南海神狐海域水合物发育区浅表层沉积物甲烷周转定量模拟

Quantitative assessment of methane turnover in shallow surface sediments of hydrate-bearing areas in Shenhu area of South China Sea

  • 摘要: 在天然气水合物发育区海底沉积物中甲烷厌氧氧化作用(AOM)是碳循环的重要组成部分。通过定量计算表层沉积物中甲烷迁移转化通量,可以更准确评估甲烷来源碳对沉积物碳库和海洋深部碳库影响。本文利用反应―运移模型对采集于南海神狐水合物发育区两个站位(SH-W19-PC、SH-W23-PC)采集的孔隙水SO42-、溶解无机碳(DIC)、Ca2+剖面进行拟合,同时对DIC碳同位素进行分析,确定近海底沉积物中的碳循环。研究显示两个站位孔隙水中SO42-和Ca2+浓度在剖面上随深度呈线性减少,DIC浓度随深度逐渐增加,其δ13CDIC值随深度逐渐降低至约-25‰,表明两个站位存在一定程度的AOM。模拟计算两个站位沉积物孔隙水溶解甲烷向上的通量分别为25.9和18.4 mmol·m-2 a-1,AOM作用产生的DIC分别占其总DIC量的70.7%和60%。由沉积物向海水中释放的DIC通量占DIC汇的约60%。因此,在天然气水合物发育区向海底渗漏甲烷大部分以DIC的形式进入上覆海水,这些具有极负碳同位素值的甲烷来源的DIC可能对局部深海碳库产生一定的影响。

     

    Abstract: Anaerobic oxidation of methane (AOM) is an important process in the carbon cycle in marine sediments, especially in hydrate-bearing areas. By quantifying the pattern of methane migration and conversion flux in surface sediments, we can assess the impact of carbon, derived from methane, onto sediment carbon pool and deep ocean carbon pool more accurately. In this research, the reaction-migration model is used to fit the SO42−, dissolved inorganic carbon (DIC), and Ca2+ concentration of pore water and the carbon isotope of DIC is analyzed simultaneously at SH-W19-PC and SH-W23-PC Station, which are two typical hydrate-bearing areas in the Shenhu area of South China Sea. The analyzed results reveal that, the concentrations of SO42− and Ca2+ in the pore water of the two stations decrease linearly with depth, while the DIC concentration increases with depth. And the δ13CDIC value of the DIC in the pore water is near -25‰, indicating methane activity in these two stations. The numerical results show that the flux of dissolved methane in the pore water of the two stations are 25.9 mmol·m−2 a−1 and 18.4 mmol·m−2 a−1, respectively. And the content of DIC produced by AOM accounts for 70.7% and 60% of the total DIC content. In addition, the DIC flux released from sediment to seawater is about 60% of the DIC sink. Therefore, methane leaking from the cold seep area and hydrate-bearing area enters the overlying seawater partly in the form of DIC. These methane-derived DIC with extremely negative carbon isotope values may have a certain impact on the local deep sea carbon pool.

     

/

返回文章
返回