Research progress in carbonate associated sulfate
-
摘要: 碳酸盐晶格硫(CAS)是古环境恢复的重要手段之一,它系指在碳酸盐成岩过程中微量的硫酸盐离子取代碳酸盐离子并保存在晶格中的硫酸盐。CAS对矿物沉淀发生时的海水硫酸根的氧、硫同位素组成、硫酸盐浓度和当时古环境的氧化还原状态都有很好的保存和记录作用,因此引发了对其持续关注,并开展了一系列卓有成效的研究。本文综述了CAS当前的研究进展,主要从前处理方法、影响因素、同位素组成和古环境恢复等重点问题来探讨CAS的成因和CAS对不同沉积环境的恢复应用,并展望了需要进一步研究的几点研究方向,希望借此能引起广大研究者的兴趣和重视。Abstract: Carbonate associated sulfate, or CAS in brief, is one of the important indicators for paleoenvironmental restoration. Trace sulfate may enter carbonate lattice and replaces the carbonate during diagenesis. The CAS has the capability to preserve the isotopic composition of seawater sulfate and to record the sulfate concentration of seawater, as well as the changes in the paleoenvironment. In recent years, CAS has attracted great interest and attention from the geological society. In this paper, attempt has been made to address CAS with emphases on its pre-treatment methods, influencing factors, isotopic composition and its significance in paleoenvironmental reconstruction. The application of CAS to the restoration of different sedimentary environments is discussed, in addition to the future research directions. We hope that the introduction may raise interests and attentions from researchers.
-
Keywords:
- CAS /
- pretreatment method /
- sulfur-oxygen isotopes /
- paleoenvironmental reconstruction /
- cold seep
-
一、提交本刊的论文一经发表,作者即将论文整体以及附属于论文的图、表、摘要、增强出版内容或其他可以从论文中提取部分的全部复制传播的权利——包括但不限于复制权、发行权、信息网络传播权、表演权、翻译权、汇编权、改编权等著作财产权许可给《海洋地质与第四纪地质》编辑部(下简称“编辑部”)使用,编辑部有权通过包括但不限于以下方式使用:
1. 以各种已知或将来可能出现的形态、格式和介质(包括但不限于纸质、光盘、磁盘、网络等形式)复制、发行、传播该论文。
2. 翻译、改编、汇编该论文,以及利用该论文中的图表、摘要或任何部分衍生其他作品。
3. 以各种表达形式(包括但不限于口头、书面)表演传播该论文。
4. 许可《中国学术期刊(网络版)》(中国知网http://www.cnki.net)、万方数据(http://www.wanfangdata.com.cn)、中文科技期刊数据库(重庆维普资讯有限公司http://www.cqvip.com)、中国科学引文数据库(中国科学院文献情报中心http://sciencechina.cn)、国家科技学术期刊开放平台(中国科学技术信息研究所http://doaj.istic.ac.cn)、超星(北京世纪超星信息技术发展有限责任公司https://www.chaoxing.com)等(未全部列举)经由本编辑部授权的数据库(网络平台)以数字化方式复制、汇编、发行、网络传播本刊全文。
二、许可期限:著作权保护期限。
三、许可使用范围:全球范围。
四、许可费用:论文录用后,本刊向作者一次性支付稿酬,其中已包含许可费。
五、知识产权承诺:作者保证所投稿论文为原创作品,不存在侵犯第三人著作权的情形,否则产生的责任由作者承担。
六、双方因履行本协议而产生的争议应协商解决。
七、所有署名作者向本刊提交文章发表之行为视为同意本声明。
《海洋地质与第四纪地质》编辑部
-
表 1 一些典型的CAS提取方法
Table 1 Typical methods of extraction of CAS
