Numerical simulation of Late Mesozoic accretion process along the continental margin of East China: A case study of the Nadanhada Terrane
-
摘要: 许多现存造山带中均发现了洋岛玄武岩(OIB)和地幔柱型蛇绿岩记录,因此洋底高原增生是大陆生长的重要方式,但目前对控制洋底高原增生过程的机制仍不清楚。采用热-机械-岩石学模型数值模拟研究洋底高原的陆缘增生过程,结果显示洋底高原向大陆边缘增生具有3个控制因素:(1)减薄的大陆边缘;(2)海洋岩石圈中的“薄弱”层;(3)年轻的洋底高原。模拟结果与中国东北地区那丹哈达地体的野外构造解析结果和地球化学特征结合,揭示了洋底高原和东北亚大陆边缘的强烈挤压引起俯冲带的应变集中,产生与阿尔卑斯型褶皱相关的高角度逆冲断层和背冲断层,并伴随低级变质作用的构造折返过程。Abstract: Accretion of oceanic plateau is an important process of continental growth, and is exemplified by the presence of oceanic island basalts (OIB) and plume-type ophiolites in many modern orogens. Oceanic plateau can also subduct along convergent margins, as revealed by seismic tomography. The mechanism controlling accretion or subduction of oceanic plateau remain unclear. In this paper, we investigate the accretion of oceanic plateaus at continental margins using a thermo-mechanical-petrological model of an ocean-continent convergent zone. The results of the models show three major factors for the accretion of the oceanic plateaus onto the continental margin: (1) thinned continental margin for the overriding plate, (2) " weak” layers in oceanic lithosphere and (3) young oceanic plateau. The results of the model are further compared with the field structural analysis and geochemical characteristics of the Nadanhada Terrane in Northeast China. It is revealed that the intense compression of the seamount and the continental margin of Northeast Asia results in strain concentration in the subduction zone, forming high-angle thrust faults and back thrusts associated with the Alpine-type folds, and structural exhumation of low-metamorphic rocks through thrust faults.
-
地体拼贴是导致活动大陆边缘陆壳增生的重要机制之一[1-2]。外来地体可以是不同岩石属性的地壳块体,如岛弧、洋底高原、死亡的洋脊、大陆碎片等,其特征是由洋壳驮载远距离运移,和周围地质单元具有截然不同的地层序列、古生物组合、岩相学特征,具有独立的地质发展史,并发育边界断层。外来地体中的洋底高原,广泛分布于现今及古大洋之中,是洋壳的重要组成部分。因此,洋底高原与活动大陆边缘之间的相互作用关系对俯冲带动力学过程具有重要的控制作用。根据前人的研究成果,洋底高原可能会沿俯冲带进入岩石圈和软流圈,从而深刻地影响上覆板块的构造演化过程,如触发俯冲带大地震[3]、形成平板俯冲,并导致上覆岩石圈地幔减薄[3-4]以及克拉通的破坏[5]等。同时,洋底高原也可能会增生到活动大陆边缘之上,促进大陆的横向生长,从而引发一些特殊的构造事件,如海沟跃迁[6-7]、俯冲极性反转[8]及大陆边缘复杂构造变形过程等[9]。那么,这就存在一个关键的科学问题:在什么条件下洋底高原会增生到活动陆缘之上?
关于外来地体的增生机制问题前人已有了一定的研究成果,如Cloos[10]基于局部均衡假设,讨论了地体密度和厚度对俯冲或增生的影响;Tetreault和Buiter[2]依据现有的地质、地震和重力研究,进一步回顾了外来地体的地壳结构,地质成因和地壳密度。先前的数值模拟实验已经确定洋底高原增生受其基底的“弱”超镁铁层、下地壳的流变结构、冷却年龄和岩石学特性控制[11-14]。然而,这些模拟未能充分考虑洋底高原除自身外的条件,例如上覆大陆板块的几何形态和蛇纹石化地幔对洋底高原增生的影响。
为了解决洋底高原增生机制这一问题,本文选取了位于中国东北亚大陆边缘的那丹哈达地体作为研究实例,开展模拟结果的检验工作。根据前人研究成果,那丹哈达地体是中国境内由古太平洋板块洋底高原或洋底高原俯冲-增生形成的[15]。自20世纪50年代后,黑龙江省地矿局以及大批地质学家对本区进行矿产普查和地质考察,从古生物学、同位素年代学、地球化学等方面限定了地体的古位置、拼贴时代以及岩性特征[15],但是对于那丹哈达地体的增生过程及其成因机制并不明确,构造变形过程也并不清楚。
本文在前人研究基础上设定了增生边界和初始条件,进行了二维岩石-热机械数值模拟,以探索洋底高原的增生模式。模型设置中考虑的3个主要参数为:(1)陆缘几何形态,(2)大洋岩石圈中的“薄弱”层,(3)洋底高原自身的流变学性质。在此基础上,将模拟结果与那丹哈达增生杂岩进行对比研究,探讨其增生机制。
