelf of Hainan Island, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 97-106. DOI: 10.16562/j.cnki.0256-1492.2019092502
Citation: JI Chao, XU Liqiang, ZHANG Yihui, GUO Min, KONG Deming. A 1 900-year record of marine productivity in the upwelling area of east continental shelf of Hainan Island, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 97-106. DOI: 10.16562/j.cnki.0256-1492.2019092502

南海琼东上升流区过去1 900年海洋生产力记录

基金项目: 国家自然科学基金“晚全新世西沙海鸟营养级变化对重金属传输效率的影响”(41402148);黄土与第四纪地质国家重点实验室开放基金“南海琼东上升流区过去2000年环境演变及其机理” (SKLLQG1929);国家留学基金(201806695035)
详细信息
    作者简介:

    计超(1995—),男,硕士,从事第四纪地质研究,E-mail:jichao1995@foxmail.com

    通讯作者:

    徐利强(1984—),男,博士,硕士生导师,主要从事生态环境演变研究,E-mail:xlq@hfut.edu.cn

  • 中图分类号: P736.2

A 1 900-year record of marine productivity in the upwelling area of east continental shelf of Hainan Island, South China Sea

  • 摘要: 对南海琼东陆架上升流区一根45 cm海洋沉积柱样进行了年龄和地球化学元素分析,并利用生物源Ba(Babio)重建了研究区过去1 900年的海洋生产力记录。结果表明海洋生产力在过去的1 900年中变化明显,在中世纪暖期时生产力相对较高,而在气候相对凉爽的小冰期时生产力相对低。海洋生产力在过去100多年增加迅速(当前Babio约为210 μg/g),达到过去1 900年以来的最高水平。通过与气候环境记录对比,发现琼东上升流区海洋生产力受东亚夏季风影响显著,并与温度变化之间存在一定的关联。在气候温暖期,东亚夏季风强度增加,引起沿岸上升流增强,使得海洋生产力提高。在全球变暖背景下,人为因素导致的气候变化可能会对该地区海洋生产力造成影响。
    Abstract: A 45 cm long sediment core was collected from the upwelling area of the east continental shelf of Hainan Island, South China Sea. Via chronological and geochemical analyses, marine productivity (in terms of Babio) over the past 1 900 years was reconstructed for the study area. The results show that the marine productivity changed significantly over the past 1 900 years, with relatively high productivity during the Medieval Warm Period (MWP), but relatively low productivity during the Little Ice Age (LIA). Marine productivity has increased rapidly over the last century (currently Babio is about 210 μg/g), reaching its highest level over the past 1 900 years. By comparison with the climatic and environmental records, it was found that the marine productivity in the upwelling area was highly affected by the East Asian summer monsoon and also displayed some kind of correlation with temperature. In a warm climate, the intensity of the East Asian summer monsoon enhanced, resulting in an increase in coastal upwelling, which led to increase in marine productivity. Solar activity may also impact on the marine productivity of the upwelling area by affecting climate and intensity of the East Asian monsoon. In the context of global warming, human-induced climate change may impose some effects on marine productivity as well in the study area.
  • 海洋沉积物可保存历史时期的环境和气候变化信息[1-2],全球海底沉积物中陆源物质占总量的一半以上,主要通过冰川、河流、风尘等方式输送入海[3-4],在此过程中保存了丰富的气候与环境信息[5-6],是探究陆海相互作用和过去气候演化历史的良好载体。大量的研究表明,海底沉积物的组成特征和时空分布规律与气候变化、海平面波动及环境变迁等有着十分密切的联系[7-9],因而可通过选择有效的替代性指标,追踪历史时期海底沉积物来源、洋流演化及气候和环境变化等关键地质因素的演化过程[6,10]

    阿拉伯海位于印度洋北部,西侧毗邻阿拉伯半岛,东侧与印度大陆相邻,在青藏高原隆升的大背景下接受了大量陆源碎屑物质输入(图1),形成了全球重要的沉积物“源-汇”体系[11]。表层沉积物综合研究表明阿拉伯海物源较为复杂,且空间分布差异明显,其北部主要接受印度河输入的西喜马拉雅和青藏高原物质[12-13],而东部陆架和陆坡区的沉积物主要来自德干高原的火山区和南印度半岛的片麻岩区[14-18]。此外,阿拉伯海的沉积物来源还包括:阿拉伯半岛、印度北部(主要来自塔尔沙漠)、东非的风尘物质[19]嘉士伯岭的海底风化产物和孟加拉湾的沉积物[15]

    图  1  阿拉伯海 AS06-13 岩芯位置及周边季风与洋流示意图[21]
    红点为 AS06-13 岩芯,黄点为对比分析站位,黑线为拉克西米海盆内现代深海水道系统的位置,黄色虚线为深海扇大致范围。SWM:西南季风,NEW:东北季风,SCS:夏季表层环流,SCW:冬季表层环流。
    Figure  1.  Location of core AS06-13, monsoons and oceanic circulations in the Arabian Sea[21]
    Red dot: the location of Core AS06-1; yellow dots: all the cores discussed in this study; black lines: the locations of modern deep-sea channel systems in the Laxmi Basin; yellow dotted lines: approximate extent of the deep-sea fan; SWM: southwest summer monsoon; NEW: northeast winter monsoon; SCS: surface currents in summer; SCW: surface currents in winter.

    阿拉伯海以季风气候为主,风和降水的季节性逆转导致海水性质和沉积物运输有较大的周期性变化[20]。在阿拉伯海及周边大陆,印度夏季风带来了大部分降雨(>3000 mm),而冬季风在降雨上的影响较低[22]。印度夏季风期间,西南风带来的强降雨控制着周边大陆表层的风化剥蚀强度,进而影响通过河流搬运入海的陆源碎屑物质运移过程[23-24]。此外,海平面升降和洋流活动对陆源入海物质的搬运和沉积过程也发挥了重要作用[23,25],冰期-间冰期海平面波动可改变从大陆向深海输送的沉积物的总体收支平衡[18,26-28],而季风流的强弱变化则是陆源物质在海洋环境中搬运、沉积和改造的直接动力[29]

    当前对阿拉伯海沉积物运输和演化方面的研究主要集中在东部大陆架和印度河峡谷[13,30],而对阿拉伯海中部深海盆的沉积特征研究较少[31-32],极大地限制了对阿拉伯海沉积环境特征和陆海相互作用过程的深入研究。本文以阿拉伯海中部的 AS06-13 岩芯为研究对象,通过 AMS14C 年龄和氧同位素数据建立高精度年代框架,在此基础上分析岩芯沉积物的稀土元素和黏土矿物组成特征,揭示阿拉伯海中部海域沉积物来源及其沉积演化过程,为深入研究北印度洋的陆海相互作用提供理论支撑。

