Research progress in carbonate associated sulfate
-
摘要: 碳酸盐晶格硫(CAS)是古环境恢复的重要手段之一,它系指在碳酸盐成岩过程中微量的硫酸盐离子取代碳酸盐离子并保存在晶格中的硫酸盐。CAS对矿物沉淀发生时的海水硫酸根的氧、硫同位素组成、硫酸盐浓度和当时古环境的氧化还原状态都有很好的保存和记录作用,因此引发了对其持续关注,并开展了一系列卓有成效的研究。本文综述了CAS当前的研究进展,主要从前处理方法、影响因素、同位素组成和古环境恢复等重点问题来探讨CAS的成因和CAS对不同沉积环境的恢复应用,并展望了需要进一步研究的几点研究方向,希望借此能引起广大研究者的兴趣和重视。Abstract: Carbonate associated sulfate, or CAS in brief, is one of the important indicators for paleoenvironmental restoration. Trace sulfate may enter carbonate lattice and replaces the carbonate during diagenesis. The CAS has the capability to preserve the isotopic composition of seawater sulfate and to record the sulfate concentration of seawater, as well as the changes in the paleoenvironment. In recent years, CAS has attracted great interest and attention from the geological society. In this paper, attempt has been made to address CAS with emphases on its pre-treatment methods, influencing factors, isotopic composition and its significance in paleoenvironmental reconstruction. The application of CAS to the restoration of different sedimentary environments is discussed, in addition to the future research directions. We hope that the introduction may raise interests and attentions from researchers.
-
Keywords:
- CAS /
- pretreatment method /
- sulfur-oxygen isotopes /
- paleoenvironmental reconstruction /
- cold seep
-
稀土元素对新型电子设备和新能源技术的发展至关重要,也是很多国家改造传统产业,发展高新技术和国防尖端技术不可或缺的战略资源。我国是稀土原材料的主要加工地(约85%),同时也是世界最大的稀土氧化物消费国 [1]。当前,受全球绿色能源转型的推动,未来清洁能源技术相关的需求可能会进一步增长。由于这样巨大的需求前景和潜在的供应链风险,近年来很多国家开始寻求新的稀土矿产资源[2]。日本学者Kato等在2011年报道了在南太平洋东部和北太平洋中部广泛分布着具有高稀土含量的深海沉积物,其中深海泥中总稀土含量可高达1000~2230 μg/g,其稀土含量与我国华南离子吸附型矿床相当或更高[3],这一报道引发了国内外学者对深海富稀土沉积物研究的热情。
在自然界,稀土矿物被发现存在于内生和表生或次生矿床中。内生矿床指在地壳中通过岩浆-热液过程形成的矿床[4],而表生或次生矿床则通过风化和沉积过程在地表形成[5];前者主要包括碳酸岩、碱性岩和热液型矿床,后者主要为离子吸附型、砂矿和海底沉积型矿床[6-7]。有学者研究发现,我国华南离子吸附型稀土矿床中稀土元素的富集主要受铁氧化物-黏土矿物复合体的共同约束[8]。而对于海底沉积物型的稀土矿物的形成过程,近些年的研究也取得了一些进展[9-11]。印度洋海盆的沉积物中有非常高的稀土含量, 稀土元素的组成和太平洋接近,其来源主要受到陆源物质和火山物质影响,推测稀土元素可能是吸附在其他物质沉积后再向磷灰石富集[12-13]。东太平洋CC区多个富稀土站位沉积物均以沸石黏土为主,西太平洋深海底泥中稀土元素的主要赋存矿物为磷酸盐矿物,包括磷灰石、独居石和磷钇矿等[14-15]。然而随着研究的深入,研究者发现在各种矿物的形成过程中也包含了微生物驱动的生物矿化的过程,矿物-微生物相互作用在环境变化、元素生物地球化学循环和矿床形成中起着重要作用[16]。微生物广泛分布于各种海洋地质环境中,它们参与了从地球表面到地下深部岩石圈中很多的地质地球化学过程[17]。研究发现海洋微生物是海底沉积作用和成矿作用的主要参与者和作用者,微生物不仅能催化成矿元素富集、沉淀直接成矿,而且还可以改变介质的酸碱条件促使成矿元素沉淀聚集而间接成矿[18-20]。深海矿物的形成也包含了微生物(生物矿化)驱动的生物过程。例如在富稀土的大洋多金属结核中发现的颗石藻化石以及生物膜的印记[21],还有研究发现海洋细菌在产生氧化表面的沉积物中起关键作用[22]。
