长江口外扬子浅滩YZ05孔沉积序列及晚更新世以来的环境演化

徐岱璐, 殷勇, 时连强, 林文荣, 王爱华, 郑禹君

徐岱璐, 殷勇, 时连强, 林文荣, 王爱华, 郑禹君. 长江口外扬子浅滩YZ05孔沉积序列及晚更新世以来的环境演化[J]. 海洋地质与第四纪地质, 2020, 40(6): 22-38. DOI: 10.16562/j.cnki.0256-1492.2019050501
引用本文: 徐岱璐, 殷勇, 时连强, 林文荣, 王爱华, 郑禹君. 长江口外扬子浅滩YZ05孔沉积序列及晚更新世以来的环境演化[J]. 海洋地质与第四纪地质, 2020, 40(6): 22-38. DOI: 10.16562/j.cnki.0256-1492.2019050501
XU Dailu, YIN Yong, SHI Lianqiang, LIN Wenrong, WANG Aihua, ZHENG Yujun. Sedimentary facies and environmental evolution of the Yangtze shoal, eastern China Sea shelf since Late Pleistocene: Evidence from core YZ05[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 22-38. DOI: 10.16562/j.cnki.0256-1492.2019050501
Citation: XU Dailu, YIN Yong, SHI Lianqiang, LIN Wenrong, WANG Aihua, ZHENG Yujun. Sedimentary facies and environmental evolution of the Yangtze shoal, eastern China Sea shelf since Late Pleistocene: Evidence from core YZ05[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 22-38. DOI: 10.16562/j.cnki.0256-1492.2019050501

长江口外扬子浅滩YZ05孔沉积序列及晚更新世以来的环境演化

基金项目: 国家自然科学基金项目“晚第四纪苏北南黄海辐射沙脊区强制海退与潮流沙脊沉积体系”(40776032);国家科技部重大科学研究计划项目“扬子大三角洲演化与陆海交互作用过程及效应研究”(2013CB956501)
详细信息
    作者简介:

    徐岱璐(1992—),女,硕士,从事海洋地质方面的研究,E-mail:xudailu@foxmail.com

  • 中图分类号: P736.2

Sedimentary facies and environmental evolution of the Yangtze shoal, eastern China Sea shelf since Late Pleistocene: Evidence from core YZ05

  • 摘要: 2014年在东海陆架扬子浅滩水深41.5 m处钻获进尺80 m的YZ05孔,该孔沉积相方面的研究成果虽然已经发表过,但略显简单,结合新获得的有孔虫鉴定结果和指示海陆环境变化的Sr/Ba比值,仍有必要对沉积相进行更为精细的研究。根据沉积物颜色、粒度、沉积结构和构造、接触关系和所含化石,共识别出河道-边滩相(F1)、河漫滩相(F2)、泥质潮滩相(F3)、河口湾前缘相(F4)、潮流沙脊相(F5)、脊间潮道相(F6)、分流河道沙坝相(F7)、分流河道相(F8)、远端三角洲前缘相(F9)以及前三角洲相(F10)十种类型。通过相组合与相序列分析,并辅以选择性提取方法获得的可交换态Sr/Ba比值,识别出退积型的河口湾序列和进积型的三角洲序列,它们与冰后期长江三角洲具有相似的沉积层序。AMS14C测年和光释光测年数据指示YZ05孔属于晚更新世以来的沉积。扬子浅滩的物质基础是晚更新世的三角洲堆积体,在全新世早期海面快速上升背景下,堆积成潮流沙脊,改造后形成潮流沙席。
    Abstract: A 80 m long core, i.e. the Core YZ05, taking from the Yangtze shoal at the inner shelf of Eastern China Sea, is carefully studied by this paper. Although some preliminary results have been published before, it is still necessary to reexamine the interpretation concerning sedimentary facies and the previous models with the newly acquired information. Based on color, grain size, sedimentary texture and structure, contact relationship and fossils, the Late Pleistocene and Holocene succession of the core YZ05 can be classified into ten environmentally significant facies, which include fluvial channel-point bar (F1), overbank (F2), muddy tidal flat (F3), estuary front (F4), tidal sandy ridge (F5), inter-ridge channel(F6), distributary channel bar (F7), distributary channel (F8), distal delta front (F9) and prodelta (F10). Through the analysis of facies association and facies sequences, with the support of Sr/Ba ratios, a retrogradational estuary sequence and a progradational detaic sequence are recognized, which are similar to the post glacial sequences in the Yangtze River delta. AMS14C and OSL dating suggest that the deposits penetrated by Hole YZ05 are younger than Late Pleistocene. Then the Yangtze Shoal is sourced from the Late Pleistocene deltaic deposits reworked by tidal current.
  • 图  1   黄东海地形、主要流系及钻孔位置图