    AS06-13 岩芯(14.54°N、65.80°E)位于阿拉伯海中部的阿拉伯海深海扇,取样站位水深 3909 m,岩芯长 193 cm(图1),样品由 2020 年“全球变化与海气相互作用”专项西印度洋海洋底质调查航次采集。岩芯剖开后进行了详细的岩性描述,按照 1 cm 间隔分样后置于 4 ℃ 冷库低温保存。

    根据沉积物岩性特征选取上段(0~100 cm)5 个典型层位进行 AMS14C 测试。沉积物样品经 55 ℃ 低温烘干,过筛冲洗选取 >63 μm 组分,低温烘干后在光学显微镜下挑选直径大于 250 μm 且个体均匀的浮游有孔虫单种 Globorotalia menardii 壳体 8~10 mg。AMS14C 测试在美国 BETA 实验室完成,使用 Calib 8.2 程序将原始年龄数据校正至日历年龄[33],区域碳库年龄 △R 选择 45±62 a[34-35]

    岩芯上段(0~100 cm)按照 1 cm 间隔,下段(100~193 cm)按照 10 cm 间隔共挑取 118 件样品进行 δ18O 同位素测试。沉积物样品经 55 ℃ 低温烘干,过筛冲洗选取>63 μm 组分,低温烘干后在光学显微镜下挑选浮游有孔虫单种 Globigerinoides ruber 的完整壳体(直径约 300~350 μm)10~15 枚,加入无水乙醇经超声处理后放入 55 ℃ 烘箱中 6 h以上取出,放在碳酸盐制备样品瓶中,在 70 ℃ 温度下加适量磷酸溶液除去 CO2,然后用稳定同位素质谱仪(MAT 253)分析测试,测试工作在同济大学海洋地质国家重点实验室完成,测试结果参考国际标样 NBS 19 转换为 Pee Dee Belemnite(PDB)国际标准。为保证分析精密度和准确度,确保测试标准偏差小于 0.5,测试过程中使用国标 NBS 19 进行质量控制。

    根据沉积物岩性特征选取 20 个典型层位进行稀土元素测试。取 2 g 左右沉积物样品冷冻干燥,研磨至 200 目,在 100 ℃ 烘箱中烘干,称取 50 mg 样品置于聚四氟乙烯消解罐,加入 3 mL 1∶1 的 HNO3 和 HF 后密闭,放置于 190 ℃ 烘箱中 48 h 后取出冷却,置于 150 ℃ 电热板赶尽 HF 后加入 3 mL 50% 的 HNO3,密闭后在 150 ℃ 烘箱中反应 8 h 以上,冷却后移液定容等待测试。用电感耦合等离子体质谱(ICP-MS)法测定稀土元素含量,测试工作在自然资源部第一海洋研究所海洋地质测试中心完成。测试分析过程严格控制流程,用 GSD-9 标样作为质控样,选取 10% 重复样监测精密度,确保测试相对误差小于 5%[36]

    根据沉积物岩性特征选取 20 个典型层位进行黏土矿物测试。取 2 g 沉积物样品,用 10% 的过氧化氢和冰醋酸分别去除有机质和碳酸钙。依据斯托克斯沉降原理,提取小于 2 μm 的颗粒离心富集。采用涂片方法制成定向薄片,在 60 ℃ 下用乙二醇饱和 24 h 后等待上机,测试工作在自然资源部第一海洋研究所海洋地质测试中心完成。测试仪器采用 D/max 22500 转靶 X 射线衍射仪,铜靶,管电流 100 mA、管电压 40 kV;连续扫描,扫描速度为 2(°)/min、步长 0.02°(2θ),扫描范围 3°~30°(2θ)。测得数据用 Jade 6.0 软件处理,选取蒙脱石(17Å)、坡缕石(10.5Å)、伊利石(10Å)、高岭石+绿泥石(7Å)为特征衍射峰。参考 Biscaye 和 Ehrmann 的计算方法选取权重系数对蒙脱石、坡缕石、伊利石、高岭石、绿泥石 5 类黏土矿物进行半定量计算[37,38]

    AS06-13 岩芯结构均一,以含有孔虫的黏土质粉砂为主,沉积记录连续无间断,揭示了较为稳定的沉积环境,其中 0~45 cm 段有孔虫含量较多,并含深棕色砂质夹层和斑块;45~48 cm 处见灰绿色夹层;77~173 cm 段有孔虫含量较少,119~132 cm 处有浅灰色夹层,151~152 cm 处见黑色夹层;173~193 cm 段有棕黑色薄层。

    AS06-13 岩芯上段样品 AMS14C 测年结果如表1 所示,通过线性内插法获得岩芯上段(0~84 cm)年龄框架,测年结果涵盖了 37.45 kaBP 以来的沉积记录,平均沉积速率为 2.15 cm/ka。下段(84~193 cm)样品有孔虫壳体 δ18O 结果如图2所示,通过与全球低纬地区广泛应用的 LR04 标准 δ18O 曲线[39]进行对比,获取 AS06-13 岩芯下段沉积物年龄数据。综合两种方法建立的 AS06-13 岩芯年龄框架覆盖了 90 kaBP 以来的连续沉积序列,时间跨度可追溯至深海氧同位素阶段 5 期。

    表  1  AS06-13 岩芯有孔虫壳体 AMS14C 测年数据
    Table  1.  AMS14C dating data of foraminifera shell from Core AS06-13
    层位/cmAMS14C 年龄/aBP日历年龄/kaBP沉积速率/(cm/ka)
    3~44040±303.8280.91
    23~2411910±4013.1952.14
    43~4420180±6023.3151.98
    63~6427920±12031.1382.56
    83~8433610±24037.4523.17
    下载: 导出CSV 
    | 显示表格
    图  2  AS06-13 岩芯年龄框架
    LR04 δ18O 数据据文献 [39]。蓝色圆点代表 AMS14C 测年值。
    Figure  2.  The age framework of Core AS06-13
    The data of LR04 δ18O are from reference [39]. The blue dots represent the AMS14C ages.

