基于地统计学的粒径输运趋势分析在滦河水下三角洲的应用

于晓晓, 谷东起, 闫文文, 孙惠凤, 李平, 张志卫, 瞿洪宝

于晓晓, 谷东起, 闫文文, 孙惠凤, 李平, 张志卫, 瞿洪宝. 基于地统计学的粒径输运趋势分析在滦河水下三角洲的应用[J]. 海洋地质与第四纪地质, 2020, 40(4): 204-213. DOI: 10.16562/j.cnki.0256-1492.2019060701
引用本文: 于晓晓, 谷东起, 闫文文, 孙惠凤, 李平, 张志卫, 瞿洪宝. 基于地统计学的粒径输运趋势分析在滦河水下三角洲的应用[J]. 海洋地质与第四纪地质, 2020, 40(4): 204-213. DOI: 10.16562/j.cnki.0256-1492.2019060701
YU Xiaoxiao, GU Dongqi, YAN Wenwen, SUN Huifeng, LI Ping, ZHANG Zhiwei, QU Hongbao. Application of geostatistical grain size trend analysis in the Luanhe River Subaqueous Delta[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 204-213. DOI: 10.16562/j.cnki.0256-1492.2019060701
Citation: YU Xiaoxiao, GU Dongqi, YAN Wenwen, SUN Huifeng, LI Ping, ZHANG Zhiwei, QU Hongbao. Application of geostatistical grain size trend analysis in the Luanhe River Subaqueous Delta[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 204-213. DOI: 10.16562/j.cnki.0256-1492.2019060701

基于地统计学的粒径输运趋势分析在滦河水下三角洲的应用

基金项目: 国家自然科学基金-山东联合基金重点支持项目“黄河三角洲地貌演变的动力机制与环境效应”(U1706214)
详细信息
    作者简介:

    于晓晓(1989—),男,博士研究生,主要从事海岸带沉积学研究,E-mail:m13964802563@163.com

    通讯作者:

    谷东起(1971—),男,研究员,主要从事海岸带环境演化与人类活动响应研究,E-mail:friendgu@fio.org.cn

  • 中图分类号: P736.21

Application of geostatistical grain size trend analysis in the Luanhe River Subaqueous Delta

  • 摘要: 利用均匀分布于滦河水下三角洲的85个表层沉积物粒度数据,基于地统计学的粒径输运趋势方法对滦河水下三角洲沉积物的输运趋势及影响因素进行了研究。半方差函数分析表明,以0.015°(地球大圆弧度)为插值半径加密后(规则分布)的平均粒径半方差值具有随变程增加而增加的趋势,并在变程值达到0.09°后趋于稳定,而原始数据的半方差值与变程相关性较差。以此(0.09°)为特征距离计算的粒径输运结果显示,滦河水下三角洲南部水深12 m以浅区域粒径输运趋势以向南为主,北部具有向西和向北的趋势;水深12~15 m范围内粒径输运趋势近似西南方向,且趋势较大;南部水深15 m以深地区粒径输运趋势方向为西北向,北部为东南向。粒径输运趋势整体上与实测潮流、余流和泥沙输运方向一致,显示潮流对研究区沉积物的输运具有控制作用。滦河水下三角洲地区沉积环境和输运趋势受河流、波浪、潮流、残留沉积和地形等多种因素影响,粒径输运趋势仅能够较好地解释潮流影响,对于残留沉积等复杂沉积过程的解释则相对有限。
    Abstract: With the grain size data of 85 surface sediment samples collected from the Luanhe River Subaqueous Delta (LRSD), we studied the sediment transportation trend using the geostatistical grain size trend analysis method (GSTA) in this paper. It is revealed that the semi-variance value of mean grain size in a regular grid increases with distance until the distance reaches 0.09 decimal degree, while the irregular data shows no such a correlation with distance. Thus, the decimal degree of 0.09 is chosen as the character distance for grain size trend analysis. It is further revealed that the direction of the semi-variance is 55°, which is parallel to the tidal current, suggesting that the character distance is tide related. Geostatistical GSTA result further indicates that the net sediment transport trend direction in the south area, where the water depth is less than 12 m, is in southwest, whereas that in the north area, where the depth is less than 12 m, is in west and southwest directions. In the area with water depth between 12 and 15 m, the net sediment transport trend is in southwestern direction, roughly parallel to the coast line. In the area under water depth more than 15 m, the net sediment transport trend is northwest in direction in the southern part, but southeast direction in the northern part. The grain size net sediment transport trends mentioned above are similar to the field measured tidal current, residual current, and sediment transport directions suggesting a tide predominated sediment transportation. However, relict sediments, wave, river and bedform are more complex, which may give influences the grain size net sediment transport trend. The research results of the net sediment transport trend in LRSD may reveal the influence of tidal current. However, for an explanation to relict sediments, further researches are required.
  • 图  1   现代滦河三角洲位置及表层沉积物取样站位