海洋沉积物中微生物多样性的分析提示了微生物参与了海洋地质环境的形成过程[23-26]。海洋微生物在稀土矿产资源形成过程中发挥的作用以及稀土元素的海洋微生物成矿过程尚不明确。为了探讨这些问题,我们选取了从深海沉积物中成功分离培养的几种细菌,开展了海洋细菌对稀土元素富集和矿化过程的研究,期待能为大洋中稀土矿产资源的生物成因过程提供一些理论依据,具有十分重要的学术意义和实际意义。
1. 材料与方法
通过收集整理前期已经成功从沉积物样品(东海大陆架CW126/冲绳海槽CW27)中分离纯化的200 余株单克隆菌落,通过比较微生物的分布规律、数量及种类,初步筛选出3种海洋细菌进行实验室稀土元素铈(Ce)的吸附富集模拟实验。沉积物样品的采样站位图如图1所示。从冲绳海槽表层沉积物(表层4 cm, 水深1 193 m)中分离培养出Paenisporosarcina sp. CW27-A08(芽孢八叠球菌),从东海大陆架表层沉积物(表层1 cm, 水深81.13 m)中分离培养出Jeotgalibacillus sp. CW126-A03(咸海鲜芽孢杆菌)和Sulfitobacter sp. CW126-B11(亚硫酸杆菌)。菌株CW27-A08为革兰氏阳性菌, 呈椭圆或杆状, 大小约1.0~2.0 μm, 菌株16s RNA 基因序列为GenBank No.KP307800。菌株CW126-A03为革兰氏阳性菌,呈椭圆或杆状,大小约1.5~2.0 μm,菌株16s RNA 基因序列为GenBank No.MT845653。菌株CW126-B11为革兰氏阴性菌,呈杆状,大小约0.5~1.5 μm,菌株16s RNA 基因序列为GenBank No.KP307833。将冻存于–80 ℃冰箱中的菌种活化后接种到2216E液体培养基中, 在25 ℃摇床120 r/min下培养1天后备用。2216E培养基组成为:过滤后的天然海水,5 g/L蛋白胨,1 g/L酵母提取物,混合后pH调节至7.25。
实验室模拟不同海洋细菌对稀土元素Ce的吸附富集实验,实验中设置不同浓度Ce的反应体系,反应温度为4 ℃,反应时间0~2个月。反应过程中在不同的时间点间隔取样, 测定反应体系中稀土Ce离子浓度的变化和pH 值的变化,并通过扫描电镜(SEM-scanning electron microscope)和透射电镜(TEM-transmission electron microscope)及能谱仪(EDS-energy dispersive spectrometer)观察不同反应时间细菌表面稀土元素Ce形态的变化情况。反应体系采用人工海水(24.32 g/L NaCl, 10.98 g/L MgCl2·6H2O, 4.06 g/L Na2SO4, 0.20 g/L NaHCO3, 0.027 g/L H3BO3, 0.10 g/L KBr, 0.69 g/L KCl, 1.14 g/L CaCl2), pH为7.8。实验实施过程中测定反应体系中细菌密度的方法为:将已知体积的菌液离心后(6000 rpm),去掉上清液,放入冰箱冷冻后进行低压冷冻干燥,称量菌体的干重。反应中所用的溶液和实验器材都经过灭菌处理,实验在无菌操作台中进行。
采用电感耦合等离子体质谱(inductively coupled plasma mass spectrometry, ICP-MS, Thermo Fisher 公司, ICAPQC)测定反应体系中的稀土元素Ce和P的离子浓度。在不同反应时间点取样,离心后吸取上清液,并用0.22 μm聚四氟乙烯滤膜过滤后制成测试样品,测定元素浓度。运用扫描电镜(SEM, Hitachi, S-4800型)分析测定模拟实验中细菌表面形态的变化。取反应液4 000 r/min 离心10 min 后去除上清液, 用超纯水反复清洗菌液3 遍后, 吸取少量菌液滴到硅片上, 烘干后固定于电镜样品台上,进行扫描电镜观察, 工作电压15 kV。采用透射电镜(TEM, 荷兰飞利浦公司, CM12/STEM)考察相互作用过程中微生物表面形成的矿物形态。取反应液在4 000 r/min离心10 min 后去除上清液, 用超纯水反复清洗菌液3遍, 重悬后吸取少量菌液滴到铜网上, 待干燥后进行观察。工作电压为120 kV,点分辨率0.34 nm,配备电子衍射分析系统和能谱分析系统。
2. 结果与讨论
2.1 不同海洋细菌对稀土元素Ce的吸附富集过程
已经成功分离培养并筛选出的成矿微生物菌株CW126-A03(标记为A03)、菌株CW27-A08(标记A08)、菌株CW126-B11(标记为B11)的SEM图展示了3种海洋细菌的形貌特征(图2)。3种海洋细菌均呈现椭圆状或杆状,大小约0.5~2.0 μm。通过观察三种细菌接种后的生长周期,均在12~24 h处于对数生长期,此时细胞数量迅速增长,代谢活动旺盛,适宜进行接种实验。在24 h后,生长速率逐渐降低,细菌生长进入稳定期。
在设定4℃人工海水的环境下,分别考察了3种不同海洋细菌对Ce的吸附富集过程。利用ICP-MS测定不同反应时间下(0~2个月)元素Ce、P浓度的变化,并检测反应过程中pH值的变化,分析海洋细菌吸附稀土元素的化学动力学过程。图3显示了不同海洋细菌对稀土元素Ce吸附的时间曲线,其中Ce的初始浓度均为1.4 μg/g,反应体系中菌株CW126-A03、菌株CW27-A08、菌株CW126-B11的细菌干密度分别为0.26 、0.12、0.10 g/L。Ce的吸附率为反应溶液中Ce离子浓度降低值占Ce初始浓度值的百分比数。随着反应时间的增长,溶液中Ce浓度相对于初始Ce浓度的降低,反映了稀土Ce被海洋细菌吸附富集的过程。结果显示3种不同的海洋细菌对稀土元素都有富集作用,反应体系中稀土元素的浓度随着反应时间的增长而逐渐降低,稀土元素Ce的累计吸附率随时间增长而逐渐增大。从吸附曲线上可以看出,海洋细菌对Ce初期的吸附速率较快,3种细菌初始的吸附率均达到60%以上,并在反应2周后达到95%以上。菌株CW126-B11相对于CW126-A03和CW27-A08对稀土Ce有较快的吸附效率。