1. 区域地质概况
中国东北地区位于中亚造山带、华北地块、太平洋板块的交界处,自西向东由额尔古纳、兴安、松辽(松嫩)、布列亚-佳木斯-兴凯等地块组成[16-19],受古亚洲洋、蒙古-鄂霍茨克洋和古太平洋三大构造域叠加影响(图1)。中国东北部中—新生代经历了古太平洋构造板块向西俯冲碰撞[20-22],构造变形复杂。那丹哈达地体位于中国黑龙江省东部,西部与佳木斯地块接触,南部与兴凯地块相邻,与东部的比金地体在地层古生物组合、岩相和构造特征等方面具有相似性,被合称为那丹哈达-比金地体[23]。那丹哈达地体呈近NNE向展布,南北长约120 km,东西宽约70 km,整体是一套增生混杂岩,包括铁镁质-超铁镁质岩、枕状玄武岩以及放射虫硅质岩等各类岩石。Mizutani等[24]根据古地磁数据和放射虫化石,推断那丹哈达地体具有典型的外来属性,中生代期间由低纬度向高纬度漂移,并最终于早白垩世拼贴到现在的位置。周建波等[9]的最新研究显示,那丹哈达地体饶河杂岩中的枕状玄武岩具有OIB型洋岛玄武岩特征。因此本文的数值模拟研究集中于洋底高原对俯冲带地区增生变形的影响。
2. 模拟方法与模型构建
2.1 数值模拟方法
本文采用具有I2VIS代码和marker-in-cell技术的二维热机械数值模型[25],来讨论随时间和温度场变化的洋底高原增生过程。模型遵循以下三组平衡方程:
$$ \frac{{\partial \sigma _{xx}'}}{{\partial x}} + \frac{{\partial \sigma _{xy}'}}{{\partial y}} = \frac{{\partial P}}{{\partial x}} $$ (1) $$ \frac{{\partial \sigma _{yx}'}}{{\partial x}} + \frac{{\partial \sigma _{yy}'}}{{\partial y}} = \frac{{\partial P}}{{\partial y}} - g\rho \left( {C,M,P,T} \right) $$ (2) 其中,
${{\sigma '_{ij}}}$ 为偏应力张量,x和y分别是水平和垂直坐标,g是重力加速度。密度ρ取决于岩石类型(C)、熔体分数(M)、温度(T)和压力(P)。$${\rm{\rho }}{C_p}\frac{{DT}}{{Dt}} = - \frac{{\partial {q_x}}}{{\partial x}} - \frac{{\partial {q_y}}}{{\partial y}} + {H_{\rm r}} + {H_{\rm s}} + {H_{\rm a}} + {H_{\rm L}} $$ (3) 其中,
$$ {q_x} = - k\left( {T,P,C} \right)\frac{{\partial T}}{{\partial x}} $$ (4) $$ {q_y} = - k\left( {T,P,C} \right)\frac{{\partial T}}{{\partial y}} $$ (5) DT/Dt是温度对时间的物质导数,Cp是热容,q是热通量,Hr是放射性生热,每种岩石类型都为恒定值,Hs是剪切生热,Ha是绝热生热,HL是相变潜热,通过增加部分熔融岩石的有效热容量和热膨胀放热[26-27],k是导热率,是关于温度、压力和岩石类型的函数。
本文使用的流变学关系是黏-塑性本构关系:
$$ {\eta _{\text{蠕变}}} = {\left( {{{\dot \varepsilon }_{\rm{II}}}} \right)^{\frac{{1 - n}}{n}}}A_D^{ - \frac{1}{n}}\exp\left( {\frac{{E + PV}}{{nRT}}} \right) $$ (6) 其中,
${{{\dot \varepsilon }_{\rm{II}}}}$ 是应变率张量的二阶不变量,AD, n, E, R和V分别是物质常数、应力指数、活化能、气体常数和活化体积。上述黏性流变学需要与塑性流变学相结合。因此,采用摩尔-库仑屈服准则[28]:
$$ {\sigma _{\text{屈服}}} = {{\rm{C}}_0} + P{\rm{sin}}\left( {{\varphi _{{\rm{eff}}}}} \right) $$ (7) $${\eta _{{\text{摩尔}} - {\text{库仑}}}} = \frac{{{\sigma _{\text{屈服}}}}}{{2{{{\rm{\dot \varepsilon }}}_{{\rm{II}}}}}} $$ (8) $$ {\eta _{{\rm{eff}}}} = {\rm{min}}\left( {{\eta _{\text{蠕变}}}{\eta _{{\text{摩尔}} - {\text{库仑}}}}} \right) $$ (9) 其中,σ屈服是屈服应力,C0是内聚力,
${\varphi _{{\rm{eff}}}}$ 是有效的内摩擦角。岩石的有效黏度(${\eta _{{\rm{eff}}}}$ )受黏性和塑性变形的约束,由两者的最小值决定。部分熔融的体积比的近似计算与温度之间是一种线性关系。熔融体积比例定义为[19]:
$$ M=0,\;\;\;\;\;\;T\text{≤} {T_{\text{固相线}}} $$ (10) $$ M = \frac{{\left( {T - {T_{\text{固相线}}}} \right)}}{{\left( {{T_{\text{固相线}}} - {T_{\text{液相线}}}} \right)}},\;\;\;\;\;\;\;\;{T_{\text{固相线}}} \text{≤} T \text{≤} {T_{\text{液相线}}} $$ (11) $$ M = 1,\;\;\;\;\;\;\;\;\;\;\;\;\;T \text{≥} {T_{\text{液相线}}} $$ (12) 其中,T固相线和T液相线分别是固相线和液相线温度。
固相和完全熔融岩石的密度如表1和表2所示,部分熔融的岩石密度计算如下:
岩石类型 ρ0
/(kg·m−3)Cp
/(J·kg−1·K−1)K
/(W·m−1·K−1)Hr
/(μW·m−3)流变性质 η0
/(Pa·s−1)E
/(kJ·mol−1)V
/(J·MPa−1·mol−1)n AD
/(MPa−n·s−1)C
/MPasin