    Figure  1.   Locations of the LRSD and surface sediment sampling stations in the study area

    图  2   滦河年内径流率、输沙率(a)与年际径流量、输沙量(b)

    Figure  2.   Monthly water discharge rate and sediment load rate (a) and annual water discharge and sediment load (b) of the Luanhe River

    图  3   滦河三角洲表层沉积物粒径平面分布

    Figure  3.   Spatial distribution of grain size parameters of the surface sediment samples collected from the LRSD

    图  4   原始(a、b)、规则(c、d)沉积物站位分布与半方差函数

    Figure  4.   Sampling locations and semi-variances for the irregular (a, b) and regular grids (c, d)

    图  5   滦河水下三角洲粒径净输运趋势

    a. 插值后CB+模式,特征距离0.09°;b. 插值后FB-模式,特征距离0.09°;c. 未插值FB-模式,特征距离0.042°;d. 未插值FB-模式,特征距离0.059°。

    Figure  5.   Sediment transport trend in the modern LRSD

    a. CB+ case of regular data with characteristic distance of 0.09 decimal degree; b. FB- case of regular data with characteristic distance of 0.09 decimal degree; c.FB- case of irregular data with characteristic distance of 0.042 decimal degree; d.FB- case of irregular data with characteristic distance of 0.059 decimal degree.

    图  6   端元组分含量-粒径特征

    Figure  6.   Volume versus grain size of end members

    图  7   端元组分丰度(%)空间分布

    Figure  7.   Spatial distribution of end member abundances (%)

    图  8   滦河水下三角洲沉积物输运模式

    红色实线为枯季余流,红色虚线表示枯季输沙,绿色实线为洪季余流,绿色虚线为洪季输沙。

    Figure  8.   Model of the sediment transportation in the LRSD

    Red solid lines denote the residual current in dry season, red dotted lines denote the sediment transport in dry season, green solid lines denote the residual current in flood season, and green dotted lines denote the sediment transport in flood season.

    图  9   水深-离岸距离与平均粒径-离岸距离图 (位置见图1)

    Figure  9.   Plots of depth versus offshore distance and mean grain size versus offshore distance (see fig.1 for locations)

    表  1   粒径参数的Wilcoxon符号秩检验(α=0.99)

    Table  1   Wilcoxon non-parameter test for the grain size parameters(α=0.99)

    插值半径/(°)粒径参数 Ph
    0.016平均粒径10
    分选系数10
    偏态10
    0.015平均粒径10
    分选系数10
    偏态10
    0.014平均粒径0.8011
    分选系数0.8011
    偏态0.8011
    下载: 导出CSV
  • [1]

    Yamashita S, Naruse H, Nakajo T. Reconstruction of sediment-transport pathways on a modern microtidal coast by a new grain-size trend analysis method [J]. Progress in Earth and Planetary Science, 2018, 5: 7. doi: 10.1186/s40645-018-0166-9

    [2]

    McCave I N. Grain-size trends and transport along beaches: example from eastern England [J]. Marine Geology, 1978, 28(1-2): M43-M51. doi: 10.1016/0025-3227(78)90092-0

    [3]

    McLaren P. An interpretation of trends in grain size measures [J]. Journal of Sedimentary Research, 1981, 51(2): 611-624.

    [4]

    McClaren P, Ren P. Sediment transport and its environmental implications in the lower Fraser River and Fraser delta[M]. Environment Canada: Environmental Conservation, 1995.

