Interaction between seafloor cold seeps and adjacent hydrothermal activities in the Okinawa Trough
-
摘要: 热液和冷泉活动是现代深海环境中两个重要的极端系统,它们均是岩石圈与外部圈层之间进行物质、能量转移和交换的重要途径,它们之间既有显著差异,但也存在很多相似点。一系列调查研究表明,在某些特殊构造单元,热液和冷泉活动可能并不是彼此孤立的,而是在构造地质、生物生态和元素循环上存在某种相互作用或耦合关系。冲绳海槽作为西太平洋一个典型的弧后盆地,发育了繁盛的热液和冷泉活动,是研究这两个海底极端系统相互影响机制的天然实验室。在大量文献调研和野外精细探测结果的基础上,分析了冲绳海槽内相互毗邻的冷泉和热液之间的物质扩散过程及生物地球化学作用,初步建立了两个极端系统内两种不同流体相互作用的概念模型,认识到未来如对两个深海极端环境共生区构造发育特征、地层流体演化、生物群落以及矿物元素组成进行系统分析,将有助于建立更加完善的冷泉-热液两个系统在物质和能量上的耦合关系模型,同时也有助于揭示它们在生物生态之间的沟通融合规律,最终可建立盆地尺度上热液-冷泉区相互作用模式,从而加深对西太平洋甚至全球范围内冷泉-热液两个极端环境系统甚至“流体-固体”耦合的规律性认识。Abstract: As the seafloor extreme environmental systems, both hydrothermal vents and cold seeps are the critical pathways between the lithosphere and exosphere (biosphere, hydrosphere and atmosphere) for transfer and exchange of materials and energies. There are significant differences, but also many similarities between the two systems. Recent investigations show that in some special tectonic units, hydrothermal vents and cold seeps are not isolated from each other, but instead there are some interactions or coupling relationships in terms of tectonic geology, biological ecology and element cyclicity. As a typical back-arc basin in the western Pacific Ocean, there are abundant hydrothermal vents and cold seeps developed in the Okinawa Trough (OT). Therefore, it has become an ideal natural laboratory for studying the two extreme environmental systems and their interactions. On the basis of literature researches and careful field case studies, we investigate the material diffusion process and biogeochemical process between cold seeps and hydrothermal vents adjacent to each other within the trough. A conceptual model is then established for the interactions between the fluids from the two extreme systems. Our results suggest that it would help to establish a more complete model of the coupling relationship between the two systems in the future, if the structural development characteristics, pore fluid evolution, biological communities, and mineral chemistry of the two deep-sea extreme environments are systematically analyzed. Moreover, it will help to reveal the interaction between them in biological ecology and finally establish a model of interaction between hydrothermal vents and cold seeps on the basin scale, so as to better understand the interaction process between cold seeps and hydrothermal systems and even the coupling of " flow-solid” in the Western Pacific Ocean or the whole Earth.
-
Keywords:
- hydrothermal activities /
- cold seeps /
- interaction /
- material and energy cycle /
- Okinawa Trough
-
库泰盆地是印尼最大的新生代盆地,位于加里曼丹岛东部,西部整体逐渐抬升,是库泰盆地新近纪沉积的主要物源区;东侧向望加锡海峡方向逐渐过渡为深海盆地;盆地中部的海陆过渡-浅海区的马哈坎褶皱带是油气勘探的重要区域(图1)。库泰盆地的油气勘探始于19世纪末期,油气发现主要集中在库泰盆地马哈坎三角洲的中—上中新统陆相成藏组合内[1],前人研究也大多集中于此。