样本时代 采样地点 主要的实验步骤 碳酸盐岩类型 文献来源 寒武纪 美国伊利诺斯(Illinois) 样品粉末用去离子水冲洗两次,持续24 h,偶尔搅拌一下,而后小心的倒掉上层液体;把样品用4%NaClO溶液处理,混合好后,持续反应48 h,并伴随偶尔的搅拌;样品再用去18 MΩ离子水冲洗两次 — [32] 古生代和中生代 — 直接用NaCl进行处理 生物成因碳酸盐岩和微晶方解石 [1] 新元古代晚期 中国宜昌市 50 g样品直接放到200 mLHCl(6 mol/L),12 h,过滤;加入5 g/(NH4)2(OH)Cl(1%)和两滴甲基橙,用NH4OH和盐酸调节pH,至溶液变为红色的 — [30] 震旦纪晚期 纳米比亚(Namibia) 将样品浸入10%NaCl溶液中,5次,持续24 h,并且不停的搅拌,每次取出后用去离子水冲洗3次 含硅质碎屑的碳酸盐岩 [33] 上三叠纪 阿尔卑斯山脉东部和南部 把样品浸入到10%NaCl溶液中搅拌24 h,过滤 — [34] 古生代 去离子水浸泡24~36 h — [35] 元古代 中国天津蓟县 在5.25%NaClO中冲洗24 h,然后用蒸馏水冲洗 — [29] 古生代 比利时乌拉尔山脉、北美
中部和内华达州用去离子水淋洗两次,每次持续24 h;再用4% NaClO溶液处理48 h — [36] -
[1] Kampschulte S, Strauss H. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates [J]. Chemical Geology, 2004, 204(3-4): 255-286. doi: 10.1016/j.chemgeo.2003.11.013
[2] Wotte T, Strauss H, Fugmann A, et al. Paired δ34S data from carbonate-associated sulfate and chromium-reducible sulfur across the traditional Lower-Middle Cambrian boundary of W-Gondwana [J]. Geochimica et Cosmochimica Acta, 2012, 85: 228-253. doi: 10.1016/j.gca.2012.02.013
[3] Riccardi A L, Arthur M A, Kump L R. Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction [J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5740-5752. doi: 10.1016/j.gca.2006.08.005
[4] Staudt W J, Schoonen M A A. Sulfate incorporation into sedimentary carbonates[M]//Vairavamurthy M A, Schoonen M A A, Eglinton T I, et al. Geochemical Transformations of Sedimentary Sulfur. Washington, DC: American Chemical Society, 1995: 332-345.
[5] Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran ocean [J]. Science, 2010, 328(5974): 80-83. doi: 10.1126/science.1182369
[6] Tostevin R, He T C, Turchyn A V, et al. Constraints on the late Ediacaran sulfur cycle from carbonate associated sulfate [J]. Precambrian Research, 2017, 290: 113-125. doi: 10.1016/j.precamres.2017.01.004
[7] Guo Q J, Strauss H, Kaufman A J, et al. Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition [J]. Geology, 2009, 37(5): 399-402. doi: 10.1130/G25423A.1
[8] Schulz H D. Quantification of early diagenesis: Dissolved constituents in pore water and signals in the solid phase[M]//Schulz H D, Zabel M. Marine Geochemistry. Berlin, Heidelberg: Springer, 2006: 73-124.
[9] Canfield D E. Isotope fractionation by natural populations of sulfate-reducing bacteria [J]. Geochimica et Cosmochimica Acta, 2001, 65(7): 1117-1124. doi: 10.1016/S0016-7037(00)00584-6
[10] Milliman J D. Marine Carbonates[M]. Berlin: Springer-Verlag, 1974.
[11] Mackenzie F T, Bischoff W D, Bishop F C, et al. Magnesian calcites: low temperature occurrence, solubility and solid-solution behavior[M]//Reeder R J. Carbonates: Mineralogy and Chemistry of Reviews in Mineralogy. Washington, DC: Mineralogical Society of America, 1983: 97-144.