    [5]

    Gao S, Collins M. Net sediment transport patterns inferred from grain-size trends, based upon definition of “transport vectors” [J]. Sedimentary Geology, 1992, 81(1-2): 47-60. doi: 10.1016/0037-0738(92)90055-V

    [6]

    Ma F, Wang Y P, Li Y, et al. The application of geostatistics in grain size trend analysis: A case study of eastern Beibu Gulf [J]. Journal of Geographical Sciences, 2010, 20(1): 77-90. doi: 10.1007/s11442-010-0077-1

    [7]

    Sánchez A, Choumiline E, López-Ortiz B E, et al. Sediment transport patterns in Magdalena Bay, Baja California Sur, Mexico, inferred from grain-size trends [J]. Latin American Journal of Aquatic Research, 2010, 38(2): 167-177. doi: 10.3856/vol38-issue2-fulltext-1

    [8]

    Choi T J, Choi J Y, Park J Y, et al. The effects of nourishments using the grain-size trend analysis on the intertidal zone at a sandy macrotidal beach [J]. Journal of Coastal Research, 2018, 85(S1): 426-430.

    [9]

    De Falco G, Molinaroli E, Baroli M, et al. Grain size and compositional trends of sediments from <italic>Posidonia oceanica</italic> meadows to beach shore, Sardinia, western Mediterranean [J]. Estuarine, Coastal and Shelf Science, 2003, 58(2): 299-309. doi: 10.1016/S0272-7714(03)00082-9

    [10]

    Nugroho S H, Putra P S. Spatial distribution of grain size and depositional process in tidal area along Waikelo Beach, Sumba [J]. Marine Georesources & Geotechnology, 2017, 36(3): 299-307.

    [11]

    Pedreros R, Howa H, Michel D. Application of grain size trend analysis for the determination of sediment transport pathways in intertidal areas [J]. Marine geology, 1996, 135(1-4): 35-49. doi: 10.1016/S0025-3227(96)00042-4

    [12]

    Clarke D W, Boyle J F, Chiverrell R C, et al. A sediment record of barrier estuary behaviour at the mesoscale: interpreting high-resolution particle size analysis [J]. Geomorphology, 2014, 221: 51-68. doi: 10.1016/j.geomorph.2014.05.029

    [13]

    Hegde V S, Nayak S, Krishnaprasad P, et al. Evolution of diverging spits across the tropical river mouths, central west coast of India [J]. Journal of Coastal Zone Management, 2015, 18(2): 1000402.

    [14]

    Li T, Li T J. Sediment transport processes in the Pearl River Estuary as revealed by grain-size end-member modeling and sediment trend analysis [J]. Geo-Marine Letters, 2018, 38(2): 167-178. doi: 10.1007/s00367-017-0518-2

    [15]

    Cheng P, Gao S, Bokuniewicz H. Net sediment transport patterns over the Bohai Strait based on grain size trend analysis [J]. Estuarine, Coastal and Shelf Science, 2004, 60(2): 203-212. doi: 10.1016/j.ecss.2003.12.009

    [16] 程鹏, 高抒. 北黄海西部海底沉积物的粒度特征和净输运趋势[J]. 海洋与湖沼, 2000, 31(6):604-615. [CHENG Peng, GAO Shu. Net sediment transport patterns over the northwestern Yellow Sea, based upon grain size trend analysis [J]. Oceanologia et Limnologia Sinica, 2000, 31(6): 604-615. doi: 10.3321/j.issn:0029-814X.2000.06.004
    [17]

    Poizot E, Méar Y, Biscara L. Sediment Trend Analysis through the variation of granulometric parameters: A review of theories and applications [J]. Earth Science Reviews, 2008, 86(1-4): 15-41. doi: 10.1016/j.earscirev.2007.07.004

    [18]

    Gao S, Collins M, Mclaren P, et al. A critique of the "McLaren Method" for defining sediment transport paths; discussion and reply [J]. Journal of Sedimentary Research, 1991, 61(1): 143-147. doi: 10.1306/D42676A9-2B26-11D7-8648000102C1865D

    [19]

    Gao S, Xie Q C, Feng Y J. Fine-grained sediment transport and sorting by tidal exchange in Xiangshan Bay, Zhejiang, China [J]. Estuarine, Coastal and Shelf Science, 1990, 31(4): 397-409. doi: 10.1016/0272-7714(90)90034-O

    [20]

    Gao S, Collins M. Tidal Inlet equilibrium, in relation to cross-sectional area and sediment transport patterns [J]. Estuarine, Coastal and Shelf Science, 1994, 38(2): 157-172. doi: 10.1006/ecss.1994.1010

    [21]

    Poizot E, Mear Y, Thomas M, et al. The application of geostatistics in defining the characteristic distance for grain size trend analysis [J]. Computers & Geosciences, 2006, 32(3): 360-370.