通过区域地质研究和成藏组合评价,中国石油于2009年首次在中中新统下部—下中新统滨海相砂岩中获得油气发现,并且首次对该区深层滨海相成藏组合进行了系统研究[2-4]。但是,滨海相沉积序列在野外发育特征如何,垂向上如何演化,仍需要深入研究。为此,对下库泰盆地马哈坎三角洲开展了多次野外地质考察,在识别研究进积型三角洲的同时,特别对早中新世滨海相沉积地层开展了识别研究,厘清了其展布特征,并建立了该沉积序列的发育模式。通过钻井详细分析和野外地质考察,认为研究区下中新统不仅是普遍发育的滨海相沉积,而且是在三角洲和古构造共同作用下发育的碎屑岩与碳酸盐岩混积序列层系,表现为生屑灰岩上覆在厚层砂岩之上,而且发育多套相似特征的沉积旋回。关于混合沉积的概念,前人指出,混合沉积在同一层形成碎屑岩—碳酸盐岩混积岩系列;而由碎屑岩与碳酸盐岩、碎屑岩与混积岩、碳酸盐岩与混积岩和不同类型混积岩之间的交互沉积以及与陆表海三角洲碎屑沉积交互成层,形成了混积序列。混积序列和混积岩共同构成广义的混合沉积[5-7]。
通常混合沉积在野外露头上难以保留,而本文研究区为混合沉积研究提供了非常宝贵的地质条件。通过对研究区钻井、露头下中新统滨海相沉积的研究,建立了滨海相沉积的发育模式,并建立了混积序列发育模式,分析了其主控因素,为混积序列这类特殊的沉积现象提供了研究素材,进而为预测岩性变化规律和有利储层发育层段提供了理论依据。
1. 地质概况
库泰盆地位于加里曼丹岛的东部,包括陆上和海上部分,面积达27×104 km2,其中陆上面积约11×104 km2,海上面积约16×104 km2。其北部边界为芒卡力哈山,与打拉根盆地相隔;南为阿当断层将其与Paternoster台地和巴里托盆地分开;西部为中加里曼丹凸起,将其与莫拉维盆地分隔;库泰盆地东部延伸至望加锡海峡深水区,水深大于500 m的海域面积约6.7×104 km2。盆地中部的三马林达复背斜带将库泰盆地分为西部的上库泰盆地和东部的下库泰盆地,油气发现集中在下库泰盆地[8]。
受欧亚板块、太平洋板块和澳大利亚板块的相互作用影响,库泰盆地经历了始新世裂谷期、渐新世至中中新世的区域沉降期和中中新世的挤压反转期3个主要的演化阶段[9],发育了陆相-海相-三角洲相沉积旋回(图2)。其中,始于早中新世,剧烈于中中新世的构造抬升及同期的三角洲进积对区内油气成藏至关重要。
始新世裂谷期,盆地初始形态形成,主要沉积湖相、滨岸-陆架沉积,发育湖相-浅海相烃源岩,始新统油气发现指示该时期烃源岩以生油为主;始新世末期至晚渐新世沉降期,沉积了区域性海相泥岩,并在浅水区发育开阔海碳酸盐岩台地,局部发育浊积砂岩,有发育碳酸盐岩、深水浊积砂岩储层的潜力;早中新世末期至今的挤压反转导致东加里曼丹遭受挤压反转,形成一系列北东-南西走向的挤压反转背斜,自东向西挤压反转作用强度逐渐加大,盆地西部陆上部分沉积地层遭受强烈剥蚀,该时期为圈闭形成主要时期。中中新世开始,马哈坎进积型三角洲自西向东不断前积、推进,形成了巨厚马哈坎三角洲沉积体系,沉积中心地层厚度可达14 km,是盆地内迄今发现最主要的油气储层,同时也为油气系统提供了优质烃源岩,以生气为主[3],为形成最为富集的油气成藏组合提供了得天独厚的地质条件[10]。
库泰盆地主力储层即马哈坎三角洲沉积体系内的中中新统三角洲砂岩储层,获得了巨大发现。随着勘探研究工作的深入,不断向西部勘探,在下中新统混积序列中的滨海相砂岩储层中获得了突破。这两类砂岩具有很多相似的特征,因此在研究过程中需要通过综合地质研究进行判别,认准勘探层系,为进一步的勘探提供理论支撑。
2. 中中新统三角洲砂岩沉积特征
2.1 测井响应特征
中中新统三角洲砂岩典型特征为伽马曲线表现为一系列反旋回,局部层段夹正旋回。这些反旋回解释为粒度自下而上变粗的沉积序列,为典型河口坝沉积;而局部夹的正旋回解释为粒度自下而上逐渐变细的正粒序沉积序列,为典型的水下分流河道沉积。这些水下分流河道砂岩、河口坝砂岩即为库泰盆地主要油气储层。河口坝砂岩与水下分流河道砂岩厚度相当,主体厚度为2~5 m(图3)。整个库泰盆地内,水下分流河道砂岩的储集物性最好,储层的孔隙度为8%~39%,一般为中至高孔;渗透率普遍较高,为(30~5000)×10-3 μm2[12-13]。但这两类储层均受三角洲前缘相带迁移控制,储层非均质性强,厚度在纵横向上变化较快。钻井揭示局部层段表现为高GR值,为三角洲平原亚相沉积和前三角洲亚相沉积,以泥质为主,局部发育煤层,是油气藏有利的层间盖层(图3)。
2.2 野外露头发育特征
库泰盆地受挤压变形强度由西向东减弱,盆地西部的陆上区域隆升幅度较大、遭受强烈剥蚀,而东部海域部分变形较弱,并被不断前积的三角洲楔状体覆盖[11-13]。马哈坎三角洲主要受马哈坎河大量沉积输入的控制,类型上可归为河控三角洲。中中新世,三角洲前缘位置到达研究区,因此露头多表现为三角洲平原、三角洲前缘亚相沉积,局部可见前三角洲亚相沉积[14](图4)。
研究区内中中新统三角洲相沉积露头特征在野外延伸可达数百米甚至上千米。整个露头以褐色、黑灰色为背景,岩性主要为砂泥岩互层夹煤层。水下分流河道沉积单层厚度一般5~10 m,底部具有明显的侵蚀特征,切割了三角洲平原泥岩和煤层(图4),局部可见水下分流河道侵蚀前三角洲暗色泥岩,形成不规则起伏的表面(图4)。水下分流河道砂岩表现为正粒序特征,自下而上粒度变细,常见大型交错层理和冲刷面。
河口坝砂岩没有明显的侵蚀特征,呈透镜体“包裹”在厚层泥岩内(图4),并表现为反粒序特征,自下而上粒度变粗。河口坝砂岩单层厚度较水下分流河道小,一般为1~2 m,横向延伸范围也有限,一般5~10 m。但马哈坎三角洲浅海区的油气勘探证实,库泰盆地河口坝砂岩的规模可达上百平方千米[11-13]。
3. 下中新统滨海相砂岩沉积特征
进入下中新统,虽然地层整体以砂泥岩互层为主,地层发育特征与中中新统三角洲沉积相似,但是出现中厚层碳酸盐岩,指示沉积环境的变化。
3.1 测井响应特征
由于中中新统三角洲砂岩储层在研究区已遭受抬升剥蚀,研究区的勘探层系由中中新统转为更深层的下中新统,并获成功[2-4]。通过钻井分析,主力含气储层为下中新统砂岩,该下中新统砂岩储层为滨海相砂岩,表现为一系列反旋回特征,主体为进积型的中—细粒砂岩,顶部为中厚层碳酸盐岩(图5)。