图4显示了3种不同海洋细菌吸附富集稀土Ce的过程中反应体系中P元素浓度的变化趋势大概相似。随着反应时间的增长体系中P的浓度都呈现先快速降低,随后保持低浓度一段时间,然后再升高的一个过程。说明海洋细菌在吸附富集稀土Ce的过程中,大致可以分为3个阶段。在起初的24 h内,带正电荷Ce3+被快速地吸附在细胞表面,与细胞表面带负电荷的官能团(尤其以磷酸盐官能团为主)形成络合物,从而消耗了初始溶液中细菌代谢产生的P[27]。随着稀土Ce被细菌富集完成,溶液中的P浓度被消耗从而保持在低浓度状态。然而随着反应时间的增长,溶液中细菌的活性减弱,细胞壁可能会破裂,从而导致P从细胞中逐渐被释放出来,因而反应体系中的P浓度又会增高。反应初期溶液中P浓度的降低和Ce的迅速被吸附相对应,表明海洋细菌对稀土Ce有一个快速细胞表面吸附的过程。这个现象与之前发现的真菌和细菌对稀土的吸附过程相似[28]。研究发现不同海洋细菌的反应体系中,反应过程中pH的变化范围相似(在7.3~7.8之间)(图5),反应初期稍有波动,后期相对较稳定。
2.2 海洋细菌对稀土元素Ce吸附富集的影响因素
图3展示了不同的海洋细菌对稀土元素的吸附速率也有所不同,在相同Ce初始浓度的反应体系中,菌密度较低的革兰氏阴性菌CW126-B11依然比菌密度高的革兰氏阳性菌CW126-A03和CW27-A08吸附富集稀土Ce的效率稍高,初步推断这与微生物自身的组成结构及细胞表面的结构特征有关[29]。此外,通过研究同种海洋细菌CW126-A03对稀土元素Ce在不同初始浓度条件下的吸附过程,来进一步考察海洋细菌吸附富集Ce的影响因素。实验中设置了3个反应体系,分别为Ce初始浓度为0.14 ug/g时CW126-A03菌干密度为0.36 g/L;Ce初始浓度为1.4 μg/g时细菌干密度为0.26 g/L;Ce初始浓度为14 μg/g时细菌干密度为0.36 g/L。图6显示了CW126-A03对Ce在7天内的短期吸附过程,细菌密度较大反应体系中(0.14 μg/g和14 μg/g)对稀土Ce的吸附速率较快。在相同菌密度条件下,稀土Ce初始浓度较低的体系(0.14 μg/g)中细菌的吸附速率在前4天相对稍快一些。
图7显示了CW126-A03对Ce在45天内的相对较长期吸附过程,3种不同体系中反应初期14天内的吸附速率各有不同,随着反应时间增长,14天后海洋细菌对稀土Ce的富集率都达到98%以上。这些实验结果表明海洋细菌吸附富集稀土元素的效率主要与细菌密度和稀土元素浓度有关,在相同的元素浓度条件下,菌密度越高短期的吸附速率越快。而随着吸附富集时间的增长,细菌活性降低及代谢产物的增加,可能会诱导稀土元素完成更多的富集和沉淀。综上所述,细菌种类以及细菌密度与被吸附元素浓度的比例关系,是影响海洋细菌富集稀土元素的主要影响因素。前期有研究表明,不同微生物细胞壁的结构特征不同,细胞表面的吸附位点(官能团)数量也不同,因而对金属阳离子的吸附能力也有差异[30-32]。
结果显示3种细菌对Ce均有吸附富集作用,在几个不同的反应体系中,海洋细菌对稀土Ce有一个快速细胞表面吸附的过程,都表现出在初期10 h内稀土元素的富集速率明显大于后期阶段,能完成90%以上的富集。3种不同体系中反应初期14天内的吸附速率各有不同,随着反应时间增长,14天后海洋细菌对稀土Ce的富集率都达到98%以上。海洋细菌吸附富集稀土元素的效率主要与细菌密度和稀土元素浓度有关,即主要受金属/生物量比率的影响[33]。另外不同的海洋细菌细胞壁结构不同,对稀土元素的吸附力也有所不同。
2.3 稀土元素Ce富集成矿过程中细菌表面的矿物形态分析
实验中在不同时间间隔取样并收集吸附后的微生物样品,利用SEM和TEM-EDS分析手段测定稀土元素Ce富集成矿过程中Ce形态的变化和所生成的稀土矿物的组成,从而进一步分析讨论海洋细菌对稀土矿化的过程和作用机理。图8显示了菌株CW126-A03富集稀土Ce七天后的SEM图像,反应体系中稀土Ce的初始浓度为1.4 μg/g,细菌干密度为0.26 g/L。SEM图中展示了在细菌表面及周围有大量的沉积颗粒物,颗粒物的大小约几百纳米,有的聚集在一起形成较大的颗粒物,暗示菌株CW126-A03对稀土Ce有富集成矿的作用。菌株CW126-A03和CW126-B11富集稀土Ce 3天后的TEM图像(图9)更清晰地展示了细胞表面富集沉积颗粒的形态,两种海洋细菌表面均聚集了大小不同的微小颗粒物,大小约为50~200 nm,这些颗粒物在细胞表面分布不均匀。有研究报道,不同细菌细胞壁表面总官能团位点密度不同,因而对金属阳离子的吸附和络合能力也不同[30],从而导致不同海洋细菌对稀土元素的吸附富集能力也不同。
图10中显示了菌株CW126-B11富集稀土Ce的TEM-EDS图像,通过EDS进一步解析了细菌表面生成的沉积物颗粒组成,细菌吸附反应3天后在细胞表面形成的颗粒物中含有明显的Ce、P、Si以及其他组成细胞的基本元素成分,并对细胞表面含Ce的矿物颗粒(白色圆圈内)进行了电子衍射光谱的分析,显示矿物颗粒呈现无定形态的非晶相结构。这些数据显示在长时间的吸附过程中海洋细菌表面形成了含稀土元素Ce的磷酸盐或硅酸盐沉淀颗粒,生物吸附导致了稀土元素从反应溶液中的提取并矿化,与前面溶液中Ce浓度变化的数据(图3、7)相吻合。研究结果表明海洋细菌在稀土的矿化过程中起着重要作用,稀土元素先快速吸附在细胞表面,随着吸附时间增长,被吸附的Ce逐渐富集生成含稀土的矿物颗粒(直径50~200 nm)。