    [22] 高抒. 沉积物粒径趋势分析: 原理与应用条件[J]. 沉积学报, 2009, 27(5):826-836. [GAO Shu. Grain size trend analysis: principle and applicability [J]. Acta Sedimentologica Sinica, 2009, 27(5): 826-836.
    [23] 高善明, 李元芳, 安凤桐, 等. 滦河三角洲滨岸沙体的形成和海岸线变迁[J]. 海洋学报, 1980, 2(4):102-114. [GAO Shanming, LI Yuanfang, AN Fengtong, et al. The formation of sand bars on the Luanhe River Delta and the change of the coast line [J]. Acta Oceanologica Sinica, 1980, 2(4): 102-114.
    [24] 李从先, 陈刚, 王传广, 等. 论滦河冲积扇-三角洲沉积体系[J]. 石油学报, 1984, 5(4):27-36. [LI Congxian, CHEN Gang, WANG Guangchuan, et al. On the Luanhe River Alluvial Fan-delta complex [J]. Acta Petrolei Sinica, 1984, 5(4): 27-36. doi: 10.7623/syxb198404004
    [25] 薛春汀. 滦河冲积扇-三角洲的范围和类型及其演化[J]. 海洋地质与第四纪地质, 2016, 36(6):13-22. [XUE Chunting. Extents, type and evolution of Luanhe River Fan-delta system, China [J]. Marine Geology & Quaternary Geology, 2016, 36(6): 13-22.
    [26] 王保民. 河北省海洋资源调查与评价综合报告[M]. 北京: 海洋出版社, 2007.

    WANG Baomin. Comprehensive Report on Investigation and Evaluation of Marine Resources in Hebei Province[M]. Beijing: Ocean Presee, 2007.

    [27] 王保民. 河北省海洋资源调查与评价专题报告(上册、下册)[M]. 北京: 海洋出版社, 2007. [

    WANG Baomin. Thematic Reports (Volume I, Volume II) on Investigation and Evaluation of Marine Resources in Hebei Province[M]. Beijing: Ocean Presee, 2007. ]

    [28] 康雪宁, 印萍, 刘金庆. 我国中小河流入海水沙变化对人类活动响应——以滦河为例[J]. 海洋地质与第四纪地质, 2016, 36(6):1-6. [KANG Xuening, YIN Ping, LIU Jinqing. Variations in water and sediment discharges of mediam and small rivers and their response to human activities: a case study on the Luan River [J]. Marine Geology & Quaternary Geology, 2016, 36(6): 1-6.
    [29] 黎刚, 殷勇. 滦河下游河道及三角洲地貌的近期演化[J]. 地理研究, 2010, 29(9):1606-1615. [LI Gang, YIN Yong. Recent geomorphological evolution of downstream channel and delta of Luanhe River [J]. Geographical Research, 2010, 29(9): 1606-1615.
    [30]

    Mcmanus J. Grain size determination and interpretation[M]//Tucker M. Techniques in Sedimentology. Oxford, UK: Blackwell Scientific Publications, 1988: 63-85.

    [31]

    Poizot E, Méar Y. eCSedtrend: A new software to improve sediment trend analysis [J]. Computers & Geosciences, 2008, 34(7): 827-837.