图 5 钻井1下中新统滨海相沉积测井响应及岩性解释成果图井位见图1。Figure 5. Lithologic and sediment facies interpretation based on well log response of Well-1通过钻井对比,认为这套滨海相准层序发育5个沉积旋回,均以中—厚层碳酸盐岩出现为标志,每期旋回的GR测线整体表现为逐渐变小的特征,呈反韵律特征(图5)。钻井1钻遇3期旋回,总厚度158.5 m,单层砂岩厚度可达13.5 m[4]。可以通过反韵律特征,将钻井1揭示的3期旋回细分为7期次旋回,每个次旋回的厚度为20~40 m。虽然有些旋回内岩性有缺失,旋回1内的次旋回1,未揭示厚层砂岩,表现为碳酸盐岩直接上覆在厚层泥岩之上;旋回2内的次旋回5和6,顶部未揭示厚层碳酸盐岩,表现为厚层砂岩作为旋回顶面(图5)。整体而言,自下而上均为泥岩-砂岩-碳酸盐岩组合特征。表现最为典型的为旋回2内的次旋回3和4,均表现为典型的反韵律特征,泥岩在下部,上覆厚层砂岩,顶部为厚层碳酸盐岩(图5)。
3.2 野外露头特征
下中新统滨海相沉积在野外露头上—中中新统三角洲沉积中具有相似性,均以厚层砂岩为典型特征,但是泥岩含量有所增加,特别是这套滨海相沉积在野外露头上以厚层碳酸盐岩为标志层,通过岩性判别,这些厚层碳酸盐岩为生屑灰岩。该生屑灰岩在野外露头上表现为浅灰色,厚度约2~3 m,由于暴露风化,多具有破碎特征(图6)。该灰岩内生物碎屑发育,主要有鹿角珊瑚、海胆、贝壳类等生屑化石(图7)。通过野外岩石样品取样制片观察,这些生屑灰岩内富含珊瑚、海绵等造礁生物化石(图8)。
该厚层生屑灰岩上覆在厚层砂岩之上,二者之间没有明显的泥岩层发育。厚层砂岩表现为黄色-浅黄色,厚度约4~5 m,钻井揭示最大厚度可达20 m。砂岩内多发育水平层理、丘状-槽状交错层理,顶部有大量炭屑和虫孔,反映了滨浅海相沉积环境。岩性由下向上:底部为粉砂岩-细粒砂岩、并向上逐渐变粗、变厚,呈现反韵律特征,厚层砂岩之下为暗色—浅棕色厚层泥岩,下伏厚层生屑灰岩,指示着另一沉积旋回。
4. 下中新统滨海相混积序列沉积模式
4.1 混积序列沉积模式
库泰盆地马哈坎褶皱带在早中新世临近陆架坡折,在海平面较高时期,主要沉积海相泥岩,对应着钻井和露头观察到的厚层暗色—浅棕色泥岩。由于马哈坎三角洲向东进积发育,携带大量物源至研究区,在相对海平面较低时期,大量的粗粒碎屑被搬运至河口进入海岸,在波浪的搬运下,沉积至临滨,且细粒、偏泥质沉积物被携带相对较远(图9)。随着相对海平面持续下降,粗粒物质能被携带的距离越来越远,在垂向上形成反韵律特征(图9)。
在一段时间的相对海平面下降后,发生海侵事件,海平面快速升高,三角洲退积,陆源碎屑影响不到研究区。由于研究区处于热带,有利于生屑灰岩发育,在研究区沉积厚层生屑灰岩(图9)。但随着海平面不断上升,一段时间后,生屑灰岩被海水淹没,停止发育,此时研究区沉积海相泥岩,表现为厚层泥岩覆盖在生屑灰岩之上,此时对应最大海泛面,也标志着海侵事件的结束。
随后,另一期海退事件发生,相对海平面快速下降,马哈坎三角洲进积,碎屑岩沉积占主导地位,沉积进积型砂岩,开始一个新的旋回。马哈坎褶皱带早中新世多次海侵、海退频繁发生导致了多套滨海相泥岩-砂岩-生屑灰岩沉积旋回的发育。
4.2 混积序列发育控制因素
研究区下中新统滨海相沉积独特之处在于厚层砂岩上覆厚层生屑灰岩,具有明显的交互混合沉积特征[15-17],这种混积序列主要控制因素包括构造升降、海平面变化、气候、物源供应、突发性事件等[17]。下中新统滨海相沉积发育多套特征相似的混合沉积旋回,在相对纯净的砂岩之上发育厚层生屑灰岩,似乎与经典的碳酸盐岩生长模式相悖[18-27]。但是研究区所处的构造背景和地理位置可以解释该交互混积序列发育的可能。
相对海平面的频繁变化可能为该混积序列发育的主控因素。伴随南海扩张、东苏拉威西海消亡及晚期苏禄海扩张,库泰盆地进入拗陷期,海平面整体处于上升阶段。但是,由于库泰盆地马哈坎褶皱带处于近东西向挤压应力场,早中新世开始,构造变形即比较强烈,研究区挤压背斜开始形成。始于早中新世的挤压反转构造运动造就了一系列近北北东-南南西向背斜,这些背斜的轴部走向基本与海岸线、陆架坡折带平行[10-13]。挤压反转隆升速率和海平面的变化主要控制了相对海平面的变化,进而导致了三角洲进积的速率,影响了滨海相沉积旋回的发育。由于马哈坎褶皱带挤压应力活跃,幕式挤压反转作用导致研究区相对海平面频繁快速变化,导致碎屑岩和生屑灰岩交互发育。
在海平面相对低时期,三角洲占据主导地位,虽然早中新世马哈坎三角洲还未发育至中中新世规模,但也能输入大量的陆源碎屑至河口,进而被波浪作用携带至临滨,沉积厚层砂岩;在构造相对平静期,整体南海扩张和苏禄海扩张的背景下,海平面上升,马哈坎褶皱带发育的一系列背斜构造为生屑灰岩的发育提供了有利的场所,这些生屑灰岩往往在这些局部高点上生长[20-22],沿着或平行于陆架坡折带,呈北北东-南南西向展布(图10),而且研究区位于热带,所处的地理位置有利于生屑灰岩的发育[23]。
随着海平面持续上升,生屑灰岩停止发育,之上覆盖厚层海相泥岩,这套泥岩也代表一次最大海泛面。但在此之后,挤压构造又占据主导,相对海平面下降,三角洲进积,在厚层海相泥岩之上沉积厚层滨海相砂岩,一个新的沉积旋回开始。因此,在研究区这种特殊的挤压构造活动频繁的热带地区[22- 23],发育了生屑灰岩直接上覆于砂岩之上的沉积现象,泥岩上覆于生屑灰岩之上。
4.3 下中新统混积序列油气勘探意义
库泰盆地下中新统交互混积序列的发现,揭示了下中新统受碳酸盐岩碎屑干扰的规模砂岩储层,扩展了库泰盆地油气勘探新层系,这套混积序列临近烃源岩层系,厚度大、分布广、物性好,是规模有利储层,在库泰盆地马哈坎褶皱带及其以西地区,寻找该混积序列是油气勘探的关键。同时,该套混积序列明确了研究区滨海相砂岩储层的重要标志层—上覆的碳酸盐岩沉积。在钻井过程中,厚层海相碳酸盐岩的出现,即预示下伏规模滨海相砂岩储层的出现,可能发现规模气层,为油气勘探作业提供了技术保障。
5. 结论
(1)库泰盆地马哈坎大型三角洲的发育,为马哈坎褶皱带中中新统三角洲砂岩储层提供了充足的物源,使马哈坎褶皱带成为库泰盆地主要油气产区。同时,马哈坎三角洲的发育与相对海平面的变化,控制了下中新统海相地层的沉积旋回的发育,导致研究区内沉积多期次旋回的混合沉积。