(φeff)沉积物 2 700 1 000 $0.64 + \dfrac{{1\;293}}{{T + 77}}$ 2 湿石英岩 1.97E+17 154 0 2.3 3.20E-06 1 0.15 上陆壳 2 700 1 000 $0.64 + \dfrac{{1\;293}}{{T + 77}}$ 1 湿石英岩 1.97E+19 154 0 2.3 3.20E-06 20 0.15 下陆壳 3 000 1 000 $1.18 + \dfrac{{807}}{{T + 77}}$ 1 斜长石 An75 4.80E+22 238 0 3.2 3.30E-04 20 0.45 洋壳/洋底高原 3 000 1 000 $1.18 + \dfrac{{807}}{{T + 77}}$ 0.25 斜长石 An75 4.80E+22 238 0 3.3 3.30E-04 20 0.45 新生成的洋底高原 2 900 1 000 $0.64 + \dfrac{{1\;293}}{{T + 77}}$ 0.25 斜长石 An75 4.80E+20 238 0 3.3 3.30E-04 20 0.45 干地幔 3 300 1 000 $0.64 + \dfrac{{1\;293}}{{T + 77}}$ 0.022 无水橄榄岩 3.98E+16 532 8 3.5 2.50E+04 40 0.6 含水地幔 3 200 1 000 $0.64 + \dfrac{{1\;293}}{{T + 77}}$ 0.022 含水橄榄岩 5.01E+20 470 8 4 2.00E+03 1 0.06 蛇纹石化
地幔3 200 1 000 $0.64 + \dfrac{{1\;293}}{{T + 77}}$ 0.022 蛇纹石 3.21E+36 8.9 3.2 3.8 1.97E-33 1 0.06 基性岩浆底侵作用 3 200 1 000 $0.64 + \dfrac{{1\;293}}{{T + 77}}$ 3 单斜辉石 3.21E+36 670 0 2.7 1.56E-34 1 0.06 注:ρ0为参考密度;Cp为比热容;k为导热系数;Hr为放射性热;C为内聚力;sin(φeff)为有效摩擦系数;η0为参考黏滞参数;E为活化能;V为活化体积;n为应力指数;AD为材料常数。 部分熔融
岩石类型ρ0
/(kg·m−3)Cp
/(J· kg−1·K−1)sin
(φeff)η0
/(Pa·s−1)T固相线
/KT液相线
/KHL
/(kJ·kg−1)n AD
/(MPa−n·s−1)部分熔融沉积物/上陆壳 2 500 1 500 0.06 5.00E+14 $ {899 + \dfrac{{179\;00}}{{P + 54}} + \dfrac{{202\;00}}{{\left( {P + 54} \right)^2}}\;\;P < 1\;200\;{\rm{MPa}}} $
$ {831 + 0.06P\;\;\;P > 1\;200\;{\rm{MPa}}} $831+0.06P 300 1 2.00E-09 部分熔融下
陆壳2 500 1 500 0.06 5.00E+14 $ {973 - \dfrac{{70\;400}}{{P + 354}} + \dfrac{{778e5}}{{{{\left( {P + 354} \right)}^2}}}\;\;P < 1\;600\;{\rm{MPa}}} $$ {973 + 0.003\;5{{P}} + 0.000\;006\;2{{P^2}}\;\;\;P > 1\;600\;{\rm{MPa}}} $ 1,423+0.105P 300 1 2.00E-09 部分熔融洋壳/洋底高原 2 900 1 500 0.06 1.00E+13 $ 973 - \dfrac{{70\;400}}{{P + 354}} + \dfrac{{778e5}}{{( {P + 354}) }^2}\;\;\;{{P}} < 1\;600\;{\rm{MPa}}$
$ {973 + 0.003\;5{{P}} + 0.000\;006\;2{{P^2}}\;\;\;{{P}} > 1\;600\;{\rm{MPa}}} $1,423+0.105P 300 1 1.00E-07 注:ρ0为熔融岩石的参考密度;Cp为熔融岩石的比热容;sin(φeff)为熔融岩石的有效摩擦系数;η0为熔融岩石的有效摩擦系数;T固相线为地壳的固相线温度;T液相线为地壳的液相线温度;HL为相变潜热;n为熔融岩石的应力指数;AD为熔融岩石的材料常数。 $$\begin{array}{*{20}{c}} {{\rho _{\text{有效}}} = {\rho _{\text{固相}}} - M\left( {{\rho _{\text{固相}}} - {\rho _{\text{熔融}}}} \right)}\\ {{\rho _{\text{固相}}} = {\rho _0}\left[ {1 - \alpha \left( {T - {T_0}} \right)} \right]\left[ {1 + \beta \left( {P - {P_0}} \right)} \right]} \end{array} $$ 其中,ρ熔融和ρ固相是熔融和固相岩石的密度,ρ0是岩石在P0=0.1 MPa和T0=298 K的标准密度(表2),α和β分别是热膨胀系数和可压缩系数。
地形起伏面为自由表面,为经过每个时间步长的动态计算[29]。本文在地壳上方建立了一个10 km厚的低黏度(1016 Pa /s)的空气层,以评估地形变化。这种由侵蚀和沉积造成的地形变化可以基于以下欧拉输运方程来表示:
$$ \frac{{\partial {y_{\rm{es}}}}}{{\partial t}} = {v_y} - {v_x}\frac{{\partial {y_{\rm{es}}}}}{{\partial y}} - {v_{\rm s}} + {v_{{\rm e'}}} $$ 表面的垂直位置(yes)是水平距离的函数,vx和vy分别是地表速度矢量的水平和垂直分量。vs和ve分别是沉降速率和侵蚀速率[30]:
$$ \begin{array}{l} {v_{\rm s}} = 0\;{\rm{ mm}}/{\rm{a}},\;\;{v_{\rm e}} = 0.1\;{\rm{ mm}}/{\rm{a}},\;\;{\text{当}}\;{y_{{\rm{es}}}} \text{<} 7\;{\rm{ km}}\\ {v_{\rm s}} = 0.1\;{\rm{ mm}}/{\rm{a}},\;\;{v_{\rm e}} = 0\;{\rm{ mm}}/{\rm{a}},\;\;{\text{当}}\;{y_{{\rm{es}}}} \text{>} 7\;{\rm{ km}} \end{array} $$ 在本文的模型中,地形变化是沉积和侵蚀与构造活动的总和效应,提取宏观地形参数,可以研究地貌演化中地形侵蚀过程,半定量化构造变形在塑造山脉或者高原地形中的作用[36]。
2.2 模型构建及边界条件的设定
为了探讨洋底高原随板片俯冲增生的动力学背景,本文设计了一组数值模型,模型尺度为4 000 km×670 km(图2)。数值模型的网格节点分布不均匀,在俯冲带区域为高分辨率(2 km×2 km),而模型的其余部分保持较低分辨率(30 km×30 km)。模型设置参考前人关于洋底高原的数值模拟和地震剖面的研究[32-34],包含上覆大陆板片、具有洋底高原的俯冲大洋板片。洋底高原大小100 km×20 km,陆壳总厚度为30 km,由上陆壳15 km和下陆壳15 km组成。洋壳由2 km上部洋壳和5 km下部洋壳组成。实验中的各种岩石类型的流变学参数总结在表1和2中。
图 2 初始模型和边界条件a. 是模型7的初始模型,图中尺度1 800 km×400 km为整个模型空间尺度(4 000 km×670 km)的局部。白色实线为等温线,单位是℃。b. 不同的颜色代表不同类型的岩石,岩性色标如下:1-空气;2-水;3和4-沉积物;5-大陆上地壳;6-大陆下地壳;7-大洋上地壳;8-大洋下地壳;9-洋底高原;10-岩石圈地幔;11-软流圈地幔;12-初始俯冲带(蛇纹石化地幔);13和14-部分熔融沉积物(对应3和4);15和16-部分熔融大陆地壳(对应5和6);17和18-部分熔融大洋地壳(对应7和8);19-部分熔融洋底高原;20-部分熔融橄榄岩地幔Figure 2. Initial model and boundary conditionsa. Initial setup of Model 7. Enlargement (1 800 ×400 km) of the numerical box (4 000 ×670 km) is demonstrated. b. Colors indicate rock types, with the color grid as follows: 1-air; 2-water; 3 and 4-sediments; 5-upper continental crust; 6-lower continental crust; 7-upper oceanic crust; 8-lower oceanic crust; 9-oceanic plateau; 10-lithospheric mantle; 11-asthenosphere mantle; 12-initial subduction zone (weak zone mantle); 13 and 14-partially molten sediment(3 and 4); 15-16 partially molten continental crust (5 and 6); 17 and 18-partially molten oceanic crust (7 and 8); 19-partially molten oceanic plateau; and 20-partially molten peridotite岩石圈的热结构为从地表到岩石圈地幔底部的0 ℃到1 300 ℃[29-42]。软流圈地幔的初始温度梯度为0.5 ℃ / km。对于热边界条件,上边界为固定值(表面处0 ℃),垂直边界为零水平热通量,而底部边界施加无限远的外部恒温条件,即允许温度和垂直热通量在下边界处渗透直到模型底部以下1 000 km处为固定温度。该条件通过使用公式∂T/∂z=(T外界−T)/Δz外界来实现,其中T外界是外边界的温度,∆z外界是从下边界到外边界的垂直距离[43]。关于速度边界条件,左、右和顶部边界均为自由滑移。下边界为物质守恒的可渗透边界条件[26, 44]。大陆板片和大洋板片被板片远端相对于欧拉坐标保持固定的小区域以5 cm/a的速度推动(图2)。
对于洋底高原可能的增生因素,本文的模型充分考虑了洋底高原自身外的因素:大陆边缘的几何形状、大洋岩石圈中的“薄弱”层以及洋底高原的流变学性质。
典型的安第斯型的陆壳结构在垂直海沟方向具有强烈的厚度变化。在洋陆过渡带陆壳向海逐渐尖灭,海沟处陆壳厚度减薄到10 km左右[45-48]。因此这里考虑了大陆边缘形态对模拟结果的影响。如图2b所示,大陆边缘的厚度到海沟处减薄至10 km。
薄弱层设置可分为两种情况:第一种情况,根据地震折射研究,在一些洋底高原底部存在高地震波速的基底层,这层铁镁质基底假设是地幔柱岩浆活动底侵导致的,可以作为洋底高原与俯冲板片解耦的介质[2, 49-50]。第二种情况,地幔蛇纹石化会改变地幔上部的化学和物理性质,降低其蠕变黏度[35]。洋壳和蛇纹石化地幔之间强烈的流变学性质差异可导致洋壳与俯冲板片的解耦拆离[51-52],这里在洋底高原周围设置蛇纹石化地幔来作为触发洋底高原与大洋板片解耦的薄弱层。
年轻的洋底高原具有相对较低的密度,浮力较大[53-56]。本文通过改变洋底高原的物理性质以作为控制因素,降低其密度,增强其流变学性质[57-59]。在初始模型设置中考虑了这三种情况(表3)。
3. 模拟结果分析
初始数值模型在边界条件的控制下随时间演化,从模型的物质场、温度场以及地形起伏等方面来探讨洋底高原增生的动力学演化过程。
从模拟结果来看,减薄的大陆边缘、大洋岩石圈中的“薄弱”层和洋底高原的弱流变强度都是洋底高原增生的有利因素[12-13, 45, 56],大陆边缘的几何形状是洋底高原增生的主控因素。正常陆缘不利于洋底高原增生,与前人研究结果一致[13-14],而其他因素使得洋底高原增生的程度以及增生楔的发育程度略有不同。
3.1 标准模型
对于模型1,洋底高原以自身较高的密度和强流变强度而倾向于俯冲,俯冲过程对于上覆板片基本没有侧向挤压,只能造成上覆大陆边缘的短暂抬升(图3)。俯冲进入软流圈的洋底高原发生部分熔融,掏蚀陆壳的岩石圈地幔。
从地形来看,洋底高原被俯冲板片拖拽进入俯冲带时,弧前区域隆升,并随着洋底高原的俯冲向大陆推进形成增厚的高地形,上覆板片一直为正地形(图3),即长期处于剥蚀状态。