研究发现稀土元素可以在细胞表面被矿化形成含稀土Ce的磷酸盐或硅酸盐非晶相结构的矿物颗粒。综合实验结果表明稀土元素Ce首先被吸附在细胞表面形成成核点,随后被吸附的稀土离子与细胞内部释放出来的P等元素反应,在细菌表面形成含有稀土元素Ce的矿物颗粒。说明海洋细菌在稀土的矿化过程中起着重要作用,稀土元素先快速吸附在细胞表面,随着吸附时间增长,逐渐被富集生成含稀土的矿物颗粒(直径50~200 nm),这些矿物颗粒大小可能随富集时间的增长而增大,甚至从细胞表面脱落下来,从而进一步讨论了海洋细菌对稀土元素富集矿化过程和作用机理。
3. 结论
(1)三种不同海洋细菌菌株CW126-A03、菌株CW27-A08、菌株CW126-B11对稀土Ce均有吸附富集作用。海洋细菌吸附富集稀土元素的效率主要与细菌密度和稀土元素浓度有关,即主要受金属元素/生物量比率的影响[33]。另外不同的海洋细菌细胞壁结构不同,对稀土元素的吸附力也有所不同。
(2)利用SEM、TEM-EDS分析测定稀土元素富集成矿过程中稀土元素Ce形态的变化和所生成的稀土矿物的结构,研究发现稀土元素Ce首先被吸附在细胞表面形成成核点,随后被吸附的稀土离子与细胞内部释放出来的P等元素反应,在细胞表面被矿化形成含稀土Ce的磷酸盐或硅酸盐非晶相结构的矿物颗粒。
(3)通过初步开展海洋细菌对稀土元素富集和矿化过程的研究,进一步讨论了海洋微生物成矿的过程和作用机理,期待能为大洋中稀土矿产资源的生物成因过程提供一些理论依据。同时也因实验条件有限,实验室不能完全模拟海底环境,模拟实验中还存在一些不足之处,期待本研究能为后面的研究提供一些借鉴。
-
表 1 一些典型的CAS提取方法
Table 1 Typical methods of extraction of CAS
样本时代 采样地点 主要的实验步骤 碳酸盐岩类型 文献来源 寒武纪 美国伊利诺斯(Illinois) 样品粉末用去离子水冲洗两次,持续24 h,偶尔搅拌一下,而后小心的倒掉上层液体;把样品用4%NaClO溶液处理,混合好后,持续反应48 h,并伴随偶尔的搅拌;样品再用去18 MΩ离子水冲洗两次 — [32] 古生代和中生代 — 直接用NaCl进行处理 生物成因碳酸盐岩和微晶方解石 [1] 新元古代晚期 中国宜昌市 50 g样品直接放到200 mLHCl(6 mol/L),12 h,过滤;加入5 g/(NH4)2(OH)Cl(1%)和两滴甲基橙,用NH4OH和盐酸调节pH,至溶液变为红色的 — [30] 震旦纪晚期 纳米比亚(Namibia) 将样品浸入10%NaCl溶液中,5次,持续24 h,并且不停的搅拌,每次取出后用去离子水冲洗3次 含硅质碎屑的碳酸盐岩 [33] 上三叠纪 阿尔卑斯山脉东部和南部 把样品浸入到10%NaCl溶液中搅拌24 h,过滤 — [34] 古生代 去离子水浸泡24~36 h — [35] 元古代 中国天津蓟县 在5.25%NaClO中冲洗24 h,然后用蒸馏水冲洗 — [29] 古生代 比利时乌拉尔山脉、北美
中部和内华达州用去离子水淋洗两次,每次持续24 h;再用4% NaClO溶液处理48 h — [36] -
[1] Kampschulte S, Strauss H. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates [J]. Chemical Geology, 2004, 204(3-4): 255-286. doi: 10.1016/j.chemgeo.2003.11.013
[2] Wotte T, Strauss H, Fugmann A, et al. Paired δ34S data from carbonate-associated sulfate and chromium-reducible sulfur across the traditional Lower-Middle Cambrian boundary of W-Gondwana [J]. Geochimica et Cosmochimica Acta, 2012, 85: 228-253. doi: 10.1016/j.gca.2012.02.013
[3] Riccardi A L, Arthur M A, Kump L R. Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction [J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5740-5752. doi: 10.1016/j.gca.2006.08.005
[4] Staudt W J, Schoonen M A A. Sulfate incorporation into sedimentary carbonates[M]//Vairavamurthy M A, Schoonen M A A, Eglinton T I, et al. Geochemical Transformations of Sedimentary Sulfur. Washington, DC: American Chemical Society, 1995: 332-345.