(2)早中新世,在相对海平面低时期,三角洲占主导,马哈坎三角洲输入的陆源碎屑被波浪作用搬运至临滨,形成滨海相砂岩;在相对海平面高时期,马哈坎三角洲退积,在滨海-陆架坡折位置发育生屑灰岩;随着海平面持续上升,生屑灰岩淹没,被厚层泥岩覆盖;随着海平面的下降,开始下一个沉积旋回,以厚层滨海相砂岩为标志。挤压应力场为主的环境控制了频繁的相对海平面变化,导致了研究区内滨海相混合沉积的发育。
-
图 1 世界海洋中已发现热液喷口(蓝色圆点)和可能冷泉发育区(粉色区域,以水合物稳定带代表)的叠置图
① 东海冲绳海槽,② 马里亚纳海沟和日本海沟,③ 西南太平洋(以劳盆地和马努斯海盆为典型),④ 东北印度洋脊,⑤ 东地中海,⑥ 北极加克超慢速扩张洋脊,⑦ 北大西洋南缘,⑧ 东北太平洋边缘(底图据Sun et al[12]修改)
Figure 1. Geological settings where hydrothermal fields and cold seep systems coexist in the global oceans
① Okinawa Trough, East China Sea, ②Mariana and Japan Trench, ③ Extending basins along the Southwest Pacific Ocean (e.g., Manus basin and Lau Basin), ④ Northeast Indian Ridge (Carlsberg Ridge), ⑤ Eastern Mediterranean, ⑥ Arctic Gakkel ultraslow spreading ocean ridge, ⑦ South margin of North Atlantic, ⑧ Northeast Pacific margin. Base map is modified after Sun et al[12]
图 2 典型泥火山型冷泉(A)和洋中脊热液喷口(B)系统剖面图
A图中,AOM:甲烷厌氧氧化反应,GHSZ:天然气水合物稳定带,MDAC:甲烷厌氧氧化来源的自生碳酸盐岩。A图修改自Ceramicola et al.[25];B图修改自German et al.[26]
Figure 2. Typical profiles of seafloor mud volcanic cold seeps (A) and hydrothermal vents (B) on a mid-ocean ridge
In subfigure A, AOM:anaerobic oxidation of methane, GHSZ:gas hydrate stability zone,MDAC:methane-derived authigenic carbonate. Subfigure A is modified from Ceramicola et al.[25] and subfigure B from German et al.[26]
图 3 加利福尼亚湾内瓜伊马斯盆地扩张中心附近火成岩与冷泉之间的关系[51]
A. 多道地震剖面指示了岩床与气体活动(冷泉)的关系;B. 岩床与上部反射紊乱区域(绿色),显示沉积物横向尖灭岩床侵位后的上超现象;C. 年轻岩床上部存在浅层气现象,海底探测到冷泉生物群落;D. 裂谷轴线处的丘体下方存在岩床;E. 浊积层下部存在碟形岩床
Figure 3. Relationship between seafloor cold seeps and nearby igneous sills across the northern Guaymas spreading segment, according to seismic observations[51]
A. Time-migrated MCS section with the amplitude coloured for large values, which tend to indicate sills, gas or turbiditic strata. The green rectangles indicate the bottom panels of depth-migrated detail; B. Sills with overlying disturbed region (green), lateral termination of disturbed region, thickness of post-intrusion sediments, and onlap onto the post-intrusion sea floor indicated; C. Shallow gas above interpreted young sill; a seafloor community is located above this feature; D. Sills beneath mound within axial graben; E. Saucer-shaped sills beneath turbiditic sediments
图 4 冲绳海槽地理位置上相邻的热液喷口和冷泉区的极端生态群落对比
A. 南奄西热液区的管状蠕虫,来自Watanabe, et al. (2015)[56];B. 南奄西热液区的贻贝和毛瓷蟹,来自Watanabe, et al. (2015)[56];C. GT-D1冷泉区的管状蠕虫和巨蛤,ROV摄像,2017年张謇号调查航次;D. GT-D1冷泉区巨蛤床,ROV摄像,2017年张謇号调查航次
Figure 4. Comparison of extreme ecological communities between adjacent hydrothermal vents and cold seeps in the Okinawa Trough