    黄、东海主要流系的位置根据Liu等[23]

    Figure  1.   Map showing underwater topography, regional ocean circulation patterns and core location

    The path of main ocean currents is after Liu et al. [23]

    图  2   YZ05钻孔沉积物综合分析柱状图

    Figure  2.   Integrated stratigraphic column of the core YZ05

    图  3   YZ05孔下部河道-边滩相(F1)、河漫滩相(F2)、泥质潮滩相(F3)和河口湾前缘相(F4)照片

    深度单位为m。河道相由浅棕灰色含细砾中-粗砂构成,发育平行层理和交错层理,含泥质团块和泥砾;边滩相由浅灰色细砂组成,发育交错层理,夹泥质团块和泥砾;河漫滩相由浅灰色和浅棕灰色泥质沉积物构成,见毫米级的细纹层理,内含植物碎片和结核;河口湾前缘相由厚层的青灰色均质泥组成,单层厚5~30 cm,可能属于浮泥沉积,是波浪搅动海底泥质快速堆积形成。最右侧泥层表面的花纹是切割钻芯时留下的。

    Figure  3.   Photographs of selected samples of core YZ05 showing the sedimentary characteristics of fluvial channel-point bar (F1) and overbanking (F2), muddy intertidal flat (F3) and estuary front (F4)

    Depth in meter. The fluvial channel is composed of light brown pebbly medium to coarse sands, with muddy lumps and pebbles as well as parallel bedding and cross-bedding; The point bar is composed of light grey fine sand, with muddy lumps and pebbles as well as cross-bedding; The overbanking is composed of light grey and light brown muddy deposits with laminae in mm-scale, and plant debris and calcareous concretions; The estuary front is composed of thick and homogeneous greenish grey mud, with single bedding between 5 cm and 30 cm in thickness. This facies is probably resulted from fluid mud deposition, due to resuspension of mud induced by storm waves. The inclined strations on the most right core surface are an artifact of splitting the core.

    图  4   YZ05孔分流河道沙坝相(F7)、水上分流河道相(F8a)、水下分流河道相(F8b)、分流河道底部相(F8c)以及前三角洲相(F10)照片

    深度单位为m。分流河道沙坝相(F7)由浅棕灰色交错层理或块状细砂-中砂质细砂组成,是整个三角洲序列中最粗的;水上分流河道相(F8a)由浅灰色-浅棕灰色夹黏土纹层的粉砂组成;水下分流河道相(F8b)由厚层的浅灰色砂层和浅灰棕色泥层间互组成,35.28 m见泥底辟构造;分流河道底部相(F8c)由浅灰色无结构的或含泥砾的砂质沉积物组成,常见撕裂的泥团、泥条和泥块;前三角洲相(F10)由发育沙纹层理的青灰色略带浅棕灰色的泥组成。钻芯52.15~52.26 m的两个空洞为光释光测年材料取样孔。

    Figure  4.   Core photographs showing the sedimentary characteristics of distributary channel bar (F7), subaerial distributary channel (F8a), subaqueous distributary channel (F8b), distributary channel bottom (F8c)and prodelta facies (F10)

    Depth in meter. The distributary channel bar (F7) is composed of light brown cross-bedded or texturally homogeneous fine to medium-grained sands, which makes up the coarsest part of deltaic succession; The subaerial distributary channel (F8a) is composed of light grey to brownish grey silt, with clayey laminae; The subaqueous distributary channel (F8b) is composed of interlayered light grey sand and brownish mud. A muddy diaper structure occurs at 35.28 m down-core depth; The distributary channel bottom (F8c) is composed of greyish massive sands or sands containing mud rip-up clasts; The prodelta facies (F10) is composed of laminated heterolithic greenish grey someplace brownish grey mud. Two holes between 52.15 m and 52.26 m were left by sampling of OSL datings.