[12] Takano B. Geochemical implications of sulfate in sedimentary carbonates [J]. Chemical Geology, 1985, 49(4): 393-403. doi: 10.1016/0009-2541(85)90001-4
[13] Burdett J W, Arthur M A, Richardson M. A Neogene seawater sulfur isotope age curve from calcareous Pelagic microfossils [J]. Earth and Planetary Science Letters, 1989, 94(3-4): 189-198. doi: 10.1016/0012-821X(89)90138-6
[14] Pingitore Jr N E, Meitzner G, Love K M. Identification of sulfate in natural carbonates by x-ray absorption spectroscopy [J]. Geochimica et Cosmochimica Acta, 1995, 59(12): 2477-2483. doi: 10.1016/0016-7037(95)00142-5
[15] Kah L C, Lyons T W, Frank T D. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere [J]. Nature, 2004, 431(7010): 834-838. doi: 10.1038/nature02974
[16] Halverson G P, Hurtgen M T. Ediacaran growth of the marine sulfate reservoir [J]. Earth and Planetary Science Letters, 2007, 263(1-2): 32-44. doi: 10.1016/j.jpgl.2007.08.022
[17] Claypool G E, Holser W T, Kaplan I R, et al. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation [J]. Chemical Geology, 1980, 28: 199-260. doi: 10.1016/0009-2541(80)90047-9
[18] Bottrell S H, Newton R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes [J]. Earth-Science Reviews, 2006, 75(1-4): 59-83. doi: 10.1016/j.earscirev.2005.10.004
[19] Garrels R M, Lerman A. Coupling of the sedimentary sulfur and carbon cycles; an improved model [J]. American Journal of Science, 1984, 284(9): 989-1007. doi: 10.2475/ajs.284.9.989
[20] Wu N P, Farquhar J, Strauss H, et al. Evaluating the S-isotope fractionation associated with Phanerozoic pyrite burial [J]. Geochimica et Cosmochimica Acta, 2010, 74(7): 2053-2071. doi: 10.1016/j.gca.2009.12.012
[21] Goldberg T, Shields G A, Newton R J. Analytical constraints on the measurement of the sulfur isotopic composition and concentration of trace sulfate in Phosphorites: implications for sulfur isotope studies of carbonate and phosphate rocks [J]. Geostandards and Geoanalytical Research, 2011, 35(2): 161-174. doi: 10.1111/j.1751-908X.2010.00102.x
[22] Llyod R M. Oxygen-18 composition of oceanic sulfate [J]. Science, 1967, 156(3779): 1228-1231. doi: 10.1126/science.156.3779.1228
[23] Turchyn A V, Schrag D P, Coccioni R, et al. Stable isotope analysis of the Cretaceous sulfur cycle [J]. Earth and Planetary Science Letters, 2009, 285(1-2): 115-123. doi: 10.1016/j.jpgl.2009.06.002
[24] Maharjan D, Jiang G Q, Peng Y B, et al. Sulfur isotope change across the Early Mississippian K-O (Kinderhookian-Osagean) δ13C excursion [J]. Earth and Planetary Science Letters, 2018, 494: 202-215. doi: 10.1016/j.jpgl.2018.04.043
[25] Gischler E, Heindel K, Birgel D, et al. Cryptic biostalactites in a submerged karst cave of the Belize Barrier Reef revisited: pendant bioconstructions cemented by microbial micrite [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 34-51. doi: 10.1016/j.palaeo.2016.11.042
[26] Peng Y B, Bao H M, Pratt L M, et al. Widespread contamination of carbonate-associated sulfate by present-day secondary atmospheric sulfate: evidence from triple oxygen isotopes [J]. Geology, 2014, 42(9): 815-818. doi: 10.1130/G35852.1
[27] Shields G, Veizer J. Precambrian marine carbonate isotope database: version 1.1 [J]. Geochemistry, Geophysics, Geosystems, 2002, 3(6): 1 of 12-12 of 12. doi: 10.1029/2001GC000266
[28] Shen B, Xiao S H, Bao H M, et al. Carbon, sulfur, and oxygen isotope evidence for a strong depth gradient and oceanic oxidation after the Ediacaran Hankalchough glaciation [J]. Geochimica et Cosmochimica Acta, 2011, 75(5): 1357-1373. doi: 10.1016/j.gca.2010.12.015
[29] Chu X L, Zhang T, Strauss H, et al. Dynamic ocean chemistry around the Marinoan glaciation - isotopic evidence from cap carbonates [J]. Geochmica et Cosmochimica Acta, 2005.