    AS06-13 岩芯沉积物稀土元素含量和相关参数的垂向分布如图3 所示,总稀土元素(∑REE)含量为 64.38~194.33 μg/g,平均值为 113.66 μg/g,其中轻稀土元素(∑LREE)含量(平均值为 83.66 μg/g)远高于重稀土元素(∑HREE)含量(平均值为 11.29 μg/g),轻重稀土元素的比值(∑LREE/∑HREE)为 5.73~9.31,平均值为 7.28。球粒陨石标准化的 δCe 平均值为 0.93,表现为微弱的负异常,球粒陨石标准化的 δEu 平均值为 0.71,呈现明显负异常。(Gd/Lu)N平均为 1.43,(La/Yb)N 平均为 7.82。AS06-13 岩芯沉积物稀土元素垂向分布上呈现明显阶段性特征,以 11 、73 kaBP 为界可将岩芯大致划分为 3 个阶段,分别为 S1 阶段(90~73 kaBP)、S2 阶段(73~11 kaBP)、S3 阶段(11~0 kaBP),在 S1 和 S3 阶段,稀土元素含量呈逐渐降低趋势,而在 S2 阶段稀土元素含量较为稳定。

    图  3  AS06-13 岩芯沉积物稀土元素含量及相关参数垂向分布
    球粒陨石标准化数引自文献 [40]。
    Figure  3.  Vertical distribution of rare earth element content and related parameters of Core AS06-13
    The data of the normalized chondrite are from reference [40].

    AS06-13 岩芯沉积物共鉴定出5类黏土矿物,含量最高的为伊利石,含量为 46%~67% ,平均值为 56%;其次为坡缕石和绿泥石,平均值分别为 18% 和 15%;高岭石和蒙脱石含量较低,平均值分别为 8% 和 2%。垂向分布上,伊利石、蒙脱石、绿泥石三者的含量表现为自下而上逐渐降低的趋势,而坡缕石和高岭石变化趋势则相反,以 73 、11 kaBP 为界可划分为 S1、S2、S3 三个阶段,5 类矿物均在 S2 阶段呈现出较大的波动(图4)。

    图  4  AS06-13 岩芯黏土矿物含量垂向分布
    Figure  4.  Vertical distribution of clay mineral content of Core AS06-13

    探究沉积环境演化及其驱动机制的前提是明确沉积物来源,前人研究表明阿拉伯海的沉积物以陆源碎屑物质为主,河流和风尘输入是其主要来源,而海洋自生物质和火山物质的贡献量相对较少[17,41-42]

    稀土元素的地球化学性质稳定,在风化、剥蚀、搬运、沉积过程中并不发生分异,影响其地球化学性质的主要因素为其原岩组成,[43-45],因此沉积物中的稀土元素被广泛用作物源识别的指标[11,46-47],其中 (La/Sm)UCC、(La/Yb)UCC、(Gd/Lu)UCC、δEuUCC、δCeUCC 等稀土元素比值和参数被广泛应用于海洋沉积物来源判别[11,48],效果良好。为揭示阿拉伯海中部海域沉积物相对原始地球物质的分异程度,将 AS06-13 岩芯沉积物以球粒陨石为标准进行标准化[40],结果表明 AS06-13 岩芯沉积物轻重稀土元素分异显著,不同阶段的稀土元素配分模式均表现为轻稀土元素富集,重稀土元素亏损的右倾模式,轻稀土的含量远高于重稀土, Eu 负异常显著,揭示了 AS06-13 岩芯沉积物的陆源属性(图5)。另外,通过对比分析发现,AS06-13 岩芯沉积物与印度河河流沉积物、德干高原物质、片麻岩区物质和阿拉伯半岛风尘的稀土元素配分曲线非常相似,说明其潜在物源区可能为印度半岛西侧和阿拉伯半岛。

    图  5  AS06-13 岩芯沉积物稀土元素球粒陨石标准化配分曲线
    潜在沉积物来源选取印度河[22]、德干高原[50,51]、片麻岩区[50]、北非风尘[52]和阿拉伯半岛现代风尘[53];稀土元素经球粒陨石标准化[40]
    Figure  5.  Chondrite normalized rare earth element patterns in Core AS06-13
    Potential sediment sources are from the Indus River[22], the Deccan Traps[50,51], the Peninsular Gneissic rock[50]; the North African dust[52] and modern dust of the Arabian Peninsula[53]; rare earth elements are normalized by chondrite [40].

    为了进一步明确研究区物质来源,采用上陆壳标准化的 δEuUCC 与 (La/Yb)UCC 来判识 AS06-13 岩芯不同阶段(S1、S2、S3)沉积物来源[49],结果显示 AS06-13 岩芯沉积物整体上与印度河沉积物、片麻岩区物质和阿拉伯半岛风尘相近,德干高原亦有一定物质贡献,而北非风尘对研究区的物质几乎没有贡献(图6)。黏土矿物中的坡缕石出现也证明了风尘物质的输入[4,48],这与稀土元素指标判别的物源结果一致。然而,3 个阶段物源表现出明显的不同,S1 阶段研究区主要受印度河源区和阿拉伯半岛风尘控制,S2 阶段除了印度河和风尘的物质输入,其物源还受到片麻岩区的影响;S3 阶段受到来自印度河、阿拉伯半岛风尘、片麻岩区和德干高原的综合影响。由此可见, 90 kaBP 以来阿拉伯海中部海域沉积物受控于周边陆源入海物质,且呈现出明显的阶段性特征,印度河、阿拉伯半岛风尘、片麻岩区和德干高原等物源区的贡献量处于动态平衡的关系,进一步指示了北印度洋陆海相互作用的复杂性。

    图  6  AS06-13 岩芯沉积物 δEuUCC-(La/Yb)UCC 物源判别图
    潜在沉积物来源选取印度河[22]、德干高原[50,51]、片麻岩区[50]、北非风尘[52]和阿拉伯半岛现代风尘[53];UCC:上陆壳数据[49]
    Figure  6.  δEuUCC-(La/Yb)UCC provenance discrimination diagram of Core AS06-13
    Potential sediment sources are from the Indus River[22], the Deccan Traps[50,51], the Peninsular Gneissic rock[50]; the North African dust[52], and modern dust of the Arabian Peninsula[53]; UCC: Upper Continental Crust[49].