    图  5   YZ05孔水下分流河道相(F8b)、分流河道底部相(F8d)、远端三角洲前缘(F9)、潮流沙脊相(F5)和脊间潮道相(F6)照片

    深度单位为m。水下分流河道相(F8b)见图4说明,27.3 m见重荷构造,20.82 m见生物钻孔;分流河道底部相(F8d)由浅灰色略带浅棕灰色黏土包裹浅灰色粉砂团块组成,发育变形层理(19.6~19.7 m),19.7~20.0 m见粉砂团块;远端三角洲前缘相(F9)由薄的浅棕灰色砂泥互层和浮泥组成,纹层状砂泥互层代表潮汐期沉积,浮泥层发育变形层理,没有生物扰动,代表风暴期沉积;潮流沙脊相(F5)由浅灰色块状或压扁层理的细砂组成,也见交错层理(3.32 m处),砂体内部普遍发育侵蚀构造,常见贝壳碎片;脊间潮道相由浅棕灰色粉砂质黏土与浅灰色粉砂间互组成,发育水平纹层理。

    Figure  5.   Photographs from core YZ05 showing subaqueous distributary channel (F8b), distributary channel bottom (F8d), distal delta front (F9), tidal sandy ridge (F5) and inter-ridge tidal channel (F6)

    Depth in meter. See fig.4 for the explanation of subaqueous distributary channel (F8b). A load structure occurs at 27.3 m down-core depth and a burrow is present at 20.82 m down-core depth; The distributary channel bottom (F8d) is composed of light grey clay containing silty lump (see 19.7~20.0 m) with contorted bedding (see 19.6~19.7 m); The distal delta front (F9) is composed of thin sand/mud alternations containing fluid muds. The rhythmites indicate tidal influence and the fluid mud layers which contain deformed beddings but free of bioturbation show episodic wave influence; The tidal sandy ridge (F5) is composed of light grey massive/flaser bedding fine sands as well as cross-bedded fine sands (see 3.32 m depth). Erosion surfaces and shell fragments are common; The inter-ridge tidal channel is composed of alternations of laminated brownish silty clay and light grey silt.

    图  6   晚更新世古三角洲沉积环境示意图及不同地貌部位的沉积相组合和序列

    图中①位于三角洲平原部位,发育水上分流河道(F8a)、分流河道沙坝(F7)以及分流河道底部(F8c)沉积;②位于三角洲前缘(近端),发育水下分流河道(F8b),以及分流河道底部(F8c和F8d)沉积;③位于远端三角洲前缘,发育薄的砂泥互层与浮泥组成的远端三角洲前缘相(F9)沉积;④位于前三角洲区域,发育厚层非均质泥组成的前三角洲相(F10)沉积。

    Figure  6.   Environmental distribution of the Late Pleistocene superimposed paleo-deltas, showing the constituent elements’ facies groups and successions

    ① represents the typical succession in the deltaic plain, which is characterized by subaerial distributary channel deposits (F8a) and distributary channel bar (F7) as well as distributary channel floor deposits (F8c); ② represents the typical proximal deltaic succession characterized by subaqueous distributary channel deposits (F8b) and distributary channel floor (F8c and F8d); ③ represents distal deltaic front (F9), characterized by rhythmic thin sand/mud alternations deposited during tidal influenced periods and fluid muds during storm wave influenced periods; ④ represents prodeltaic area, which is characterized by thick heterolithic muddy deposits (F10).

    表  1   YZ05钻孔AMS 14C 测年数据[17]

    Table  1   Accelerator Mass Spectrometry(AMS)ages of organic sediments and shell samples from the core YZ05

    Beta实验室编号采样深度/mAMS14C惯常年龄/aBP日历年龄/cal.aBP测年材料
    内插年龄2σ年龄
    4163910.146980±3074757425~7540贝壳
    4232992.357700±3081658115~8210贝壳
    594936.0273772931529167~29462泥质沉积物
    4163927.177420±3079057825~7940贝壳
    5949412.0930035±2533214031918~32361泥质沉积物
    5949518.0834210±4203681036328~37292泥质沉积物
    5958224.0834474±4823706636546~37585泥质沉积物
    5949630.1130364±2643240732169~32644泥质沉积物
    41639335.86>43500贝壳
    41639441.15>43500贝壳
    5923050.36>47000丽蚌碎片
    下载: 导出CSV