3.2 蛇纹石化层
如果洋底高原周围存在蛇纹石化层(模型6),洋底高原倾向于正向增生(图4)。洋底高原增生过程不会影响到俯冲板片的深部结构,但浅部形变明显,褶皱以及逆冲推覆断层广泛发育。在板块俯冲开始后,减薄的陆缘即开始在俯冲板片的牵引下形成向斜构造F1。当洋底高原到达俯冲带时,由于洋壳和蛇纹石化地幔之间强烈流变学性质的差异,导致洋底高原与俯冲板片解耦进入增生楔。洋壳在解耦过程中发生褶皱变形(F2),并形成向陆的反冲断层。随着板片的继续俯冲,洋底高原与陆缘的碰撞挤压使得近陆侧形成向海方向的逆冲推覆断层。根据P-T-t路径,洋底高原俯冲期间岩石的温度和压力增加,但随着逆冲推覆、反冲断层的进一步发育,洋底高原岩片跟随反冲断层折返回升,折返岩石的峰期压力、温度范围分别为0.6~1.6 Gpa、200~550 ℃,属低级变质,表现为绿片岩相和蓝片岩相。
图 4 小型洋底高原增生的构造演化过程及地形起伏(模型6减薄陆缘以及蛇纹石层存在)a-d为物质场,右侧为P-T-t轨迹,上部为对应的地形线。红色实线代表断层,蓝色F1、黑色F2分别代表第一、二期褶皱,蓝色和黑色虚线分别代表褶皱轴向Figure 4. Tectonic evolution process and topography changes during the small oceanic plateau accretion (Model 6 for thinned continental margin and presence of serpentinized layers)a-d show composition fields and the corresponding form lines. Colored squares on the snapshots are markers that refer to the diagrams with the P-T-t paths. Blue F1, black F2 display the first, second stages of regional folding, respectively. Blue and black dash lines show axial plane of folds从地形来看,洋壳解耦增生到增生楔内,会对增生楔的生长有很大影响,由于增生过程中洋壳的前后两次增生,使得上覆板片地形形成“双峰”(图4b),最高可抬升至4 km左右;洋底高原的增生时期出现短暂的海沟后撤现象,待洋底高原完全增生后回归初始位置。在此期间,逆冲断层的发育也会造成地形的进一步抬升(图4d)。由于洋底高原与陆缘的碰撞挤压,使得洋底高原增生后的陆壳前缘挠曲下沉,形成凹陷盆地。
3.3 基底薄弱层
洋底高原底部存在超铁镁质层(模型9),作为“薄弱”带,使得俯冲通道与“薄弱”带之间的洋底高原受到剪切作用,进入增生楔。与蛇纹石化地幔增生不同的是,由于缺乏陆缘与洋底高原的强烈挤压,模型9没有洋壳的解耦,以及向陆背冲断层的发育,仅在软弱的沉积物中形成宽缓的向斜F1(图5b)和向海的逆冲断层。大洋沉积物随俯冲板片逐渐进入俯冲通道,增生楔的生长状态由增生转变为侵蚀,断层活动没有模型6剧烈,洋底高原岩片很少出露地表。
图 5 小型洋底高原增生的构造演化过程及地形起伏(模型9减薄陆缘以及存在超铁镁质基底层)a-d为物质场,上部为对应的地形线。红色实线代表断层,蓝色F1代表一期褶皱,蓝色代表褶皱轴向Figure 5. Tectonic evolution process and topography changes during the small oceanic plateau accretion (Model 9 for thinned continental margin and presence of ultramafic layer)a-d show composition fields and the corresponding form lines. F1 displays the stage of regional folding. Blue dash line shows axial plane of fold从地形来看,模型9地形并未出现类似模型6的“双峰”结构,这是由于此模型中洋底高原周围洋壳无增生,仅有洋底高原增生造成的“单峰”,且海沟后撤现象不如模型6明显。
3.4 年轻的洋底高原
在模型7中,由于新生成的洋底高原具有低流变强度的特性,与古老的洋底高原相比更易刮擦进入增生楔,俯冲带处由于缺乏洋底高原与陆缘的碰撞挤压,推覆构造体发育程度不如模型6,增生楔主体为海洋沉积,在俯冲板片的挤压状态下,形成紧闭褶皱,与褶皱同时发育的高角度逆断层,也称逆断层式韧性剪切带,倾向与同斜褶皱轴面一致。P-T-t路径显示洋底高原岩片刮擦下来的过程中温压有升高趋势,随着增生楔的生长,表现为升温降压过程。岩石的峰期压力、温度分别为0.75 GPa、370 ℃左右(图6c),属低级变质,表现为低绿片岩相[60]。
图 6 小型洋底高原增生的构造演化过程及地形起伏(模型7减薄陆缘以及新生的小型洋底高原)a-d为物质场,右侧为P-T-t轨迹,上部为对应的地形线。红色实线代表断层,蓝色F1、黑色F2分别代表第一、二期褶皱,蓝色和黑色虚线分别代表褶皱轴向Figure 6. Tectonic evolution process and topography changes during the small oceanic plateau subduction and accretion (Model 7 for thinned continental margin and the newly generated oceanic plateau)a-d show composition fields and the corresponding form lines. Colored squares on the snapshots are markers that refer to the diagrams with the P-T-t paths. Blue F1, black F2 display the first and second stages of regional folding, respectively. Blue and black dash lines show axial plane of folds从地形来看,洋底高原俯冲过程,增生楔以逆冲叠瓦状构造的形式增厚[61-62](图6),模型7中洋底高原增生对于地形抬升影响不及后期逆冲断层发育对地形隆升的程度高。