A. Tubeworm clump in the Minami-Ensei Knoll, c.f. Watanabe et al. (2015)[56]; B. Typical rocky fauna in the Minami-Ensei Knoll, c.f. Watanabe et al. (2015)[56]; C. Tubeworm and clam from the GT-D1 cold seep site. Image by ROV Beaver during the integrated environmental and geological expedition of R/V Zhangjian in 2017; D. Clam bed observed in the GT-D1 cold seep site. Image by ROV FCV3000 during the integrated environmental and geological expedition of R/V Zhangjian in 2018
图 6 冲绳海槽热液—冷泉两个系统流体相互作用概念模型
具体内容见正文。OZ:氧化带,SMTZ:硫酸盐—甲烷过渡带,SDZ:硫酸盐亏损带,S-AOM:硫酸盐还原驱动的甲烷厌氧氧化作用,Fe-AOM:铁氧化物还原驱动的甲烷厌氧氧化作用
Figure 6. Conceptual model of fluid interaction between hydrothermal vents and adjacent cold seeps on the western slope of the OT, see the context for details
OZ:oxidative zone; SMTZ:sulfate-methane transition zone; SDZ:sulfate-depleted zone; S-AOM:sulfate reduction-driven AOM; Fe-AOM:Fe oxide reduction driven AOM. Not to scale
表 1 海底冷泉和热液系统之间的异、同特征比较
Table 1 Comparison of the characteristics of seafloor cold seeps and hydrothermal systems
相似点 都具有重要的资源效应 均支持化能自养生物群落 具有相似的环境效应(圈层之间物质和能量交换) 不同点 流体来源和成因机制不同 地质构造和发育位置不同 生化反应和元素循环不同 -
[1] Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the Galápagos Rift [J]. Science, 1979, 203(4385): 1073-1083. doi: 10.1126/science.203.4385.1073
[2] Paull C K, Hecker B, Commeau R, et al. Biological communities at the Florida escarpment resemble hydrothermal vent taxa [J]. Science, 1984, 226(4677): 965-967. doi: 10.1126/science.226.4677.965
[3] Parson L M, Walker C L, Dixon D R. Hydrothermal vents and processes [J]. Geological Society, London, Special Publication, 1995, 87(1): 1-2. doi: 10.1144/GSL.SP.1995.087.01.01
[4] Judd A, Hovland M. Seabed Fluid Flow: the Impact on Geology, Biology and the Marine Environment[M]. New York: Cambridge University Press, 2009.
[5] Suess E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions [J]. International Journal of Earth Sciences, 2014, 103(7): 1889-1916. doi: 10.1007/s00531-014-1010-0
[6] Levin L A. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes [J]. Oceanography and Marine Biology-an Annual Review, 2005, 43: 1-46.
[7] Levin L A, Baco A R, Bowden D A, et al. Hydrothermal vents and methane seeps: rethinking the sphere of influence [J]. Frontiers in Marine Science, 2016, 3: 72.
[8] 孙治雷, 何拥军, 李军, 等. 洋底热液喷口系统的微生物成矿研究进展[J]. 海洋地质与第四纪地质, 2011, 31(3):123-132. [SUN Zhilei, HE Yongjun, LI Jun, et al. The recent progress of submarine hydrothermal biomineralization [J]. Marine Geology & Quaternary Geology, 2011, 31(3): 123-132. [9] 孙治雷, 魏合龙, 王利波, 等. 海底冷泉系统的碳循环问题及探测[J]. 应用海洋学学报, 2016, 35(3):442-450. [SUN Zhilei, WEI Helong, WANG Libo, et al. Focus issues of carbon cycle and detecting technologies in seafloor cold seepages [J]. Journal of Applied Oceanography, 2016, 35(3): 442-450. doi: 10.3969/J.ISSN.2095-4972.2016.03.017 [10] German C R, Seyfried Jr W E. Hydrothermal processes [J]. Treatise on Geochemistry, 2014, 6: 191-233.