    表  2   YZ05钻孔不同沉积相单元中的Sr/Ba比值

    Table  2   Sr/Ba ratio of sedimentary facies from core YZ05

    沉积环境 沉积相单元 深度范围/m 样品数 平均 最大 最小
    潮控陆架 潮流沙脊与脊间潮道 0~12.5 41 6.29 11.63 1.61
    古三角洲I期 远端三角洲前缘 12.5~19.4 13 8.68 10.24 5.55
    古三角洲II期 水下分流河道 19.4~39.0 27 7.62 12.64 3.13
    远端三角洲前缘 39.0~40.5 60 8.86 10.10 5.77
    古三角洲III期 水上分流河道 40.5~51.9 6 3.66 9.04 0.80
    前三角洲 51.9~57.8 53 8.24 12.82 5.84
    古河口湾 河口湾前缘 57.8~60.8 9 6.01 9.80 4.90
    泥质潮滩 60.8~62.4 8 5.28 6.00 4.03
    古河流 河漫滩 62.4~72.3 9 3.79 5.63 2.02
    河道-边滩 72.3~80.2 34 1.69 3.22 0.73
    下载: 导出CSV
  • [1] 龙海燕, 庄振业, 刘升发, 等. 扬子浅滩沙波底形活动性评估[J]. 海洋地质与第四纪地质, 2007, 27(6):17-24. [LONG Haiyan, ZHUANG Zhenye, LIU Shengfa, et al. Activity magnitude of the small-medium subaqueous dunes in the Yangtze Shoal [J]. Marine Geology & Quaternary Geology, 2007, 27(6): 17-24.
    [2] 叶银灿, 庄振业, 来向华, 等. 东海扬子浅滩砂质底形研究[J]. 中国海洋大学学报, 2004, 34(6):1057-1062. [YE Yincan, ZHUANG Zhenye, LAI Xianghua, et al. A study of sandy bedforms on the Yangtze Shoal in the East China Sea [J]. Periodical of Ocean University of China, 2004, 34(6): 1057-1062.
    [3] 朱永其, 曾成开, 金长茂. 东海陆架地貌的初步研究[C]//东海研究文集, 北京: 海洋出版社, 1984: 82-93.

    ZHU Yongqi, ZENG Chengkai, JIN Changmao. Primary study on the physiognomy in East China Sea continental shelf[C]//Study Collection on the East China Sea. Beijing: China Ocean Press, 1984: 82-93.

    [4] 陈中原, 周长振, 杨文达, 等. 长江口外现代水下地貌与沉积[J]. 东海海洋, 1986, 4(2):32-41. [CHEN Zhongyuan, ZHOU Changzhen, YANG Wenda, et al. The Yangtze River estuary of modern underwater landform and sediment [J]. Donghai Marine Science, 1986, 4(2): 32-41.
    [5] 秦蕴珊. 东海地质[M]. 北京: 科学出版社, 1987: 188-192.

    QIN Yunshan. Geology of East China Sea[M]. Beijing: Science Press, 1987: 188-192.

    [6] 金翔龙. 东海海洋地质[M]. 北京: 海洋出版社, 1992.

    JIN Xianglong. Marine Geology of the East China Sea[M]. Beijing: Ocean Press, 1992.

    [7] 海洋图集编委会. 渤海 黄海 东海 海洋图集 地质 地球物理图集[M]. 北京: 海洋出版社, 1990.

    Editorial Board for Marine Atlas. Marine Atlas of Bohai Sea Yellow Sea East China Sea Geology and Geophysics[M]. Beijing: China Ocean Press, 1990.

    [8] 刘锡清. 中国陆架的残留沉积[J]. 海洋地质与第四纪地质, 1987, 7(1):3-16. [LIU Xiqing. Relict sediments in China continental shelf [J]. Marine Geology & Quaternary Geology, 1987, 7(1): 3-16.
    [9] 刘振夏. 对东海扬子浅滩成因的再认识[J]. 海洋学报, 1996, 18(2):85-92. [LIU Zhenxia. Re-recognition of the cause of the Yangtze shoal in the East China Sea [J]. Acta Oceanologica Sinica, 1996, 18(2): 85-92.
    [10]

    Dalrymple R W, Baker E K, Harris P T, et al. Sedimentology and stratigraphy of a tide-dominated, foreland-basin delta (Fly River, Papua New Guinea)[M]//Sidi F H, Nummedal D, Imbert P, et al. Tropical Deltas of Southeast Asia: Sedimentology, Stratigraphy, and Petroleum Geology. SEPM, 2003: 147-173.