[30] Zhang T G, Chu X L, Zhang Q R, et al. Variations of sulfur and carbon isotopes in seawater during the Doushantuo stage in late Neoproterozoic [J]. Chinese Science Bulletin, 2003, 48(13): 1375-1380. doi: 10.1007/BF03184182
[31] Wotte T, Shields-Zhou G A, Strauss H. Carbonate-associated sulfate: experimental comparisons of common extraction methods and recommendations toward a standard analytical protocol [J]. Chemical Geology, 2012, 326-327: 132-144. doi: 10.1016/j.chemgeo.2012.07.020
[32] Labotka D M, Panno S V, Locke R A. A sulfate conundrum: dissolved sulfates of deep-saline brines and carbonate-associated sulfates [J]. Geochimica et Cosmochimica Acta, 2016, 190: 53-71. doi: 10.1016/j.gca.2016.06.033
[33] Tostevin R, Shields G A, Tarbuck G M, et al. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings [J]. Chemical Geology, 2016, 438: 146-162. doi: 10.1016/j.chemgeo.2016.06.027
[34] Prantl L, Schreml S, Fichtner-Feigl S, et al. Clinical and morphological conditions in capsular contracture formed around silicone breast implants [J]. Plastic and Reconstructive Surgery, 2007, 120(1): 275-284. doi: 10.1097/01.prs.0000264398.85652.9a
[35] Wu N P, Farquhar J, Strauss H. δ34S and Δ33S records of Paleozoic seawater sulfate based on the analysis of carbonate associated sulfate [J]. Earth and Planetary Science Letters, 2014, 399: 44-51. doi: 10.1016/j.jpgl.2014.05.004
[36] Gill B C, Lyons T W, Jenkyns H C. A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event [J]. Earth and Planetary Science Letters, 2011, 312(3-4): 484-496. doi: 10.1016/j.jpgl.2011.10.030
[37] Paris G, Fehrenbacher J S, Sessions A L, et al. Experimental determination of carbonate-associated sulfate δ34S in planktonic foraminifera shells [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(4): 1452-1461. doi: 10.1002/2014GC005295
[38] Theiling B P, Coleman M. Refining the extraction methodology of carbonate associated sulfate: evidence from synthetic and natural carbonate samples [J]. Chemical Geology, 2015, 411: 36-48. doi: 10.1016/j.chemgeo.2015.06.018
[39] Kaiho K, Kajiwara Y, Nakano T, et al. End-Permian catastrophe by a bolide impact: evidence of a gigantic release of sulfur from the mantle [J]. Geology, 2001, 29(9): 815-818. doi: 10.1130/0091-7613(2001)029<0815:EPCBAB>2.0.CO;2
[40] Marenco P J, Corsetti F A, Hammond D E, et al. Oxidation of pyrite during extraction of carbonate associated sulfate [J]. Chemical Geology, 2008, 247(1-2): 124-132. doi: 10.1016/j.chemgeo.2007.10.006
[41] Fichtner V, Strauss H, Mavromatis V, et al. Incorporation and subsequent diagenetic alteration of sulfur in Arctica islandica [J]. Chemical Geology, 2018, 482: 72-90. doi: 10.1016/j.chemgeo.2018.01.035
[42] Aharon P, Fu B S. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico [J]. Geochimica et Cosmochimica Acta, 2000, 64(2): 233-246. doi: 10.1016/S0016-7037(99)00292-6
[43] Gill B C, Lyons T W, Frank T D. Behavior of carbonate-associated sulfate during meteoric diagenesis and implications for the sulfur isotope paleoproxy [J]. Geochimica et Cosmochimica Acta, 2008, 72(19): 4699-4711. doi: 10.1016/j.gca.2008.07.001
[44] 梅洪明. 一个多层的早期成岩作用模型[J]. 科学通报, 1997, 42(16):1385-1387. [MEI Hongming. A multi-layer model for early diagenesis [J]. Chinese Science Bulletin, 1997, 42(16): 1385-1387. [45] Chopin C. Ultrahigh-pressure metamorphism: tracing continental crust into the mantle [J]. Earth and Planetary Science Letters, 2003, 212(1-2): 1-14. doi: 10.1016/S0012-821X(03)00261-9
[46] Dogramaci S S, Herczeg A L, Schiff S L, et al. Controls on δ34S and δ18O of dissolved sulfate in aquifers of the Murray Basin, Australia and their use as indicators of flow processes [J]. Applied Geochemistry, 2001, 16(4): 475-488. doi: 10.1016/S0883-2927(00)00052-4
[47] Marenco P J, Corsetti F A, Kaufman A J, et al. Environmental and diagenetic variations in carbonate associated sulfate: an investigation of CAS in the Lower Triassic of the western USA [J]. Geochimica et Cosmochimica Acta, 2008, 72(6): 1570-1582. doi: 10.1016/j.gca.2007.10.033
[48] Feng D, Peng Y B, Bao H M, et al. A carbonate-based proxy for sulfate-driven anaerobic oxidation of methane [J]. Geology, 2016, 44(12): 999-1002. doi: 10.1130/G38233.1
[49] Antler G, Turchyn A V, Herut B, et al. A unique isotopic fingerprint of sulfate-driven anaerobic oxidation of methane [J]. Geology, 2015, 43(7): 619-622. doi: 10.1130/G36688.1
[50] Rennie V C F, Turchyn A V. The preservation of δ34SSO4 and δ18OSO4 in carbonate-associated sulfate during marine diagenesis: a 25 Myr test case using marine sediments [J]. Earth and Planetary Science Letters, 2014, 395: 13-23. doi: 10.1016/j.jpgl.2014.03.025
[51] Mazumdar A, Goldberg T, Strauss H. Abiotic oxidation of pyrite by Fe(III) in acidic media and its implications for sulfur isotope measurements of lattice-bound sulfate in sediments [J]. Chemical Geology, 2008, 253(1-2): 30-37. doi: 10.1016/j.chemgeo.2008.03.014
[52] Chavagnac V, Monnin C, Ceuleneer G, et al. Characterization of hyperalkaline fluids produced by low-temperature serpentinization of mantle peridotites in the Oman and Ligurian ophiolites [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(7): 2496-2522. doi: 10.1002/ggge.20147
[53] James N P, Choquette P W. Diagenesis 9. Limestones- the meteoric diagenetic environment[M]//Scholle P A, James N P, Read J F. Carbonate Sedimentology and Petrology, Volume 4. Washington, DC: American Geophysical Union, 2013.