4. 讨论
4.1 洋底高原的增生因素
从模型结果来看,模型1未设置增生条件,洋底高原完全俯冲[13-14]。总结所有实验模型的结果,表3列出的条件都是洋底高原增生的有利因素。控制洋底高原的最重要因素是大陆边缘的几何形状。在减薄陆缘的条件下,海洋岩石圈中的“薄弱”层和洋底高原的弱流变强度导致碰撞型增生模式,增生的洋底高原以“腰斩”的形式保留在增生棱中[2]。在模型6中,小型海洋高原经历俯冲,与俯冲板片分离并随着逆冲断层和背冲断层折返。模型7、9由于缺乏模型6中洋底高原与陆缘的强烈挤压,只是受到俯冲通道的剪切力而非上覆板片的挤压力,因此增生的洋底高原体量较少,逆冲推覆发育不明显。
洋底高原增生将重塑俯冲带的地形。文本提取了模型的地形参数,发现地形抬升的高度和范围主要受控于洋底高原增生的体积和后期逆冲推覆断层的发育。洋底高原增生过程对山脉或者高原地形的塑造有控制性作用,增生时原海沟处地形迅速隆升,大陆边缘侧向增生范围根据洋底高原的增生体积而定,后期剥蚀-堆积夷平作用使地形趋于平缓。除了蛇纹石化层存在的模型6洋底高原增生体积较多,逆冲断层广泛发育造成地形抬升较大外,模型7、9中的洋底高原受俯冲通道的剪切作用,部分岩片刮擦进入增生楔,造成增生楔增厚,待到洋底高原完全俯冲之后,地形后期发展主要受逆冲断层控制。
4.2 那丹哈达地体的增生模式
本文模型也揭示了那丹哈达地体的增生方式。带有基底薄弱层的模型9和新生洋底高原的模型7中,洋底高原主要受俯冲通道剪切力作用刮擦进入增生楔,俯冲带处洋底高原与陆缘的碰撞挤压,推覆构造发育程度不高,这与那丹哈达地体[63-64]发育复杂的大型叠瓦断裂带的情况不符合。而存在蛇纹石化层的模型6与这些地质特征非常吻合,可以很好地揭示那丹哈达地体的增生过程以及动力学机制。在模型6中,减薄陆壳对海洋高原增生的阻力小于正常陆壳,结合蛇纹石化层和洋壳之间的流变学性质的差异,洋底高原与俯冲板片分离,并与陆缘强烈挤压(图7)。根据P-T-t路径,在此期间,洋底高原经历了绿片岩相和蓝片岩相变质作用,这与跃进山群中发现的绿片岩相岩石数据一致,其原岩是洋岛玄武岩[15, 65-66]。洋底高原靠近陆缘一侧形成向海的高角度反冲断层以及与断层相关的阿尔卑斯型褶皱,褶皱走向与断层走向相同;洋底高原靠近海沟一侧则形成向陆的逆冲断层。模拟结果与野外构造证据一致(图7a、7b)。随着逆冲推覆和背冲断层的进一步发育,低级变质岩随逆冲断层折返,剥露地表。
5. 结论
通过二维热-机械-岩石学数值模型研究洋底高原增生到大陆边缘的模式和动力学机制,同时结合那丹哈达地体的地球化学、野外构造分析等,对那丹哈达地体的增生过程进行数值模拟分析,得出以下结论:
(1)减薄的大陆边缘、大洋岩石圈中“薄弱”层的存在以及年轻的洋底高原都是其增生的有利因素,其中减薄陆缘是其主控因素。在本组实验中,减薄的大陆边缘可能是小型洋底高原的必要条件,同时,至少还需要其他一种条件。
(2)那丹哈达地体的增生模式受古太平洋板片俯冲的影响,洋底高原随古太平洋板片俯冲,由于蛇纹石化层和洋壳之间的黏度差异,使得洋底高原与俯冲板片解耦,与东北亚大陆边缘发生强烈挤压引起俯冲带的应变集中,在靠近海沟一侧形成了南东向与阿尔卑斯型褶皱相关的高角度逆冲断层,而在近陆缘则发育北西向逆冲的反冲断层。那丹哈达地体中的低级变质岩通过逆冲推覆折返到地表。
-
图 2 初始模型和边界条件
a. 是模型7的初始模型,图中尺度1 800 km×400 km为整个模型空间尺度(4 000 km×670 km)的局部。白色实线为等温线,单位是℃。b. 不同的颜色代表不同类型的岩石,岩性色标如下:1-空气;2-水;3和4-沉积物;5-大陆上地壳;6-大陆下地壳;7-大洋上地壳;8-大洋下地壳;9-洋底高原;10-岩石圈地幔;11-软流圈地幔;12-初始俯冲带(蛇纹石化地幔);13和14-部分熔融沉积物(对应3和4);15和16-部分熔融大陆地壳(对应5和6);17和18-部分熔融大洋地壳(对应7和8);19-部分熔融洋底高原;20-部分熔融橄榄岩地幔
Figure 2. Initial model and boundary conditions
a. Initial setup of Model 7. Enlargement (1 800 ×400 km) of the numerical box (4 000 ×670 km) is demonstrated. b. Colors indicate rock types, with the color grid as follows: 1-air; 2-water; 3 and 4-sediments; 5-upper continental crust; 6-lower continental crust; 7-upper oceanic crust; 8-lower oceanic crust; 9-oceanic plateau; 10-lithospheric mantle; 11-asthenosphere mantle; 12-initial subduction zone (weak zone mantle); 13 and 14-partially molten sediment(3 and 4); 15-16 partially molten continental crust (5 and 6); 17 and 18-partially molten oceanic crust (7 and 8); 19-partially molten oceanic plateau; and 20-partially molten peridotite
图 4 小型洋底高原增生的构造演化过程及地形起伏(模型6减薄陆缘以及蛇纹石层存在)
a-d为物质场,右侧为P-T-t轨迹,上部为对应的地形线。红色实线代表断层,蓝色F1、黑色F2分别代表第一、二期褶皱,蓝色和黑色虚线分别代表褶皱轴向
Figure 4. Tectonic evolution process and topography changes during the small oceanic plateau accretion (Model 6 for thinned continental margin and presence of serpentinized layers)