    [11]

    Hori K, Saito Y, Zhao Q H, et al. Sedimentary facies of the tide-dominated paleo-Changjiang (Yangtze) estuary during the last transgression [J]. Marine Geology, 2001, 177(3-4): 331-351. doi: 10.1016/S0025-3227(01)00165-7

    [12]

    Hori K, Saito Y, Zhao Q H, et al. Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China [J]. Geomorphology, 2001, 41(2-3): 233-248. doi: 10.1016/S0169-555X(01)00119-2

    [13]

    Zhang X, Lin C M, Dalrymple R W, et al. Facies architecture and depositional model of a macrotidal incised-valley succession (Qiantang River estuary, eastern China), and differences from other macrotidal systems [J]. GSA Bulletin, 2014, 126(3-4): 499-522. doi: 10.1130/B30835.1

    [14] 侯志民. 扬子浅滩成因探讨[D]. 青岛: 中国海洋大学, 2010.

    HOU Zhimin. Discussion on the Genesis of the Yangtze Shoal[D]. Qingdao: Ocean University of China, 2010.

    [15] 金秉福, 林振宏, 季福武. 海洋沉积环境和物源的元素地球化学记录释读[J]. 海洋科学进展, 2003, 21(1):99-106. [JIN Bingfu, LIN Zhenhong, JI Fuwu. Interpretation of element geochemical records of marine sedimentary environment and provenance [J]. Advances in Marine Science, 2003, 21(1): 99-106. doi: 10.3969/j.issn.1671-6647.2003.01.013
    [16] 王爱华. 不同形态锶钡比的沉积环境判别效果比较[J]. 沉积学报, 1996, 14(4):168-173. [WANG Aihua. Discriminant effect of sedimentary environment by the Sr/Ba ratio of different existing forms [J]. Acta Sedimentologica Sinica, 1996, 14(4): 168-173.
    [17] 林文荣, 殷勇, 于革, 等. 扬子浅滩MIS6阶段以来沉积地层及环境演变[J]. 南京大学学报: 自然科学版, 2017, 53(5):912-925. [LIN Wenrong, YIN Yong, YU Ge, et al. Characteristics of sedimentary strata and environmental evolution of the Yangtze Shoal since Marine Isotope Stage 6 [J]. Journal of Nanjing University: Natural Sciences, 2017, 53(5): 912-925.
    [18] 李家彪. 东海区域地质[M]. 北京: 海洋出版社, 2008: 27-71.

    LI Jiabiao. Regional Geology of East China Sea[M]. Beijing: China Ocean Press, 2008: 27-71.

    [19] 杨文达, 崔征科, 张异彪. 东海地质与矿产[M]. 北京: 海洋出版社, 2010: 65-72.

    YANG Wenda, CUI Zhengke, ZHANG Yibiao. East China Sea Geology and Mineral Resources[M]. Beijing: China Ocean Press, 2010: 65-72.

    [20] 邵和宾. 长江口及其邻近海域秋季悬浮体组成、分布及其影响因素研究[D]. 青岛: 中国海洋大学, 2012.

    SHAO Hebin. Research on composition, distribution and influencing factors of suspended matters in the Yangtze River estuary in fall[D]. Qingdao: Ocean University of China, 2012.

    [21]

    Liu Z X. Yangtze Shoal: a modern tidal sand sheet in the northwestern part of the East China Sea [J]. Marine Geology, 1997, 137(3-4): 321-330. doi: 10.1016/S0025-3227(96)00026-6

    [22] 刘振夏, 夏东兴, 王揆洋. 中国陆架潮流沉积体系和模式[J]. 海洋与湖沼, 1998, 29(2):141-147. [LIU Zhenxia, XIA Dongxing, WANG Kuiyang. Tidal depositional systems and patterns of China’s continental shelf [J]. Oceanologia et Limnologia Sinica, 1998, 29(2): 141-147. doi: 10.3321/j.issn:0029-814X.1998.02.006
    [23]

    Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea [J]. Geomorphology, 2007, 85(3-4): 208-224. doi: 10.1016/j.geomorph.2006.03.023

    [24]

    Droser M L, Bottjer D J. Ichnofabric of sandstones deposited in high-energy nearshore environments: measurement and utilization [J]. Palaios, 1989, 4(6): 598-604.