    黏土矿物是一定气候条件下源区沉积物风化蚀变的产物,其含量和组合已被广泛应用于沉积环境和古气候演化研究[54]。阿拉伯海中部海域沉积物源区黏土矿物各具特色,印度河搬运的沉积物主要为西喜马拉雅山脉和青藏高原的风化剥蚀产物,以结晶度良好的伊利石和绿泥石为特征[21,23],德干高原主要由基性玄武岩组成,其气候条件有利于生成大量的蒙脱石[14,17],片麻岩区处在亚热带-热带地区,黏土矿物以高岭石为主[17,55]。Pourmand等[56]用阿拉伯海东北部 93 KL 岩芯的 232Th 通量作为风尘通量的替代指标,重建了 110 kaBP 以来阿拉伯半岛风尘输入演变过程,发现风尘输入与季风存在密切联系,高风尘通量归因于减弱的西南季风和加强的西北风[4]。另有研究表明,来自阿拉伯半岛的风尘有较高的坡缕石含量(8%~37% )[42,53],坡缕石作为特征矿物种类已被广泛用于示踪阿拉伯海沉积物中的风尘输入[42,54]。因此,AS06-13 岩芯坡缕石含量的变化可作为阿拉伯半岛风尘物质的供应指标;伊利石结晶度是反映气候的有效指标,低值指示源区气候寒冷干燥[21];高岭石作为温暖潮湿条件下经强烈化学风化形成的黏土矿物,与强烈物理侵蚀形成的伊利石作比值,可以反映化学风化的强弱,进而指示印度河和片麻岩区物源供应变化。

    因此,在明确研究区物源的基础上,我们将 AS06-13 岩芯黏土矿物与海平面[57]、印度夏季风强度指标[58]等进行对比(图7),并绘制了不同阶段的沉积演化示意图(图8),以此来进一步探讨 90 kaBP 以来阿拉伯海中部海域沉积过程。

    图  7  AS06-13 岩芯 90 kaBP 以来的沉积过程综合分析图
    a:阿拉伯海北部 NIOP 455 δ15N 值[58],b:全球相对海平面[57],c:AS06-13 岩芯 δ18O 变化,d:AS06-13 岩芯坡缕石含量,e:阿拉伯海北部 93KL 232Th 通量[56],f:AS06-13 岩芯高岭石/伊利石比值,g:AS06-13 岩芯伊利石结晶度。灰色阴影部分代表冰阶;S1—S3 表示不同阶段。
    Figure  7.  Comprehensive analysis of sedimentary processes of Core AS06-13 since 90 kaBP
    a: The δ15N record in Core NIOP 455 in the northern Arabian Sea[58], b: global relative sea level[57],c: the δ18O record in Core AS06-13, d: the palygorskite content of Core AS06-13, e: 232Th flux of Core 93KL in the northern Arabian Sea[56], f: the kaolinite/illite ratio of Core AS06-13, g: the illite crystallinity in Core AS06-13. Grey shadows represent glacial step. S1-S3 indicates different stages.
    图  8  阿拉伯海中部海域 90 kaBP 以来沉积演化示意图
    据文献 [21] 修改。a:S1 阶段(90~73 kaBP), b:S2 阶段(73~11 kaBP), c:S3 阶段(11~0 kaBP)。
    Figure  8.  Schematic diagram of sedimentary evolution in the middle Arabian Sea since 90 kaBP
    The datasets are referred from [21]. a: Stage S1 (90~73 kaBP), b: Stage S2 (73~11 kaBP), c: Stage S3 (11~0 kaBP).

    (1)S1 阶段(90~73 kaBP)

    S1 阶段属于间冰期,该阶段全球气候温暖潮湿,全球海平面比现今低,西南季风较强,该阶段研究区物源受到印度河和阿拉伯半岛风尘控制,印度河为主要源区(图8a)。强烈的西南季风导致的高降水量促进了喜马拉雅山脉的机械剥蚀[53,54],大量碎屑物质经印度河及其周边河流输送至阿拉伯海深海扇,在沿岸流和深海通道的驱动下重新搬运至研究区。此外,研究区高坡缕石含量体现了阿拉伯半岛的风尘影响(图7d),这与 232Th 通量变化一致。西南季风减弱期间,阿拉伯海中部通过相对加强的西北风接收来自阿拉伯半岛的风尘输入[56,59]。温暖干燥的西北风携带大量灰尘,在抬升期间遇到了西南季风的潮湿低空急流,导致两个气团的季风逆转,风尘被输送到阿拉伯海中部海域[4,60]

    (2)S2 阶段(73~11 kaBP)

    S2 阶段属于末次冰期,该阶段气候寒冷干燥,海平面快速下降,西南季风减弱,这在 δ18O、δ15N 曲线上都有所体现。研究区除了受到印度河和风尘的物质输入,还受到片麻岩区物质的影响(图8b)。研究区高岭石/伊利石比值降低,伊利石结晶度较低(图7f,g),表明在冰期寒冷干燥的气候下,化学风化较低,高岭石形成缓慢,而喜马拉雅和青藏高原的冰川侵蚀加速,导致大量来自印度河源区的物质输入到阿拉伯海中部海域。同时,海平面快速下降导致大陆架大范围出露和河口向海迁移[25,61],提高了陆源碎屑沉积物向海洋输送的效率[28]图7d 显示此阶段坡缕石含量增加,指示末次冰期西南季风减弱,较强的西北风将大量来自阿拉伯半岛的风尘物质输送到阿拉伯海中部[4,60],研究区风尘输入增多。在末次冰期的间冰阶(56~26 kaBP),西南季风有所增强,伊利石结晶度显示化学风化增强(图7g),气候较为温暖潮湿,高岭石/伊利石比值升高(图7f),更多来自片麻岩区的物质通过季风驱动的表层沿岸流被输送到研究区[17],而来自印度河的沉积物相对减少[62]

    (3)S3 阶段(11~0 kaBP)

    S3 阶段属于全新世,海平面迅速上升,研究区 δ18O 下降(图7c),反映印度半岛及周边海域的季风降雨量增强,伊利石结晶度的快速上升表明气候逐渐变为温暖湿润(图7g)。全新世研究区物质输入为混合来源,整体表现为来自印度河、德干高原和片麻岩区的河流碎屑沉积减少,而来自阿拉伯半岛的风尘输入增加(图8c)。由图7f可知,全新世高岭石/伊利石的比值相对 S2 阶段(末次冰期)有所升高,表明阿拉伯海来自印度河的沉积物输送减少,而高坡缕石含量反映来自阿拉伯半岛的风尘增多[48],这与 232Th 通量变化一致(图7d,e),推测此阶段阿拉伯海沉积物来源的转变主要受海平面的波动影响,而季风为次级影响因素[61]。海平面的升降和随后大陆架的淹没或出露,使沉积物路径形态改变,从而导致输送到海底的沉积物通量发生变化[61-62]。全新世海平面的快速上升导致阿拉伯海深海扇系统的河流沉积物供应减少,沿海海平面上升的速度不及河流沉积物输入的速度,陆架沉积空间有限[63],陆源河流物质被限制在深海扇的浊流通道内,导致输入阿拉伯海中部海盆的河流沉积物急剧减少。