[5] Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran ocean [J]. Science, 2010, 328(5974): 80-83. doi: 10.1126/science.1182369
[6] Tostevin R, He T C, Turchyn A V, et al. Constraints on the late Ediacaran sulfur cycle from carbonate associated sulfate [J]. Precambrian Research, 2017, 290: 113-125. doi: 10.1016/j.precamres.2017.01.004
[7] Guo Q J, Strauss H, Kaufman A J, et al. Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition [J]. Geology, 2009, 37(5): 399-402. doi: 10.1130/G25423A.1
[8] Schulz H D. Quantification of early diagenesis: Dissolved constituents in pore water and signals in the solid phase[M]//Schulz H D, Zabel M. Marine Geochemistry. Berlin, Heidelberg: Springer, 2006: 73-124.
[9] Canfield D E. Isotope fractionation by natural populations of sulfate-reducing bacteria [J]. Geochimica et Cosmochimica Acta, 2001, 65(7): 1117-1124. doi: 10.1016/S0016-7037(00)00584-6
[10] Milliman J D. Marine Carbonates[M]. Berlin: Springer-Verlag, 1974.
[11] Mackenzie F T, Bischoff W D, Bishop F C, et al. Magnesian calcites: low temperature occurrence, solubility and solid-solution behavior[M]//Reeder R J. Carbonates: Mineralogy and Chemistry of Reviews in Mineralogy. Washington, DC: Mineralogical Society of America, 1983: 97-144.
[12] Takano B. Geochemical implications of sulfate in sedimentary carbonates [J]. Chemical Geology, 1985, 49(4): 393-403. doi: 10.1016/0009-2541(85)90001-4
[13] Burdett J W, Arthur M A, Richardson M. A Neogene seawater sulfur isotope age curve from calcareous Pelagic microfossils [J]. Earth and Planetary Science Letters, 1989, 94(3-4): 189-198. doi: 10.1016/0012-821X(89)90138-6
[14] Pingitore Jr N E, Meitzner G, Love K M. Identification of sulfate in natural carbonates by x-ray absorption spectroscopy [J]. Geochimica et Cosmochimica Acta, 1995, 59(12): 2477-2483. doi: 10.1016/0016-7037(95)00142-5
[15] Kah L C, Lyons T W, Frank T D. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere [J]. Nature, 2004, 431(7010): 834-838. doi: 10.1038/nature02974
[16] Halverson G P, Hurtgen M T. Ediacaran growth of the marine sulfate reservoir [J]. Earth and Planetary Science Letters, 2007, 263(1-2): 32-44. doi: 10.1016/j.jpgl.2007.08.022
[17] Claypool G E, Holser W T, Kaplan I R, et al. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation [J]. Chemical Geology, 1980, 28: 199-260. doi: 10.1016/0009-2541(80)90047-9
[18] Bottrell S H, Newton R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes [J]. Earth-Science Reviews, 2006, 75(1-4): 59-83. doi: 10.1016/j.earscirev.2005.10.004
[19] Garrels R M, Lerman A. Coupling of the sedimentary sulfur and carbon cycles; an improved model [J]. American Journal of Science, 1984, 284(9): 989-1007. doi: 10.2475/ajs.284.9.989
[20] Wu N P, Farquhar J, Strauss H, et al. Evaluating the S-isotope fractionation associated with Phanerozoic pyrite burial [J]. Geochimica et Cosmochimica Acta, 2010, 74(7): 2053-2071. doi: 10.1016/j.gca.2009.12.012
[21] Goldberg T, Shields G A, Newton R J. Analytical constraints on the measurement of the sulfur isotopic composition and concentration of trace sulfate in Phosphorites: implications for sulfur isotope studies of carbonate and phosphate rocks [J]. Geostandards and Geoanalytical Research, 2011, 35(2): 161-174. doi: 10.1111/j.1751-908X.2010.00102.x
[22] Llyod R M. Oxygen-18 composition of oceanic sulfate [J]. Science, 1967, 156(3779): 1228-1231. doi: 10.1126/science.156.3779.1228
[23] Turchyn A V, Schrag D P, Coccioni R, et al. Stable isotope analysis of the Cretaceous sulfur cycle [J]. Earth and Planetary Science Letters, 2009, 285(1-2): 115-123. doi: 10.1016/j.jpgl.2009.06.002
[24] Maharjan D, Jiang G Q, Peng Y B, et al. Sulfur isotope change across the Early Mississippian K-O (Kinderhookian-Osagean) δ13C excursion [J]. Earth and Planetary Science Letters, 2018, 494: 202-215. doi: 10.1016/j.jpgl.2018.04.043
[25] Gischler E, Heindel K, Birgel D, et al. Cryptic biostalactites in a submerged karst cave of the Belize Barrier Reef revisited: pendant bioconstructions cemented by microbial micrite [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 34-51. doi: 10.1016/j.palaeo.2016.11.042
[26] Peng Y B, Bao H M, Pratt L M, et al. Widespread contamination of carbonate-associated sulfate by present-day secondary atmospheric sulfate: evidence from triple oxygen isotopes [J]. Geology, 2014, 42(9): 815-818. doi: 10.1130/G35852.1
[27] Shields G, Veizer J. Precambrian marine carbonate isotope database: version 1.1 [J]. Geochemistry, Geophysics, Geosystems, 2002, 3(6): 1 of 12-12 of 12. doi: 10.1029/2001GC000266
[28] Shen B, Xiao S H, Bao H M, et al. Carbon, sulfur, and oxygen isotope evidence for a strong depth gradient and oceanic oxidation after the Ediacaran Hankalchough glaciation [J]. Geochimica et Cosmochimica Acta, 2011, 75(5): 1357-1373. doi: 10.1016/j.gca.2010.12.015
[29] Chu X L, Zhang T, Strauss H, et al. Dynamic ocean chemistry around the Marinoan glaciation - isotopic evidence from cap carbonates [J]. Geochmica et Cosmochimica Acta, 2005.