    [25]

    Wang A H, Liu J K, Zhang F, et al. Selective extraction of sedimentogenic Strontium and Barium in terrigenous clastic sediments: US, 10151018B2[P]. 2018-12-11.

    [26]

    Pemberton S G, MacEachern J A, Frey R W. Trace fossil facies models: environmental and allostratigraphic significance[M]//Walker R G, James N P. Facies Models, Response to Sea Level Change. St. John’s, Newfoundland: Geological Association of Canada, 1992: 47-72.

    [27]

    Zhang X, Dalrymple R W, Lin C M. Facies and stratigraphic architecture of the late Pleistocene to early Holocene tide-dominated paleo-Changjiang (Yangtze River) delta [J]. GSA Bulletin, 2018, 130(3-4): 455-483. doi: 10.1130/B31663.1

    [28]

    Allen G P, Posamentier H W. Facies and stratal patterns in incised valley complexes: examples from the Recent Gironde Estuary (France) and the Cretaceous Viking Formation (Canada) (abstract)[C]//American Association of Petroleum Geologists Annual Convention, Dallas, Texas, 7-10 April, Abstracts with Programs, 1991: 70.

    [29]

    Hori K, Saito Y, Zhao Q H, et al. Evolution of the coastal depositional systems of the Changjiang (Yangtze) River in response to late Pleistocene-Holocene sea-level changes [J]. Journal of Sedimentary Research, 2002, 72(6): 884-897. doi: 10.1306/052002720884

    [30]

    Hori K, Saito Y, Zhao Q H, et al. Architecture and evolution of the tide-dominated Changjiang (Yangtze) River delta, China [J]. Sedimentary Geology, 2002, 146(3-4): 249-264. doi: 10.1016/S0037-0738(01)00122-1

    [31]

    Hori K, Saito Y, Zhao Q, et al. Control of incised-valley fill stacking patterns by accelerated and decelerated sea-level rise: the Changjiang example during the last deglaciation [J]. Geo-Marine Letters, 2002, 22(3): 127-132. doi: 10.1007/s00367-002-0105-y

    [32]

    Wang Z H, Saito Y, Hori K, et al. Yangtze offshore, China: highly laminated sediments from the transition zone between subaqueous delta and the continental shelf [J]. Estuarine, Coastal and Shelf Science, 2005, 62(1-2): 161-168. doi: 10.1016/j.ecss.2004.08.012

    [33]

    Li G X, Li P, Liu Y, et al. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum [J]. Earth-Science Reviews, 2014, 139: 390-405. doi: 10.1016/j.earscirev.2014.09.007

    [34] 刘宝君. 沉积岩石学[M]. 北京: 地质出版社, 1980.

    LIU Baojun. Sedimentary Petrology[M]. Beijing: Geological Publishing House, 1980.

    [35] 刘英俊. 元素地球化学[M]. 北京: 科学出版社, 1984.

    LIU Yingjun. Element Geochemistry[M]. Beijing: Science Press, 1984.

    [36]

    Ichaso A A, Dalrymple R W. Eustatic, tectonic and climatic controls on an early syn-rift mixed-energy delta, Tilje Formation (Early Jurassic, Smørbukk Field, offshore mid-Norway)[M]//Martinius A W, Ravnås R, Howell J A, et al. From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin. Chichester: Wiley Blackwell, 2014, 46: 339-388.