[11] Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps [J]. Nature Geoscience, 2013, 6(9): 725-734. doi: 10.1038/ngeo1926
[12] Xu N, Wu S G, Shi B Q, et al. Gas hydrate associated with mud diapirs in Southern Okinawa Trough [J]. Marine and Petroleum Geology, 2009, 26(8): 1413-1418. doi: 10.1016/j.marpetgeo.2008.10.001
[13] 孙治雷, 窦振亚, 黄威, 等. 现代海底热液硫化物矿体微生物风化的几个重要研究方向[J]. 海洋地质与第四纪地质, 2014, 34(1):65-74. [SUN Zhilei, DOU Zhenya, HUANG Wei, et al. Key issues for microbial weathering study in modern submarine hydrothermal sulfides [J]. Marine Geology & Quaternary Geology, 2014, 34(1): 65-74. [14] Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits [J]. Geology, 2011, 39(12): 1155-1158. doi: 10.1130/G32468.1
[15] Kulm L D, Suess E, Moore J C, et al. Oregon subduction zone: venting, fauna, and carbonates [J]. Science, 1986, 231(4738): 561-566. doi: 10.1126/science.231.4738.561
[16] Kelley D S, Karson J A, Früh-Green, G L, et al. A serpentinite-hosted ecosystem: the lost city hydrothermal field [J]. Science, 2005, 307(5714): 1428-1434. doi: 10.1126/science.1102556
[17] Proskurowski G, Lilley M D, Seewald, J S, et al. Abiogenic hydrocarbon production at lost city hydrothermal field [J]. Science, 2008, 319(5863): 604-607. doi: 10.1126/science.1151194
[18] Aharon P, Fu B S. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deep water Gulf of Mexico [J]. Geochimica et Cosmochimica Acta, 2000, 64(2): 233-246. doi: 10.1016/S0016-7037(99)00292-6
[19] MacDonald I R, Bohrmann G, Escobar E, et al. Asphalt volcanism and chemosynthetic life in the Campeche Knolls, Gulf of Mexico [J]. Science, 2004, 304(5673): 999-1002. doi: 10.1126/science.1097154
[20] Skarke A, Ruppel C, Kodis M, et al. Widespread methane leakage from the sea floor on the northern US Atlantic margin [J]. Nature Geoscience, 2014, 7(9): 657-661. doi: 10.1038/ngeo2232
[21] Riedel M, Scherwath M, Römer M, et al. Distributed natural gas venting offshore along the Cascadia margin [J]. Nature Communications, 2018, 9(1): 3264. doi: 10.1038/s41467-018-05736-x
[22] Reysenbach A L, Liu Y T, Banta A B, et al. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents [J]. Nature, 2006, 442(7101): 444-447. doi: 10.1038/nature04921
[23] Åström E K L, Carroll M L, Ambrose Jr W G, et al. Methane cold seeps as biological oases in the high-Arctic deep sea [J]. Limnology and Oceanography, 2018, 63(S1): S209-S231. doi: 10.1002/lno.10732
[24] Katayama T, Yoshioka H, Takahashi H A, et al. Changes in microbial communities associated with gas hydrates in subseafloor sediments from the Nankai Trough [J]. FEMS Microbiology Ecology, 2016, 92(8): fiw093. doi: 10.1093/femsec/fiw093
[25] Ceramicola S, Dupré S, Somoza L, et al. Cold seep systems[M]//Micallef A, Krastel S, Savini A. Submarine Geomorphology. Cham: Springer, 2018: 367-387.
[26] German C R, Legendre L L, Sander S G, et al. Hydrothermal Fe cycling and deep ocean organic carbon scavenging: model-based evidence for significant POC supply to seafloor sediments [J]. Earth and Planetary Science Letters, 2015, 419: 143-153. doi: 10.1016/j.jpgl.2015.03.012
[27] Yu?cel M, Gartman A, Chan C S, et al. Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean [J]. Nature Geoscience, 2011, 4(6): 367-371. doi: 10.1038/ngeo1148
[28] Chapelle F H, O'Neill K, Bradley P M, et al. A hydrogen-based subsurface microbial community dominated by methanogens [J]. Nature, 2002, 415(6869): 312-315. doi: 10.1038/415312a
[29] 陈忠, 杨华平, 黄奇瑜, 等. 海底甲烷冷泉特征与冷泉生态系统的群落结构[J]. 热带海洋学报, 2007, 26(6):73-82. [CHEN Zhong, YANG Huaping, HUANG Chiyue, et al. Characteristics of cold seeps and structures of chemoauto-synthesis-based communities in seep sediments [J]. Journal of Tropical Oceanography, 2007, 26(6): 73-82. doi: 10.3969/j.issn.1009-5470.2007.06.013 [30] Sun Z L, Li J, Huang W, et al. Generation of hydrothermal Fe-Si oxyhydroxide deposit on the Southwest Indian Ridge and its implication for the origin of ancient banded iron formations [J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(1): 187-203. doi: 10.1002/2014JG002764
[31] Sun Z L, Wei H L, Zhang X H, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 95: 37-53. doi: 10.1016/j.dsr.2014.10.005
[32] Glasby G P, Notsu K. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview [J]. Ore Geology Review, 2003, 23(3-4): 299-339. doi: 10.1016/j.oregeorev.2003.07.001
[33] Alt J C. Subseafloor processes in mid-ocean ridge hydrothennal systems[M]//Humphris S E, Zierenberg R A, Mullineaux L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Volume 91. Washington, DC: American Geophysical Union, 1995: 85-114.