a-d show composition fields and the corresponding form lines. Colored squares on the snapshots are markers that refer to the diagrams with the P-T-t paths. Blue F1, black F2 display the first, second stages of regional folding, respectively. Blue and black dash lines show axial plane of folds
图 5 小型洋底高原增生的构造演化过程及地形起伏(模型9减薄陆缘以及存在超铁镁质基底层)
a-d为物质场,上部为对应的地形线。红色实线代表断层,蓝色F1代表一期褶皱,蓝色代表褶皱轴向
Figure 5. Tectonic evolution process and topography changes during the small oceanic plateau accretion (Model 9 for thinned continental margin and presence of ultramafic layer)
a-d show composition fields and the corresponding form lines. F1 displays the stage of regional folding. Blue dash line shows axial plane of fold
图 6 小型洋底高原增生的构造演化过程及地形起伏(模型7减薄陆缘以及新生的小型洋底高原)
a-d为物质场,右侧为P-T-t轨迹,上部为对应的地形线。红色实线代表断层,蓝色F1、黑色F2分别代表第一、二期褶皱,蓝色和黑色虚线分别代表褶皱轴向
Figure 6. Tectonic evolution process and topography changes during the small oceanic plateau subduction and accretion (Model 7 for thinned continental margin and the newly generated oceanic plateau)
a-d show composition fields and the corresponding form lines. Colored squares on the snapshots are markers that refer to the diagrams with the P-T-t paths. Blue F1, black F2 display the first and second stages of regional folding, respectively. Blue and black dash lines show axial plane of folds
图 7 那丹哈达地体的增生样式
(a)那丹哈达北部野外素描图(根据文献[63]绘制),(b)那丹哈达地体东北N-W向逆冲推覆断层(GPS: E133°20′3.28″ N47°03′40.28″, H: 70 m)(改编自[64])
Figure 7. Accretion model of the Nadanhada Terrane
(a) Schematic cross-section in the northern Nadanhada Terrane (modified after[63]) ,(b) The NW-dipping thrust faults in the eastern Nadanhada Terrane (GPS: E133°20′3.28″ N47°03′40.28″, H: 70 m) (modified after [64])
岩石类型 ρ0
/(kg·m−3)Cp
/(J·kg−1·K−1)K
/(W·m−1·K−1)Hr
/(μW·m−3)流变性质 η0
/(Pa·s−1)E
/(kJ·mol−1)V
/(J·MPa−1·mol−1)n AD
/(MPa−n·s−1)C
/MPasin
(φeff)沉积物 2 700 1 000 $0.64 + \dfrac{{1\;293}}{{T + 77}}$ 2 湿石英岩 1.97E+17 154 0 2.3 3.20E-06 1 0.15 上陆壳 2 700 1 000 $0.64 + \dfrac{{1\;293}}{{T + 77}}$ 1 湿石英岩 1.97E+19 154 0 2.3 3.20E-06 20 0.15 下陆壳 3 000 1 000 $1.18 + \dfrac{{807}}{{T + 77}}$ 1 斜长石 An75 4.80E+22 238 0 3.2 3.30E-04 20 0.45 洋壳/洋底高原 3 000 1 000 $1.18 + \dfrac{{807}}{{T + 77}}$ 0.25 斜长石 An75 4.80E+22 238 0 3.3 3.30E-04 20 0.45 新生成的洋底高原 2 900 1 000 $0.64 + \dfrac{{1\;293}}{{T + 77}}$ 0.25 斜长石 An75 4.80E+20 238 0 3.3 3.30E-04 20 0.45 干地幔 3 300 1 000 $0.64 + \dfrac{{1\;293}}{{T + 77}}$ 0.022 无水橄榄岩 3.98E+16 532 8 3.5 2.50E+04 40 0.6 含水地幔 3 200 1 000 $0.64 + \dfrac{{1\;293}}{{T + 77}}$ 0.022 含水橄榄岩 5.01E+20 470 8 4 2.00E+03 1 0.06 蛇纹石化
地幔3 200 1 000 $0.64 + \dfrac{{1\;293}}{{T + 77}}$ 0.022 蛇纹石 3.21E+36 8.9 3.2 3.8 1.97E-33 1 0.06 基性岩浆底侵作用 3 200 1 000 $0.64 + \dfrac{{1\;293}}{{T + 77}}$ 3 单斜辉石 3.21E+36 670 0 2.7 1.56E-34 1 0.06 注:ρ0为参考密度;Cp为比热容;k为导热系数;Hr为放射性热;C为内聚力;sin(φeff)为有效摩擦系数;η0为参考黏滞参数;E为活化能;V为活化体积;n为应力指数;AD为材料常数。 表 2 模型中部分熔融岩石的流变学参数[27, 31, 33]