[30] Zhang T G, Chu X L, Zhang Q R, et al. Variations of sulfur and carbon isotopes in seawater during the Doushantuo stage in late Neoproterozoic [J]. Chinese Science Bulletin, 2003, 48(13): 1375-1380. doi: 10.1007/BF03184182
[31] Wotte T, Shields-Zhou G A, Strauss H. Carbonate-associated sulfate: experimental comparisons of common extraction methods and recommendations toward a standard analytical protocol [J]. Chemical Geology, 2012, 326-327: 132-144. doi: 10.1016/j.chemgeo.2012.07.020
[32] Labotka D M, Panno S V, Locke R A. A sulfate conundrum: dissolved sulfates of deep-saline brines and carbonate-associated sulfates [J]. Geochimica et Cosmochimica Acta, 2016, 190: 53-71. doi: 10.1016/j.gca.2016.06.033
[33] Tostevin R, Shields G A, Tarbuck G M, et al. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings [J]. Chemical Geology, 2016, 438: 146-162. doi: 10.1016/j.chemgeo.2016.06.027
[34] Prantl L, Schreml S, Fichtner-Feigl S, et al. Clinical and morphological conditions in capsular contracture formed around silicone breast implants [J]. Plastic and Reconstructive Surgery, 2007, 120(1): 275-284. doi: 10.1097/01.prs.0000264398.85652.9a
[35] Wu N P, Farquhar J, Strauss H. δ34S and Δ33S records of Paleozoic seawater sulfate based on the analysis of carbonate associated sulfate [J]. Earth and Planetary Science Letters, 2014, 399: 44-51. doi: 10.1016/j.jpgl.2014.05.004
[36] Gill B C, Lyons T W, Jenkyns H C. A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event [J]. Earth and Planetary Science Letters, 2011, 312(3-4): 484-496. doi: 10.1016/j.jpgl.2011.10.030
[37] Paris G, Fehrenbacher J S, Sessions A L, et al. Experimental determination of carbonate-associated sulfate δ34S in planktonic foraminifera shells [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(4): 1452-1461. doi: 10.1002/2014GC005295
[38] Theiling B P, Coleman M. Refining the extraction methodology of carbonate associated sulfate: evidence from synthetic and natural carbonate samples [J]. Chemical Geology, 2015, 411: 36-48. doi: 10.1016/j.chemgeo.2015.06.018
[39] Kaiho K, Kajiwara Y, Nakano T, et al. End-Permian catastrophe by a bolide impact: evidence of a gigantic release of sulfur from the mantle [J]. Geology, 2001, 29(9): 815-818. doi: 10.1130/0091-7613(2001)029<0815:EPCBAB>2.0.CO;2
[40] Marenco P J, Corsetti F A, Hammond D E, et al. Oxidation of pyrite during extraction of carbonate associated sulfate [J]. Chemical Geology, 2008, 247(1-2): 124-132. doi: 10.1016/j.chemgeo.2007.10.006
[41] Fichtner V, Strauss H, Mavromatis V, et al. Incorporation and subsequent diagenetic alteration of sulfur in Arctica islandica [J]. Chemical Geology, 2018, 482: 72-90. doi: 10.1016/j.chemgeo.2018.01.035
[42] Aharon P, Fu B S. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico [J]. Geochimica et Cosmochimica Acta, 2000, 64(2): 233-246. doi: 10.1016/S0016-7037(99)00292-6
[43] Gill B C, Lyons T W, Frank T D. Behavior of carbonate-associated sulfate during meteoric diagenesis and implications for the sulfur isotope paleoproxy [J]. Geochimica et Cosmochimica Acta, 2008, 72(19): 4699-4711. doi: 10.1016/j.gca.2008.07.001
[44] 梅洪明. 一个多层的早期成岩作用模型[J]. 科学通报, 1997, 42(16):1385-1387. [MEI Hongming. A multi-layer model for early diagenesis [J]. Chinese Science Bulletin, 1997, 42(16): 1385-1387. [45] Chopin C. Ultrahigh-pressure metamorphism: tracing continental crust into the mantle [J]. Earth and Planetary Science Letters, 2003, 212(1-2): 1-14. doi: 10.1016/S0012-821X(03)00261-9
[46] Dogramaci S S, Herczeg A L, Schiff S L, et al. Controls on δ34S and δ18O of dissolved sulfate in aquifers of the Murray Basin, Australia and their use as indicators of flow processes [J]. Applied Geochemistry, 2001, 16(4): 475-488. doi: 10.1016/S0883-2927(00)00052-4
[47] Marenco P J, Corsetti F A, Kaufman A J, et al. Environmental and diagenetic variations in carbonate associated sulfate: an investigation of CAS in the Lower Triassic of the western USA [J]. Geochimica et Cosmochimica Acta, 2008, 72(6): 1570-1582. doi: 10.1016/j.gca.2007.10.033
[48] Feng D, Peng Y B, Bao H M, et al. A carbonate-based proxy for sulfate-driven anaerobic oxidation of methane [J]. Geology, 2016, 44(12): 999-1002. doi: 10.1130/G38233.1