    [32]

    Yu X X, Li T G, Gu D Q, et al. Sediment transport in the Luanhe River delta: grain size trend analysis [J]. Journal of Oceanology and Limnology, 2019, 37(3): 982-997. doi: 10.1007/s00343-019-8156-3

    [33]

    Ashley G M. Interpretation of Polymodal Sediments [J]. The Journal of Geology, 1978, 86(4): 411-421. doi: 10.1086/649710

    [34] 孙东怀, 安芷生, 苏瑞侠, 等. 古环境中沉积物粒度组分分离的数学方法及其应用[J]. 自然科学进展, 2001, 11(3):269-276. [SUN Donghuai, AN Zhisheng, SU Ruixia, et al. Method and application of numerical partitioning of the sediment components in paleoclimate environments [J]. Progress in Natural Science, 2001, 11(3): 269-276. doi: 10.3321/j.issn:1002-008X.2001.03.008
    [35] 孙东怀, 鹿化煜, Rea D, et al. 中国黄土粒度的双峰分布及其古气候意义[J]. 沉积学报, 2000, 18(3):327-335. [SUN Donghuai, LU Huayu, Rea D, et al. Bimode Grain-size distribution of Chinese loess and its paleoclimate implication [J]. Acta Sedimentologica Sinica, 2000, 18(3): 327-335. doi: 10.3969/j.issn.1000-0550.2000.03.001
    [36] 段晓勇, 印萍, 刘金庆, 等. 滦河口表层沉积物中重金属和多环芳烃的分布、来源及风险评估[J]. 中国环境科学, 2016, 36(4):1198-1206. [DUAN Xiaoyong, YIN Ping, LIU Jinqing, et al. Heavy metals and polycyclic aromatic hydrocarbons in surface sediments of Luan River estuary: distributions, sources and ecological risk assessments [J]. China Environmental Science, 2016, 36(4): 1198-1206. doi: 10.3969/j.issn.1000-6923.2016.04.036
    [37] 刘金庆, 印萍, 张勇, 等. 滦河口沉积物重金属分布及生态风险评价[J]. 海洋地质与第四纪地质, 2016, 36(5):43-52. [LIU Jinqing, YIN Ping, ZHANG Yong, et al. Distribution of heavy metals in surface sediments of the Luanhe River Estuary and ecological risk assessment [J]. Marine Geology & Quaternary Geology, 2016, 36(5): 43-52.
    [38] 乔淑卿, 石学法, 王国庆, 等. 渤海底质沉积物粒度特征及输运趋势探讨[J]. 海洋学报, 2010, 32(4):139-147. [QIAO Shuqing, SHI Xuefa, WANG Guoqing, et al. Discussion on grain-size characteristics of seafloor sediment and transport pattern in the Bohai Sea [J]. Acta Oceanologica Sinica, 2010, 32(4): 139-147.
    [39]

    Xue Z, Feng A P, Yin P, et al. Coastal erosion induced by human activities: a northwest Bohai Sea case study [J]. Journal of Coastal Research, 2009, 25(3): 723-733.

    [40] 刘振夏. 现代滦河三角洲的影响因素和沉积物分区[J]. 海洋科学进展, 1989, 7(4):55-64. [LIU Zhenxia. The influential factors and zoning of the modern Luanhe River Delta [J]. Journal of Oceanography of Huanghai & Bohai Seas, 1989, 7(4): 55-64.
    [41] 姜太良, 房宪英, 徐洪达, 等. 滦河口径流量和滦河口输沙分析[J]. 海洋科学进展, 1986, 4(4):100-113. [JIANG Tailiang, FANG Xianying, XU Hongda, et al. Analysis of the water discharge and sediment load in the Luanhe River Estuary [J]. Journal of Oceanography of Huanghai & Bohai Seas, 1986, 4(4): 100-113.
  • 期刊类型引用(2)

    1. 冯永财,郝连成,胡延斌,褚宏宪,李佳林,远继东,黄杏,陈晓日,王超. 渤海湾曹妃甸海域沉积物粒度分布特征及运移趋势分析. 海洋地质前沿. 2024(11): 57-69 . 百度学术
    2. 徐利,郝桂珍,李思敏,段雯瑜,张亚婧. 滦河上游流域水质特征及污染源解析. 科学技术与工程. 2023(16): 7136-7144 . 百度学术

    其他类型引用(2)

图(9)  /  表(1)
计量
  • 文章访问数:  2415
  • HTML全文浏览量:  553
  • PDF下载量:  43
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-06-06
  • 修回日期:  2019-09-03
  • 网络出版日期:  2020-05-25
  • 刊出日期:  2020-07-31

目录

    /

    返回文章
    返回