    (1)阿拉伯海中部 AS06-13 岩芯的总稀土元素平均含量为 113.66 μg/g,球粒陨石标准化的配分曲线表明轻稀土元素富集重稀土元素亏损,δEu(平均为 0.71)存在明显负异常,陆源特征明显。AS06-13岩芯沉积物共鉴定出 5 类黏土矿物,其中伊利石含量最高(平均值为 56%),蒙脱石含量最低(平均为 2%)。此外,岩芯中还发现了一定量的坡缕石(平均含量为 18%)。

    (2)δEuUCC-(La/Yb)UCC 判别结果显示 90 kaBP 以来 AS06-13 岩芯的物源为混合来源,并呈现出明显的阶段性特征,可以划分为 3 个阶段(S1、S2、S3),其中 S1 阶段研究区主要受印度河源区和阿拉伯半岛风尘控制,S2 阶段除了受到印度河和风尘的物源输入,还受到来自片麻岩区的物质影响;S3 阶段受到来自印度河、阿拉伯半岛风尘、片麻岩区和德干高原的综合影响。

    (3)90 kaBP 以来阿拉伯海中部 AS06-13 岩芯的沉积物来源和沉积演化过程主要受季风和海平面的共同控制,且不同阶段影响程度不同。S1、S2 阶段研究区物源演化受季风、海平面的共同驱动,海平面的降低导致大陆架裸露,更多河流沉积物经深海通道输送到研究区,西南季风的减弱和海平面下降导致印度河、德干高原物质对研究区的输入量增多,东北季风的增强和西北风相对增强使阿拉伯半岛的风尘输入增加。S3 阶段则受到全新世海平面快速上升的强烈影响,使输入阿拉伯海的河流沉积物急剧减少。

    致谢:感谢西印度洋海洋底质调查航次所有参航人员为样品采集所做出的贡献,感谢自然资源部第一海洋研究所在样品测试分析过程中提供的帮助。

  • 图  1   研究区及QD2站位分布图

    (基于Ocean Data View创建)

    Figure  1.   Map of study area showing sampling site of QD2

    (created based on Ocean Data View)

    图  2   QD2沉积柱基于Clam的年龄-深度模型

    Figure  2.   Clam-based age-depth model for the core QD2

    图  3   QD2沉积柱Ti, Ba, Al, Ni/Co, Babio, Ba/Ti和Ba/(Rb+Zr)随深度的变化图

    Figure  3.   The depth distributions of Ti, Ba, Al, Ni/Co, Babio, Ba/Ti, and Ba/(Rb+Zr)in the core QD2

    图  4   琼东陆架海域海洋生产力与气候环境指标对比图

    A. 中国过去2 000年温度变化[71],B. 厄瓜多尔Laguna Pallcacocha湖泊沉积物红度记录[70],C. 印度尼西亚深海沉积物陆源叶蜡氢同位素记录[69],D. 董哥洞与和尚洞石笋δ18O差值(DG-HSΔδ18O)记录[68],E. QD2站生源Ba(Babio)变化(本研究),F. QD2站Ba/Ti比值变化(本研究)。图中气候期:罗马暖期(RWP)、黑暗时代寒冷期(DACP)、中世纪暖期(MWP)、小冰期(LIA)和现代暖期(RWP)。

    Figure  4.   Comparison between Babio and a variety of climatic records

    A.China's temperature record over the last 2000 years[71],B.Redness record of sediments from lake Laguna Pallcacocha in Ecuadorian Andes[70],C.Sedimentary wax record from Indonesia[69],D.Dong Gedong-He Shangdong stalagmite Δδ18O record[68], E.Babio and (F) Ba/Ti records at QD2. Years were divided into Roman Warm Period (RWP), Dark Ages Cold Period (DACP), Medieval Warm Period (MWP), Little Ice Age (LIA) and Rapid Warm Period (RWP).

  • [1]

    Chassot E, Bonhommeau S, Dulvy N K, et al. Global marine primary production constrains fisheries catches [J]. Ecology Letters, 2010, 13(4): 495-505. doi: 10.1111/j.1461-0248.2010.01443.x

    [2]

    Friedland K D, Charles S, Drinkwater K F, et al. Pathways between primary production and fisheries yields of large marine ecosystems [J]. PLoS One, 2012, 7(1): e28945. doi: 10.1371/journal.pone.0028945

    [3]

    Gruber N, Galloway J N. An earth-system perspective of the global nitrogen cycle [J]. Nature, 2008, 451(7176): 293-296. doi: 10.1038/nature06592

    [4]

    Keller K M, Joos F, Lehner F, et al. Detecting changes in marine responses to ENSO from 850 to 2100 C. E.: Insights from the ocean carbon cycle [J]. Geophysical Research Letters, 2015, 42(2): 518-525. doi: 10.1002/2014GL062398

    [5]

    Pospelova V, Price A M, Pedersen T F. Palynological evidence for late Quaternary climate and marine primary productivity changes along the California margin [J]. Paleoceanography, 2015, 30(7): 877-894. doi: 10.1002/2014PA002728

    [6]

    Moore J K, Fu W W, Primeau F, et al. Sustained climate warming drives declining marine biological productivity [J]. Science, 2018, 359(6380): 1139-1143. doi: 10.1126/science.aao6379

    [7]

    Wollenburg J E, Knies J, Mackensen A. High-resolution paleoproductivity fluctuations during the past 24 kyr as indicated by benthic foraminifera in the marginal Arctic Ocean [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 204(3-4): 209-238. doi: 10.1016/S0031-0182(03)00726-0

    [8] 钮耀诚, 张译元, 杜江辉, 等. 南海西部MIS 3期底栖有孔虫反映的生产力变化[J]. 海洋地质与第四纪地质, 2011, 31(1):85-92. [NIU Yaocheng, ZHANG Yiyuan, DU Jianghui, et al. Variations in paleoproductivity recorded by benthic. foraminifera during mis 3 from the western South China Sea [J]. Marine Geology & Quaternary Geology, 2011, 31(1): 85-92.
    [9]

    Bittniok B, Lazarus D B, Diester-Haass L, et al. Radiolarian and sedimentologic paleoproductivity proxy record from the benguela upwelling system, DSDP site 532, 0-6 Ma [J]. Marine Micropaleontology, 2004, 68(3): 223-235.