[49] Antler G, Turchyn A V, Herut B, et al. A unique isotopic fingerprint of sulfate-driven anaerobic oxidation of methane [J]. Geology, 2015, 43(7): 619-622. doi: 10.1130/G36688.1
[50] Rennie V C F, Turchyn A V. The preservation of δ34SSO4 and δ18OSO4 in carbonate-associated sulfate during marine diagenesis: a 25 Myr test case using marine sediments [J]. Earth and Planetary Science Letters, 2014, 395: 13-23. doi: 10.1016/j.jpgl.2014.03.025
[51] Mazumdar A, Goldberg T, Strauss H. Abiotic oxidation of pyrite by Fe(III) in acidic media and its implications for sulfur isotope measurements of lattice-bound sulfate in sediments [J]. Chemical Geology, 2008, 253(1-2): 30-37. doi: 10.1016/j.chemgeo.2008.03.014
[52] Chavagnac V, Monnin C, Ceuleneer G, et al. Characterization of hyperalkaline fluids produced by low-temperature serpentinization of mantle peridotites in the Oman and Ligurian ophiolites [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(7): 2496-2522. doi: 10.1002/ggge.20147
[53] James N P, Choquette P W. Diagenesis 9. Limestones- the meteoric diagenetic environment[M]//Scholle P A, James N P, Read J F. Carbonate Sedimentology and Petrology, Volume 4. Washington, DC: American Geophysical Union, 2013.
[54] Paytan A, Kastner M, Campbell D, et al. Sulfur isotopic composition of Cenozoic seawater sulfate [J]. Science, 1998, 282(5393): 1459-1462. doi: 10.1126/science.282.5393.1459
[55] Flügel E, Munnecke A. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application[M]. 2nd ed. Berlin, New York: Springer-Verlag, 2010.
[56] Jones D S, Fike D A. Dynamic sulfur and carbon cycling through the end-Ordovician extinction revealed by paired sulfate-pyrite δ34S [J]. Earth and Planetary Science Letters, 2013, 363: 144-155. doi: 10.1016/j.jpgl.2012.12.015
[57] Present T M, Paris G, Burke A, et al. Large Carbonate Associated Sulfate isotopic variability between brachiopods, micrite, and other sedimentary components in Late Ordovician strata [J]. Earth and Planetary Science Letters, 2015, 432: 187-198. doi: 10.1016/j.jpgl.2015.10.005
[58] Howell K J, Bao H M. Caliche as a geological repository for atmospheric sulfate [J]. Geophysical Research Letters, 2006, 33(13): L13816. doi: 10.1029/2006GL026518
[59] Jenkins K A, Bao H M. Multiple oxygen and sulfur isotope compositions of atmospheric sulfate in Baton Rouge, LA, USA [J]. Atmospheric Environment, 2006, 40(24): 4528-4537. doi: 10.1016/j.atmosenv.2006.04.010
[60] Shen B, Xiao S H, Kaufman A J, et al. Stratification and mixing of a post-glacial Neoproterozoic ocean: evidence from carbon and sulfur isotopes in a cap dolostone from Northwest China [J]. Earth and Planetary Science Letters, 2008, 265(1-2): 209-228. doi: 10.1016/j.jpgl.2007.10.005
[61] Savarino J, Lee C C W, Thiemens M H. Laboratory oxygen isotopic study of sulfur (IV) oxidation: origin of the mass-independent oxygen isotopic anomaly in atmospheric sulfates and sulfate mineral deposits on Earth [J]. Journal of Geophysical Research, 2000, 105(D23): 29079-29088. doi: 10.1029/2000JD900456
[62] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane [J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572
[63] Böttcher M E, Parafiniuk J. Methane-derived carbonates in a native sulfur deposit: stable isotope and trace element discriminations related to the transformation of aragonite to calcite [J]. Isotopes in Environmental and Health Studies, 1998, 34(1-2): 177-190. doi: 10.1080/10256019708036345
[64] He T C, Zhu M Y, Mills B J W, et al. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals [J]. Nature Geoscience, 2019, 12(6): 468-474. doi: 10.1038/s41561-019-0357-z
[65] Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process [J]. Annual Review of Microbiology, 2009, 63: 311-334. doi: 10.1146/annurev.micro.61.080706.093130
[66] Niewöhner C, Hensen C, Kasten S, et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia [J]. Geochimica et Cosmochimica Acta, 1998, 62(3): 455-464. doi: 10.1016/S0016-7037(98)00055-6