    [37]

    Ichaso A A, Dalrymple R W, Martinius A W. Basin analysis and sequence stratigraphy of the synrift Tilje Formation (Lower Jurassic), Halten terrace giant oil and gas fields, offshore mid-Norway [J]. AAPG Bulletin, 2016, 100(8): 1329-1375. doi: 10.1306/02251614081

    [38]

    Wells J T. Tide-dominated estuaries and tidal rivers [J]. Developments in Sedimentology, 1995, 53: 179-205. doi: 10.1016/S0070-4571(05)80026-3

    [39]

    Sternberg R W, Cacchione D A, Paulso B, et al. Observations of sediment transport on the Amazon subaqueous delta [J]. Continental Shelf Research, 1996, 16(5-6): 697-715. doi: 10.1016/0278-4343(95)00045-3

    [40]

    Dalrymple R W, Choi K. Morphologic and facies trends through the fluvial–marine transition in tide-dominated depositional systems: a schematic framework for environmental and sequence-stratigraphic interpretation [J]. Earth-Science Reviews, 2007, 81(3-4): 135-174. doi: 10.1016/j.earscirev.2006.10.002

    [41]

    Feldman H, Demko T. Recognition and prediction of petroleum reservoirs in the fluvial/tidal transition [J]. Developments in Sedimentology, 2015, 68(14): 483-528.

    [42]

    Uehara K, Saito Y, Hori K. Paleotidal regime in the Changjiang (Yangtze) Estuary, the East China Sea, and the Yellow Sea at 6 ka and 10 ka estimated from a numerical model [J]. Marine Geology, 2002, 183(1-4): 179-192. doi: 10.1016/S0025-3227(01)00255-9

  • 期刊类型引用(11)

    1. 范彩伟,李明,陈林. 文昌凹陷中深层油气断裂控藏规律及断圈有效性评价. 大地构造与成矿学. 2025(02): 271-284 . 百度学术
    2. 游君君,柳波,胡德胜,陈林,江黎. 珠江口盆地文昌凹陷烃源岩发育时期湖盆古生产力构成及分布规律. 地质论评. 2024(02): 624-642 . 百度学术
    3. 徐莅莅,范彩伟,李明,李辉,徐彬,程燕君,吴智平. 珠江口盆地文昌A凹陷西部新生代断裂体系特征及演化过程. 中国海上油气. 2024(03): 37-48 . 百度学术
    4. 马凌,单玄龙,向绪洪,郝国丽,张朋霖,闫博,衣健. 珠江口盆地白云凹陷裂陷期断裂活动特征与动力学机制. 吉林大学学报(地球科学版). 2024(06): 1968-1985 . 百度学术
    5. 吴宛秋,李伟,范彩伟,李辉,李明,李嘉,赵育龙,蒙美芳. 新生代区域伸展方向转变对珠三坳陷断裂体系发育演化的控制作用. 海洋地质前沿. 2023(10): 52-65 . 百度学术
    6. 何明勇,栾锡武,魏新元,冉伟民,穆敬轩,叶传红,刘洁,陈建宏. 塔宁巴尔海槽断裂特征与构造演化. 地球科学进展. 2022(03): 290-302 . 百度学术
    7. 范彩伟,李明,李才,陈林,李伟. 珠江口盆地文昌A凹陷西南部断裂转换带特征及其控藏作用. 中国海上油气. 2022(05): 36-45 . 百度学术
    8. 王嘉,栾锡武,何兵寿,冉伟民,张豪,杨佳佳. 南海北部珠江口盆地西南段断裂特征与成因讨论. 地球科学. 2021(03): 916-928 . 百度学术
    9. 魏新元,栾锡武,冉伟民,石艳锋,王阔,张豪. 东帝汶海槽断裂特征与构造演化模式. 地质通报. 2021(Z1): 364-375 . 百度学术
    10. 徐长贵,范彩伟. 南海西部近海大中型油气田勘探新进展与思考. 中国海上油气. 2021(02): 13-25 . 百度学术
    11. 王嘉,栾锡武,何兵寿,冉伟民,魏新元,胡庆,韦明盟,龚梁轩. 珠江口盆地开平凹陷断裂构造特征与动力学机制探讨. 海洋学报. 2021(08): 41-53 . 百度学术

    其他类型引用(4)

图(6)  /  表(2)
计量
  • 文章访问数:  2343
  • HTML全文浏览量:  400
  • PDF下载量:  49
  • 被引次数: 15
出版历程
  • 收稿日期:  2019-05-04
  • 修回日期:  2019-06-19
  • 网络出版日期:  2020-12-17
  • 刊出日期:  2020-11-30

目录

    /

    返回文章
    返回