    [10]

    Eshet Y, Almogi-Labin A. Calcareous nannofossils as paleoproductivity indicators in Upper Cretaceous organic-rich sequences in Israel [J]. Marine Micropaleontology, 1996, 29(1): 37-61. doi: 10.1016/0377-8398(96)00006-0

    [11]

    Zhao J T, Li T G, Li J, et al. Paleoproductivity variations in the southern Okinawa Trough since the middle Holocene: Calcareous nannofossil records [J]. Chinese Science Bulletin, 2012, 57(30): 3917-3922. doi: 10.1007/s11434-012-5276-y

    [12]

    Wang R J, Li J. Quaternary high-resolution opal record and its paleoproductivity implication at ODP Site 1143, southern South China Sea [J]. Chinese Science Bulletin, 2003, 48(4): 363-367.

    [13]

    Serno S, Winckler G, Anderson R F, et al. Using the natural spatial pattern of marine productivity in the Subarctic North Pacific to evaluate paleoproductivity proxies [J]. Paleoceanography and Paleoclimatology, 2014, 29(5): 438-453.

    [14]

    Dezileau L, Reyss J L, Lemoine F. Late Quaternary changes in biogenic opal fluxes in the Southern Indian Ocean [J]. Marine Geology, 2003, 202(3-4): 143-158. doi: 10.1016/S0025-3227(03)00283-4

    [15]

    Hinrichs K U, Schneider R R, Müller P J, et al. A biomarker perspective on paleoproductivity variations in two Late Quaternary sediment sections from the Southeast Atlantic Ocean [J]. Organic Geochemistry, 1999, 30(5): 341-366. doi: 10.1016/S0146-6380(99)00007-8

    [16]

    Devendra D, Xiang R, Thilakanayaka V, et al. Paleoproductivity changes in the Southern South China Sea from the Last Glacial to the Holocene: Evidence from Stable Isotopes and Total Organic Carbon [J]. International Journal of Geology and Earth Sciences, 2019, 5(2): 1-14.

    [17]

    Zhai L N, Wan S M, Tada R, et al. Links between iron supply from Asian dust and marine productivity in the Japan Sea since four million years ago [J]. Geological Magazine, 2019: 1-11. doi: 10.1017/S0016756819000554

    [18]

    Schmitz B. Barium, equatorial high productivity, and the northward wandering of the Indian continent [J]. Paleoceanography and Paleoclimatology, 1987, 2(1): 63-77.

    [19]

    Bridgestock L, Hsieh Y T, Porcelli D, et al. Controls on the barium isotope compositions of marine sediments [J]. Earth and Planetary Science Letters, 2018, 481: 101-110. doi: 10.1016/j.jpgl.2017.10.019

    [20] 倪建宇, 赵军, 江巧文, 等. 南海北部海域沉积物中生物钡、碳氮同位素的组成特征及其与表层水体初级生产之间的关系[J]. 海洋学报, 2019, 41(2):41-51. [Ni J Y, Zhao J, Jiang Q W, et al. Biogenic barium, carbon and nitrogen isotopes features in sediments of the northern South China Sea and their correlation with primary productivity of surface ocean [J]. Acta Oceanologica Sinica, 2019, 41(2): 41-51.
    [21] 赵泉鸿, 汪品先. 南海第四纪古海洋学研究进展[J]. 第四纪研究, 1999, 19(6):481-501. [ZHAO Quanhong, WANG Pinxian. Progress in quaternary paleoceanography of the south China sea: a review [J]. Quaternary Sciences, 1999, 19(6): 481-501. doi: 10.3321/j.issn:1001-7410.1999.06.001
    [22]

    Liu Z F, Zhao Y L, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea [J]. Earth-Science Reviews, 2016, 153: 238-237. doi: 10.1016/j.earscirev.2015.08.005

    [23]

    Zhou X X, Ding Y H, Wang P X. Moisture transport in the Asian summer monsoon region and its relationship with summer precipitation in China [J]. Journal of Meteorological Research, 2010, 24(1): 31-42.

    [24]

    Huang C, Zeng T, Ye F, et al. Natural and anthropogenic impacts on environmental changes over the past 7500 years based on the multi-proxy study of shelf sediments in the northern South China Sea [J]. Quaternary Science Reviews, 2018, 197: 35-48. doi: 10.1016/j.quascirev.2018.08.005

    [25]

    Yuan J H, Luo Y L, Xu Z L, et al. Deep-sea pollen record during 3.0-2.0 Ma B.P. from ODP Site 1143 and its response to global climate changes [J]. Marine Science Bulletin, 2006, 8(1): 1-10.

    [26] 黄宝琦, 翦知湣, 林慧玲. 南海东北部晚第四纪古生产力变化[J]. 海洋地质与第四纪地质, 2000, 20(2):65-68. [HUANG Baoqi, JIAN Zhimin, LIN Huiling. Late Quaternary changes of paleoproductivity in the northeastern South China Sea [J]. Marine Geology & Quaternary Geology, 2000, 20(2): 65-68.
    [27] 梁静之, 黄宝琦, 董轶婷, 等. 南海北部MD12-3432站MIS 11期以来底栖有孔虫反映的古环境变化[J]. 地学前缘, 2016, 23(4):292-300. [LIANG Jingzhi, HUANG Baoqi, DONG Yiting, et al. Benthic foraminifera's implications on paleo-environment variability in MD12-3432 in the northern South China Sea since MIS 11 [J]. Earth Science Frontiers, 2016, 23(4): 292-300.
    [28]

    Wang R J, Abelmann A. Radiolarian responses to paleoceanographic events of the southern South China Sea during the Pleistocene [J]. Marine Micropaleontology, 2002, 46(1-2): 25-44. doi: 10.1016/S0377-8398(02)00048-8

    [29] 李建, 王汝建. 南海北部一百万年以来的表层古生产力变化: 来自ODP1144站的蛋白石记录[J]. 地质学报, 2004, 78(2):228-233. [LI Jian, WANG Rujian. Paleoproductivity variability of the northern South China Sea during the past 1 Ma: The opal record from ODP site 1144 [J]. Acta Geologica Sinica, 2004, 78(2): 228-233. doi: 10.3321/j.issn:0001-5717.2004.02.012
    [30]

    Tang Z, Shi X F, Zhang X, et al. Deglacial biogenic opal peaks revealing enhanced Southern Ocean upwelling during the last 513 ka [J]. Quaternary International, 2016, 425: 445-452. doi: 10.1016/j.quaint.2016.09.020