[67] Sun Z L, Cao H, Yin X J, et al. Precipitation and subsequent preservation of hydrothermal Fe-Mn oxides in distal plume sediments on Juan de Fuca Ridge [J]. Journal of Marine Systems, 2018, 187: 128-140. doi: 10.1016/j.jmarsys.2018.06.014
[68] Emsbo P, Johnson C A. Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins: comment and reply: COMMENT [J]. Geology, 2004, 32(1): e64. doi: 10.1130/0091-7613-32.1.e64
[69] Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2-4): 362-407. doi: 10.1016/j.palaeo.2005.06.018
[70] Liang Q Y, Hu Y, Feng D, et al. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: constraints on fluid sources, formation environments, and seepage dynamics [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 124: 31-41. doi: 10.1016/j.dsr.2017.04.015
[71] Fritz P, Basharmal G M, Drimmie R J, et al. Oxygen isotope exchange between sulphate and water during bacterial reduction of sulphate [J]. Chemical Geology: Isotope Geoscience, 1989, 79(2): 99-105. doi: 10.1016/0168-9622(89)90012-2
[72] Crémière A, Lepland A, Chand S, et al. Fluid source and methane-related diagenetic processes recorded in cold seep carbonates from the Alvheim channel, central North Sea [J]. Chemical Geology, 2016, 432: 16-33. doi: 10.1016/j.chemgeo.2016.03.019
[73] Aharon P, Fu B S. Sulfur and oxygen isotopes of coeval sulfate-sulfide in pore fluids of cold seep sediments with sharp redox gradients [J]. Chemical Geology, 2003, 195(1-4): 201-218. doi: 10.1016/S0009-2541(02)00395-9
[74] Hurtgen M T, Arthur M A, Suits N S, et al. The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball earth? [J]. Earth and Planetary Science Letters, 2002, 203(1): 413-429. doi: 10.1016/S0012-821X(02)00804-X
[75] Newton R J, Pevitt E L, Wignall P B, et al. Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic boundary in northern Italy [J]. Earth and Planetary Science Letters, 2004, 218(3-4): 331-345. doi: 10.1016/S0012-821X(03)00676-9
[76] Dupraz C, Strasser A. Nutritional modes in coral: microbialite reefs (Jurassic, Oxfordian, Switzerland): evolution of trophic structure as a response to environmental change [J]. PALAIOS, 2002, 17(5): 449-471. doi: 10.1669/0883-1351(2002)017<0449:NMICMR>2.0.CO;2
[77] Cirilli S, Iannace A, Jadoul F, et al. Microbial-serpulid build-ups in the Norian-Rhaetian of the western Mediterranean area: ecological response of shelf margin communities to stressed environments [J]. Terra Nova, 1999, 11(5): 195-202. doi: 10.1046/j.1365-3121.1999.00245.x
[78] Rommerskirchen F, Eglinton G, Dupont L, et al. Glacial/interglacial changes in southern Africa: compound‐specific δ13C land plant biomarker and pollen records from southeast Atlantic continental margin sediments [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8): Q08010.
[79] Riding R, Martin J M, Braga J C. Coral‐stromatolite reef framework, Upper Miocene, Almería, Spain [J]. Sedimentology, 1991, 38(5): 799-818. doi: 10.1111/j.1365-3091.1991.tb01873.x
[80] Benson L. Fluctuation in the level of pluvial Lake Lahontan during the last 40, 000 years [J]. Quaternary Research, 1978, 9(3): 300-318. doi: 10.1016/0033-5894(78)90035-2
[81] Beutel M W, Horne A J, Roth J C, et al. Limnological effects of anthropogenic desiccation of a large, saline lake, Walker Lake, Nevada [J]. Hydrobiologia, 2001, 466(1-3): 91-105.
[82] Berelson W, Corsetti F, Johnson B, et al. Carbonate-associated sulfate as a proxy for lake level fluctuations: a proof of concept for Walker Lake, Nevada [J]. Journal of Paleolimnology, 2009, 42(1): 25-36. doi: 10.1007/s10933-008-9245-z
[83] Chang H J, Chu X L, Huang J, et al. Terminal Ediacaran oceanic anoxia: evidence from framboidal pyrites in the cherts of Laobao Formation (South China) [J]. Geochimica et Cosmochimica Acta Supplement, 2009, 73(13): A208.
[84] Egger M, Riedinger N, Mogollón J M, et al. Global diffusive fluxes of methane in marine sediments [J]. Nature Geoscience, 2018, 11(6): 421-425. doi: 10.1038/s41561-018-0122-8
[85] Sun Z L, Wu N Y, Cao H, et al. Hydrothermal metal supplies enhance the benthic methane filter in oceans: an example from the Okinawa Trough [J]. Chemical Geology, 2019, 525: 190-209. doi: 10.1016/j.chemgeo.2019.07.025
-
期刊类型引用(0)
其他类型引用(1)