[54] Paytan A, Kastner M, Campbell D, et al. Sulfur isotopic composition of Cenozoic seawater sulfate [J]. Science, 1998, 282(5393): 1459-1462. doi: 10.1126/science.282.5393.1459
[55] Flügel E, Munnecke A. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application[M]. 2nd ed. Berlin, New York: Springer-Verlag, 2010.
[56] Jones D S, Fike D A. Dynamic sulfur and carbon cycling through the end-Ordovician extinction revealed by paired sulfate-pyrite δ34S [J]. Earth and Planetary Science Letters, 2013, 363: 144-155. doi: 10.1016/j.jpgl.2012.12.015
[57] Present T M, Paris G, Burke A, et al. Large Carbonate Associated Sulfate isotopic variability between brachiopods, micrite, and other sedimentary components in Late Ordovician strata [J]. Earth and Planetary Science Letters, 2015, 432: 187-198. doi: 10.1016/j.jpgl.2015.10.005
[58] Howell K J, Bao H M. Caliche as a geological repository for atmospheric sulfate [J]. Geophysical Research Letters, 2006, 33(13): L13816. doi: 10.1029/2006GL026518
[59] Jenkins K A, Bao H M. Multiple oxygen and sulfur isotope compositions of atmospheric sulfate in Baton Rouge, LA, USA [J]. Atmospheric Environment, 2006, 40(24): 4528-4537. doi: 10.1016/j.atmosenv.2006.04.010
[60] Shen B, Xiao S H, Kaufman A J, et al. Stratification and mixing of a post-glacial Neoproterozoic ocean: evidence from carbon and sulfur isotopes in a cap dolostone from Northwest China [J]. Earth and Planetary Science Letters, 2008, 265(1-2): 209-228. doi: 10.1016/j.jpgl.2007.10.005
[61] Savarino J, Lee C C W, Thiemens M H. Laboratory oxygen isotopic study of sulfur (IV) oxidation: origin of the mass-independent oxygen isotopic anomaly in atmospheric sulfates and sulfate mineral deposits on Earth [J]. Journal of Geophysical Research, 2000, 105(D23): 29079-29088. doi: 10.1029/2000JD900456
[62] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane [J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572
[63] Böttcher M E, Parafiniuk J. Methane-derived carbonates in a native sulfur deposit: stable isotope and trace element discriminations related to the transformation of aragonite to calcite [J]. Isotopes in Environmental and Health Studies, 1998, 34(1-2): 177-190. doi: 10.1080/10256019708036345
[64] He T C, Zhu M Y, Mills B J W, et al. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals [J]. Nature Geoscience, 2019, 12(6): 468-474. doi: 10.1038/s41561-019-0357-z
[65] Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process [J]. Annual Review of Microbiology, 2009, 63: 311-334. doi: 10.1146/annurev.micro.61.080706.093130
[66] Niewöhner C, Hensen C, Kasten S, et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia [J]. Geochimica et Cosmochimica Acta, 1998, 62(3): 455-464. doi: 10.1016/S0016-7037(98)00055-6
[67] Sun Z L, Cao H, Yin X J, et al. Precipitation and subsequent preservation of hydrothermal Fe-Mn oxides in distal plume sediments on Juan de Fuca Ridge [J]. Journal of Marine Systems, 2018, 187: 128-140. doi: 10.1016/j.jmarsys.2018.06.014
[68] Emsbo P, Johnson C A. Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins: comment and reply: COMMENT [J]. Geology, 2004, 32(1): e64. doi: 10.1130/0091-7613-32.1.e64
[69] Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2-4): 362-407. doi: 10.1016/j.palaeo.2005.06.018
[70] Liang Q Y, Hu Y, Feng D, et al. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: constraints on fluid sources, formation environments, and seepage dynamics [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 124: 31-41. doi: 10.1016/j.dsr.2017.04.015