[34] 陈多福, 陈先沛, 陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报, 2002, 20(1):34-40. [CHEN Duofu, CHEN Xianpei, CHEN Guangqian. Geology and geochemistry of cold seepage and venting-related carbonates [J]. Acta Sedimentologica Sinica, 2002, 20(1): 34-40. doi: 10.3969/j.issn.1000-0550.2002.01.007 [35] Talukder A R. Review of submarine cold seep plumbing systems: leakage to seepage and venting [J]. Terra Nova, 2012, 24(4): 255-272. doi: 10.1111/j.1365-3121.2012.01066.x
[36] Pérez-Belzuz F, Alonso B, Ercilla G. History of mud diapirism and trigger mechanisms in the Western Alboran Sea [J]. Tectonophysics, 1997, 282(1-4): 399-422. doi: 10.1016/S0040-1951(97)00226-6
[37] Sautkin A, Talukder A R, Comas M C, et al. Mud volcanoes in the Alboran Sea: evidence from micropaleontological and geophysical data [J]. Marine Geology, 2003, 195(1-4): 237-261. doi: 10.1016/S0025-3227(02)00691-6
[38] Brown K M. The nature and hydrogeologic significance of mud diapirs and diatremes for accretionary systems [J]. Journal of Geophysical Research: Solid Earth, 1990, 95(B6): 8969-8982. doi: 10.1029/JB095iB06p08969
[39] Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates [J]. Marine Geology, 2000, 167(1-2): 29-42. doi: 10.1016/S0025-3227(00)00022-0
[40] Dimitrov L I. Mud volcanoes-the most important pathway for degassing deeply buried sediments [J]. Earth-Science Reviews, 2002, 59(1-4): 49-76. doi: 10.1016/S0012-8252(02)00069-7
[41] Talukder A R, Bialas J, Klaeschen D, et al. High-resolution, deep tow, multichannel seismic and sidescan sonar survey of the submarine mounds and associated BSR off Nicaragua pacific margin [J]. Marine Geology, 2007, 241(1-4): 33-43. doi: 10.1016/j.margeo.2007.03.002
[42] Speer K G, Rona P A. A model of an Atlantic and Pacific hydrothermal plume [J]. Journal of Geophysical Research: Oceans, 1989, 94(C5): 6213-6220. doi: 10.1029/JC094iC05p06213
[43] Resing J A, Sedwick P N, German C R. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean [J]. Nature, 2015, 523(7559): 200-203. doi: 10.1038/nature14577
[44] Boström K, Peterson M N A. The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise [J]. Marine Geology, 1969, 7(5): 427-447. doi: 10.1016/0025-3227(69)90016-4
[45] Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v
[46] Somoza L, Díaz-del-Río V, León R, et al. Seabed morphology and hydrocarbon seepage in the Gulf of Cádiz mud volcano area: acoustic imagery, multibeam and ultra-high resolution seismic data [J]. Marine Geology, 2003, 195(1-4): 153-176. doi: 10.1016/S0025-3227(02)00686-2
[47] Loher M, Pape T, Marcon Y, et al. Mud extrusion and ring-fault gas seepage-upward branching fluid discharge at a deep-sea mud volcano [J]. Scientific Report, 2018, 8(1): 6275. doi: 10.1038/s41598-018-24689-1
[48] Hannington M D, De Ronde C E J, Petersen S. Sea-floor tectonics and submarine hydrothermal systems[M]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. Economic Geology 100th Anniversary Volume. Littleton, Colorado: Society of Economic Geologists, 2005: 111-141.
[49] Reeburgh W S. Global methane biogeochemistry [J]. Treatise on Geochemistry, 2007, 4: 1-32.
[50] 吴能友, 梁金强, 王宏斌, 等. 海洋天然气水合物成藏系统研究进展[J]. 现代地质, 2008, 22(3):356-362. [WU Nengyou, LIANG Jinqiang, WANG Hongbin, et al. Marine gas hydrate system: state of the art [J]. Geoscience, 2008, 22(3): 356-362. doi: 10.3969/j.issn.1000-8527.2008.03.003 [51] Lizarralde D, Soule S A, Seewald J S, et al. Carbon release by off-axis magmatism in a young sedimented spreading centre [J]. Nature Geoscience, 2011, 4(1): 50-54. doi: 10.1038/ngeo1006
[52] Tsunogai U, Kosaka A, Nakayama N, et al. Origin and fate of deep-sea seeping methane bubbles at Kuroshima Knoll, Ryukyu forearc region, Japan [J]. Geochemical Journal, 2010, 44(6): 461-476. doi: 10.2343/geochemj.1.0096
[53] Seewald J S, Seyfried Jr W E, Thornton E C. Organic-rich sediment alteration: an experimental and theoretical study at elevated temperatures and pressures [J]. Applied Geochemistry, 1990, 5(1-2): 193-209. doi: 10.1016/0883-2927(90)90048-A
[54] Johnson J E, Mienert J, Plaza-Faverola A, et al. Abiotic methane from ultraslow-spreading ridges can charge arctic gas hydrates [J]. Geology, 2015, 43(5): 371-374. doi: 10.1130/G36440.1
[55] 侯增谦, 张绮玲. 冲绳海槽现代活动热水区CO2-烃类流体: 流体包裹体证据[J]. 中国科学(D辑), 1998, 41(4):408-415. [HOU Zengqian, ZHANG Qiling. CO2-Hydrocarbon fluids of the Jade hydrothermal field in the Okinawa trough: fluid inclusion evidence [J]. Science in China Series D: Earth Sciences, 1998, 41(4): 408-415. [56] Watanabe H, Kojima S. Vent fauna in the Okinawa Trough[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo: Springer, 2015: 449-459.