    [31] 边叶萍, 翦知湣. 南海最近2400年来的古海洋学变化与历史气候资料的比较[J]. 海洋地质与第四纪地质, 2005, 25(4):73-78. [BIAN Yeping, JIAN Zhimin. Paleoceanographic changes in the South China Sea over the Last 2 400 Years and Their comparison with the historical paleoclimatical records [J]. Marine Geology & Quaternary Geology, 2005, 25(4): 73-78.
    [32] 李丽, 王慧, 汪品先. 南海北部17937岩心四万年来古环境变化的分子有机地球化学记录[J]. 地球科学—中国地质大学学报, 2008, 33(6):793-799. [LI Li, WANG Hui, WANG Pinxian. Molecular organic geochemical record of paleoenvironmental changes of core 17937 in northern South China Sea since 40 ka [J]. Earth Science—Journal of China University of Geosciences, 2008, 33(6): 793-799. doi: 10.3799/dqkx.2008.095
    [33]

    Li Y F, Peng S Q, Yang W, et al. Numerical simulation of the structure and variation of upwelling off the east coast of Hainan Island using QuikSCAT winds [J]. Chinese Journal of Oceanology and Limnology, 2012, 30(6): 1068-1081. doi: 10.1007/s00343-012-1275-8

    [34]

    Hu J Y, Liang X S, Lin H Y. Coastal upwelling off the China coasts[M]//Coastal Environment, Disaster, and Infrastructure-A Case Study of China's Coastline. BoD–Books on Demand, 2018. DOI: 10.5772/intechopen.80738.

    [35]

    Song X Y, Lai Z G, Ji R B, et al. Summertime primary production in northwest South China Sea: Interaction of coastal eddy, upwelling and biological processes [J]. Continental Shelf Research, 2012, 48: 110-121. doi: 10.1016/j.csr.2012.07.016

    [36]

    Zhou L B, Huang L M, Tan Y H, et al. Size-based analysis of a zooplankton community under the influence of the Pearl River plume and coastal upwelling in the northeastern South China Sea [J]. Marine Biology Research, 2015, 11(2): 168-179. doi: 10.1080/17451000.2014.904882

    [37]

    Snyder M A, Sloan L C, Diffenbaugh N C, et al. Future climate change and upwelling in the California Current [J]. Geophysical Research Letters, 2003, 30(15): 1823. doi: 10.1029/2003GL017647

    [38]

    Jing Z Y, Qi Y Q, Du Y. Upwelling in the continental shelf of northern South China Sea associated with 1997-1998 El Nino [J]. Journal of Geophysical Research: Oceans, 2011: 116. doi: 10.1029/2010JC006598

    [39]

    Sydeman W J, García-Reyes M, Schoeman D S, et al. Climate change and wind intensification in coastal upwelling ecosystems [J]. Science, 2014, 345(6192): 77-80. doi: 10.1126/science.1251635

    [40] 吴日升, 李立. 南海上升流研究概述[J]. 台湾海峡, 2003, 22(2):269-277. [WU Risheng, LI Li. Summarization of study on upwelling system in the South China Sea [J]. Journal of Oceanography in Taiwan Strait, 2003, 22(2): 269-277.
    [41] 郭飞, 侍茂崇, 夏综万. 琼东沿岸上升流二维数值模型的诊断计算[J]. 海洋学报, 1998, 20(6):109-116. [GUO Fei, SHI Maochong, XIA Zongwan. Two-demension diagnose model to calculate upwelling on offshore of the east coast of Hainan Island [J]. Acta Oceanologica Sinica, 1998, 20(6): 109-116.
    [42]

    Goodkin N F, Switzer A D, McCorry D L, et al. Coral communities of Hong Kong: Long-lived corals in a marginal reef environment [J]. Marine Ecology Progress, 2011, 426: 185-196. doi: 10.3354/meps09019

    [43]

    Dymond J, Collier R, McManus J, et al. Can the aluminum and titanium contents of ocean sediments be used to determine the paleoproductivity of the oceans? [J]. Paleoceanography and Paleoclimatology, 1997, 12(4): 586-593.

    [44]

    James R H, Palmer M R. Marine geochemical cycles of the alkali elements and boron: the role of sediments [J]. Geochimica et Cosmochimica Acta, 2000, 64(18): 3111-3122. doi: 10.1016/S0016-7037(00)00418-X

    [45] 沈俊, 施张燕, 冯庆来. 古海洋生产力地球化学指标的研究[J]. 地质科技情报, 2011, 30(2):69-77. [SHEN Jun, SHI Zhangyan, FENG Qinglai. Review on geochemical proxies in paleo-productivity studies [J]. Geological Science and Technology Information, 2011, 30(2): 69-77. doi: 10.3969/j.issn.1000-7849.2011.02.012
    [46]

    Yang S Y, Li C X, Cai J G. Geochemical compositions of core sediments in eastern China: Implication for Late Cenozoic palaeoenvironmental changes [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 229(4): 287-302. doi: 10.1016/j.palaeo.2005.06.026

    [47]

    Dymond J, Suess E, Lyle M. Barium in Deep-Sea sediment: a geochemical proxy for paleoproductivity [J]. Paleoceanography and Paleoclimatology, 1992, 7(2): 163-181.

    [48] 田正隆, 陈绍勇, 龙爱民. 以Ba为指标反演海洋古生产力的研究进展[J]. 热带海洋学报, 2004, 23(3):78-86. [TIAN Zhenglong, CHEN Shaoyong, LONG Aimin. A review on barium as a geochemical proxy to reconstruct paleoproductivity [J]. Journal of Tropical Oceanography, 2004, 23(3): 78-86. doi: 10.3969/j.issn.1009-5470.2004.03.012
    [49] 韦恒叶. 古海洋生产力与氧化还原指标——元素地球化学综述[J]. 沉积与特提斯地质, 2012, 32(2):76-88. [WEI Yeheng. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry [J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2): 76-88. doi: 10.3969/j.issn.1009-3850.2012.02.012
    [50] 陈建芳. 古海洋研究中的地球化学新指标[J]. 地球科学进展, 2002, 17(3):402-410. [CHEN Jianfang. New geochemical proxies in paleoc-eanography studies [J]. Advance in Earth Sciences, 2002, 17(3): 402-410. doi: 10.3321/j.issn:1001-8166.2002.03.017
    [51]

    Pirrung M, Illner P, Matthiessen J. Biogenic barium in surface sediments of the European Nordic Seas [J]. Marine Geology, 2008, 250(1-2): 89-103. doi: 10.1016/j.margeo.2008.01.001

    [52]

    Elderfield H. Tracers of ocean paleoproductivity and paleochemistry: An introduction [J]. Paleoceanography and Paleoclimatology, 1990, 5(5): 711-717.