[71] Fritz P, Basharmal G M, Drimmie R J, et al. Oxygen isotope exchange between sulphate and water during bacterial reduction of sulphate [J]. Chemical Geology: Isotope Geoscience, 1989, 79(2): 99-105. doi: 10.1016/0168-9622(89)90012-2
[72] Crémière A, Lepland A, Chand S, et al. Fluid source and methane-related diagenetic processes recorded in cold seep carbonates from the Alvheim channel, central North Sea [J]. Chemical Geology, 2016, 432: 16-33. doi: 10.1016/j.chemgeo.2016.03.019
[73] Aharon P, Fu B S. Sulfur and oxygen isotopes of coeval sulfate-sulfide in pore fluids of cold seep sediments with sharp redox gradients [J]. Chemical Geology, 2003, 195(1-4): 201-218. doi: 10.1016/S0009-2541(02)00395-9
[74] Hurtgen M T, Arthur M A, Suits N S, et al. The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball earth? [J]. Earth and Planetary Science Letters, 2002, 203(1): 413-429. doi: 10.1016/S0012-821X(02)00804-X
[75] Newton R J, Pevitt E L, Wignall P B, et al. Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic boundary in northern Italy [J]. Earth and Planetary Science Letters, 2004, 218(3-4): 331-345. doi: 10.1016/S0012-821X(03)00676-9
[76] Dupraz C, Strasser A. Nutritional modes in coral: microbialite reefs (Jurassic, Oxfordian, Switzerland): evolution of trophic structure as a response to environmental change [J]. PALAIOS, 2002, 17(5): 449-471. doi: 10.1669/0883-1351(2002)017<0449:NMICMR>2.0.CO;2
[77] Cirilli S, Iannace A, Jadoul F, et al. Microbial-serpulid build-ups in the Norian-Rhaetian of the western Mediterranean area: ecological response of shelf margin communities to stressed environments [J]. Terra Nova, 1999, 11(5): 195-202. doi: 10.1046/j.1365-3121.1999.00245.x
[78] Rommerskirchen F, Eglinton G, Dupont L, et al. Glacial/interglacial changes in southern Africa: compound‐specific δ13C land plant biomarker and pollen records from southeast Atlantic continental margin sediments [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8): Q08010.
[79] Riding R, Martin J M, Braga J C. Coral‐stromatolite reef framework, Upper Miocene, Almería, Spain [J]. Sedimentology, 1991, 38(5): 799-818. doi: 10.1111/j.1365-3091.1991.tb01873.x
[80] Benson L. Fluctuation in the level of pluvial Lake Lahontan during the last 40, 000 years [J]. Quaternary Research, 1978, 9(3): 300-318. doi: 10.1016/0033-5894(78)90035-2
[81] Beutel M W, Horne A J, Roth J C, et al. Limnological effects of anthropogenic desiccation of a large, saline lake, Walker Lake, Nevada [J]. Hydrobiologia, 2001, 466(1-3): 91-105.
[82] Berelson W, Corsetti F, Johnson B, et al. Carbonate-associated sulfate as a proxy for lake level fluctuations: a proof of concept for Walker Lake, Nevada [J]. Journal of Paleolimnology, 2009, 42(1): 25-36. doi: 10.1007/s10933-008-9245-z
[83] Chang H J, Chu X L, Huang J, et al. Terminal Ediacaran oceanic anoxia: evidence from framboidal pyrites in the cherts of Laobao Formation (South China) [J]. Geochimica et Cosmochimica Acta Supplement, 2009, 73(13): A208.
[84] Egger M, Riedinger N, Mogollón J M, et al. Global diffusive fluxes of methane in marine sediments [J]. Nature Geoscience, 2018, 11(6): 421-425. doi: 10.1038/s41561-018-0122-8
[85] Sun Z L, Wu N Y, Cao H, et al. Hydrothermal metal supplies enhance the benthic methane filter in oceans: an example from the Okinawa Trough [J]. Chemical Geology, 2019, 525: 190-209. doi: 10.1016/j.chemgeo.2019.07.025