[57] Jollivet D. Specific and genetic diversity at deep-sea hydrothermal vents: an overview [J]. Biodiversity & Conservation, 1996, 5(12): 1619-1653.
[58] Micheli F, Peterson C H, Mullineaux L S, et al. Predation structures communities at deep-sea hydrothermal vents [J]. Ecological Monographs, 2002, 72(3): 365-382. doi: 10.1890/0012-9615(2002)072[0365:PSCADS]2.0.CO;2
[59] Tunnicliffe V, Fowler C M R. Influence of sea-floor spreading on the global hydrothermal vent fauna [J]. Nature, 1996, 379(6565): 531-533. doi: 10.1038/379531a0
[60] Beal E J, House C H, Orphan V J. Manganese- and iron-dependent marine methane oxidation [J]. Science, 2009, 325(5937): 184-187. doi: 10.1126/science.1169984
[61] Borowski W S, Rodriguez N M, Paull C K, et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record? [J]. Marine and Petroleum Geology, 2013, 43: 381-395. doi: 10.1016/j.marpetgeo.2012.12.009
[62] Lonsdale P. A deep-sea hydrothermal site on a strike-slip fault [J]. Nature, 1979, 281(5732): 531-534. doi: 10.1038/281531a0
[63] Feng D, Roberts H H. Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico continental slope [J]. Earth and Planetary Science Letters, 2011, 309(1-2): 89-99.
[64] Matsumoto R. Isotopically heavy oxygen-containing siderite derived from the decomposition of methane hydrate [J]. Geology, 1989, 17(8): 707-710. doi: 10.1130/0091-7613(1989)017<0707:IHOCSD>2.3.CO;2
[65] Hsu T W, Jiang W T, Wang Y. Authigenesis of vivianite as influenced by methane-induced sulfidization in cold-seep sediments off southwestern Taiwan [J]. Journal of Asian Earth Sciences, 2014, 89: 88-97. doi: 10.1016/j.jseaes.2014.03.027
[66] Morad S, Al-Aasm I S. Conditions of rhodochrosite-nodule formation in Neogene-Pleistocene deep-sea sediments: evidence from O, C and Sr isotopes [J]. Sedimentary Geology, 1997, 114(1-4): 295-304. doi: 10.1016/S0037-0738(97)00066-3
[67] 周琦, 陈建华, 张命桥, 等. 冷泉碳酸盐岩研究进展及成矿意义[J]. 贵州科学, 2007, 25(S1):103-110. [ZHOU Qi, CHEN Jianhua, ZHANG Mingqiao, et al. The advances in study and metallogenic significance of cold seep carbonates [J]. Guizhou Science, 2007, 25(S1): 103-110. [68] Hu W X, Kang X, Cao J, et al. Thermochemical oxidation of methane induced by high-valence metal oxides in a sedimentary basin [J]. Nature Communications, 2018, 9(1): 5131. doi: 10.1038/s41467-018-07267-x
[69] 曾志刚. 海底热液地质学[M]. 北京: 科学出版社, 2011. ZENG Zhigang. Submarine Hydrothermal Geology[M]. Beijing: Science Press, 2011.
[70] Chiba H, Nakashima, K, Gamo T, et al. Hydrothermal activity at the Minami-Ensei knoll, Okinawa trough: Chemical characteristics of hydrothermal solutions [J]. JAMSTECTR Deep-Sea Research, 1993, 9: 271-282.
[71] Zhang X R, Sun Z L, Fan D J, et al. Compositional characteristics and sources of DIC and DOC in seawater of the Okinawa Trough, East China Sea [J]. Continental Shelf Research, 2019, 174: 108-117. doi: 10.1016/j.csr.2018.12.014
[72] Núñez-Useche F, Canet C, Liebetrau V, et al. Redox conditions and authigenic mineralization related to cold seeps in central Guaymas Basin, Gulf of California [J]. Marine and Petroleum Geology, 2018, 95: 1-15. doi: 10.1016/j.marpetgeo.2018.04.010
[73] Sibuet J C, Letouzey J, Barbier F, et al. Back arc extension in the Okinawa Trough [J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B13): 14041-14063. doi: 10.1029/JB092iB13p14041
[74] 栾锡武, 鲁银涛, 赵克斌, 等. 东海陆坡及邻近槽底天然气水合物成藏条件分析及前景[J]. 现代地质, 2008, 22(3):342-355. [LUAN Xiwu, LU Yintao, ZHAO Kebin, et al. Geological factors for the development and newly advances in exploration of gas hydrate in East China Sea Slope and Okinawa Trough [J]. Geoscience, 2008, 22(3): 342-355. doi: 10.3969/j.issn.1000-8527.2008.03.002