    [53]

    Francois R, Honjo S, Manganini S J, et al. Biogenic barium fluxes to the deep sea: Implications for paleoproductivity reconstruction [J]. Global Biogeochemical Cycles, 1995, 9(2): 289-303. doi: 10.1029/95GB00021

    [54] 邹亮, 韦刚健, 李军. 海洋沉积物中生物成因Ba的海洋生产力研究[J]. 第四纪研究, 2011, 31(2):307-315. [ZOU Liang, WEI Gangjian, LI Jun. Review on ocean productivity by using biogenic Ba in marine sediments [J]. Quaternary Sciences, 2011, 31(2): 307-315. doi: 10.3969/j.issn.1001-7410.2011.02.13
    [55]

    Riethdorf J R, Nürnberg D, Max L, et al. Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyr [J]. Climate of the Past, 2013, 9(3): 1345-1373. doi: 10.5194/cp-9-1345-2013

    [56]

    Frank M, Gersonde R, Van Der Loeff M R, et al. Similar glacial and interglacial export bioproductivity in the Atlantic sector of the Southern Ocean: Multiproxy evidence and implications for glacial atmospheric CO2 [J]. Paleoceanography and Paleoclimatology, 2000, 15(6): 642-658.

    [57]

    Bonn W J, Gingele F X, Grobe H, et al. Palaeoproductivity at the Antarctic continental margin: opal and barium records for the last 400 ka [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 139(3-4): 195-211. doi: 10.1016/S0031-0182(97)00144-2

    [58]

    Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean [J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3869-3878. doi: 10.1016/0016-7037(96)00236-0

    [59] 韦刚健, 刘颖, 李献华, 等. 南海沉积物中过剩铝问题的探讨[J]. 矿物岩石地球化学通报, 2003, 22(1):23-25. [WEI Gangjian, LIU Ying, LI Xianhua, et al. Excess al in the sediments from South China Sea [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22(1): 23-25. doi: 10.3969/j.issn.1007-2802.2003.01.005
    [60]

    Taylor S R, McLennan S M. The continental crust: its composition and evolution[M]. United States: Blackwell Scientific Publishing, 1985.

    [61]

    Klump J, Hebbeln D, Wefer G. The impact of sediment provenance on barium-based productivity estimates [J]. Marine Geology, 2000, 169(3-4): 259-271. doi: 10.1016/S0025-3227(00)00092-X

    [62]

    Goldberg E L, Gorbarenko S A, Shaporenko A D, et al. Instability of last glacial climate from SRXFA data for bottom sediments in the Okhotsk Sea [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 543(1): 284-287. doi: 10.1016/j.nima.2005.01.242

    [63] 张富元, 张霄宇, 杨群慧, 等. 南海东部海域的沉积作用和物质来源研究[J]. 海洋学报, 2005, 27(2):79-90. [ZHANG Fuyuan, ZHANG Xiaoyu, YANG Hui Qunhui, et al. Research on sedimentations and material sources in the eastern South China Sea [J]. Acta Oceanologica Sinica, 2005, 27(2): 79-90.
    [64]

    Woods A M, Lloyd J M, Zong Y Q, et al. Spatial mapping of Pearl River Estuary surface sediment geochemistry: influence of data analysis on environmental interpretation [J]. Estuarine, Coastal and Shelf Science, 2012, 115: 218-233. doi: 10.1016/j.ecss.2012.09.005

    [65] 青子琪, 刘连文, 郑洪波. 越南岸外夏季上升流区22万年来东亚季风的沉积与地球化学记录[J]. 海洋地质与第四纪地质, 2005, 25(2):67-72. [QING Ziqi, LIU Lianwen, ZHENG Hongbo. Sedimentological and geochemical records of east asian monsoon in summer upwelling region off the coast of vietnam for the past 220 000 years [J]. Marine Geology & Quaternary Geology, 2005, 25(2): 67-72.
    [66] 谢玲玲, 张书文, 赵辉. 琼东上升流研究概述[J]. 热带海洋学报, 2012, 31(4):35-41. [XIE Lingling, ZHANG Shuwen, ZHAO Hui. Overview of studies on Qiongdong upwelling [J]. Journal of Tropical Oceanography, 2012, 31(4): 35-41.
    [67] 刘羿, 彭子成, 韦刚健, 等. 南海北部夏季沿岸上升流近百年的强度变化[J]. 地球化学, 2009, 38(4):317-322. [LIU Yi, PENG Zicheng, WEI Gangjian, et al. Variation of summer coastal upwelling at northern South China Sea during the last 100 years [J]. Geochimica, 2009, 38(4): 317-322. doi: 10.3321/j.issn:0379-1726.2009.04.001
    [68]

    Hu C Y, Henderson G M, Huang J H, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records [J]. Earth and Planetary Science Letters, 2008, 266(3-4): 221-232. doi: 10.1016/j.jpgl.2007.10.015

    [69]

    Tierney J E, Oppo D W, Rosenthal Y, et al. Coordinated hydrological regimes in the Indo-Pacific region during the past two millennia [J]. Paleoceanography and Paleoclimatology, 2010, 25(1): PA1102. doi: 10.1029/2009pa001871

    [70]

    Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Nino/Southern Oscillation activity at millennial timescales during the Holocene epoch [J]. Nature, 2002, 420(6912): 162-165. doi: 10.1038/nature01194

    [71]

    Yang B, Braeuning A, Johnson K R, et al. General characteristics of temperature variation in China during the last two millennia [J]. Geophysical Research Letters, 2002, 29(9): 38-1-38-4.

    [72]

    Neukom R, Steiger N, Gómez-Navarro J J, et al. No evidence for globally coherent warm and cold periods over the preindustrial Common Era [J]. Nature, 2019, 571(7766): 550-554. doi: 10.1038/s41586-019-1401-2

    [73]

    Jickells T D. Global iron connections between desert dust, ocean biogeochemistry, and climate [J]. Science, 2005, 308(5718): 67-71. doi: 10.1126/science.1105959

  • 期刊类型引用(1)

    1. 韩志旺,何丽霞,张振宇,张桂香,申鹤,张泽雅,王梦瑶,孟淑晖. 生物质炭中典型污染物浓度及其潜在风险分析. 太原科技大学学报. 2023(04): 382-388 . 百度学术

    其他类型引用(3)

图(4)
计量
  • 文章访问数:  3377
  • HTML全文浏览量:  402
  • PDF下载量:  71
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-09-24
  • 修回日期:  2019-11-03
  • 网络出版日期:  2020-05-11
  • 刊出日期:  2020-09-30

目录

/

返回文章
返回