Table 2 Parameters of partially molten rocks in the numerical models[27, 31, 33]
部分熔融
岩石类型ρ0
/(kg·m−3)Cp
/(J· kg−1·K−1)sin
(φeff)η0
/(Pa·s−1)T固相线
/KT液相线
/KHL
/(kJ·kg−1)n AD
/(MPa−n·s−1)部分熔融沉积物/上陆壳 2 500 1 500 0.06 5.00E+14 $ {899 + \dfrac{{179\;00}}{{P + 54}} + \dfrac{{202\;00}}{{\left( {P + 54} \right)^2}}\;\;P < 1\;200\;{\rm{MPa}}} $
$ {831 + 0.06P\;\;\;P > 1\;200\;{\rm{MPa}}} $831+0.06P 300 1 2.00E-09 部分熔融下
陆壳2 500 1 500 0.06 5.00E+14 $ {973 - \dfrac{{70\;400}}{{P + 354}} + \dfrac{{778e5}}{{{{\left( {P + 354} \right)}^2}}}\;\;P < 1\;600\;{\rm{MPa}}} $$ {973 + 0.003\;5{{P}} + 0.000\;006\;2{{P^2}}\;\;\;P > 1\;600\;{\rm{MPa}}} $ 1,423+0.105P 300 1 2.00E-09 部分熔融洋壳/洋底高原 2 900 1 500 0.06 1.00E+13 $ 973 - \dfrac{{70\;400}}{{P + 354}} + \dfrac{{778e5}}{{( {P + 354}) }^2}\;\;\;{{P}} < 1\;600\;{\rm{MPa}}$
$ {973 + 0.003\;5{{P}} + 0.000\;006\;2{{P^2}}\;\;\;{{P}} > 1\;600\;{\rm{MPa}}} $1,423+0.105P 300 1 1.00E-07 注:ρ0为熔融岩石的参考密度;Cp为熔融岩石的比热容;sin(φeff)为熔融岩石的有效摩擦系数;η0为熔融岩石的有效摩擦系数;T固相线为地壳的固相线温度;T液相线为地壳的液相线温度;HL为相变潜热;n为熔融岩石的应力指数;AD为熔融岩石的材料常数。 -
[1] Dobretsov N L, Buslov M M, Yu U. Fragments of oceanic islands in accretion-collision areas of Gorny Altai and Salair, southern Siberia, Russia: Early stages of continental crustal growth of the Siberian continent in Vendian-Early Cambrian time [J]. Journal of Asian Earth Sciences, 2004, 23(5): 673-690. doi: 10.1016/S1367-9120(03)00132-9
[2] Tetreault J L, Buiter S J H. Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments [J]. Solid Earth, 2014, 5(2): 1243-1275. doi: 10.5194/se-5-1243-2014
[3] Liu L, Zhang J S. Differential contraction of subducted lithosphere layers generates deep earthquakes [J]. Earth and Planetary Science Letters, 2015, 421: 98-106. doi: 10.1016/j.jpgl.2015.03.053
[4] Axen G J, Van Wijk J W, Currie C A. Basal continental mantle lithosphere displaced by flat-slab subduction [J]. Nature Geoscience, 2018, 11: 961-964. doi: 10.1038/s41561-018-0263-9
[5] Wu F Y, Yang J H, Xu Y, et al. Destruction of the North China Craton in the Mesozoic [J]. Annual Review of Earth and Planetary Sciences, 2019.
[6] Niu Y L, Liu Y, Shao F L, et al. Exotic origin of the Chinese continental shelf: new insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic [J]. Science Bulletin, 2015, 60(18): 1598-1616. doi: 10.1007/s11434-015-0891-z
[7] Ding W W, Li J B, Wu Z C, et al. Late Mesozoic transition from Andean-type to Western pacific-type of the East China continental margin-Is the East China Sea basement an allochthonous terrain [J]. Geological Journal, 2017, 52(5): 1994-2002.
[8] Huang H H, Wu Y M, Song X, et al. Joint Vp and Vs tomography of Taiwan: implications for subduction-collision orogeny [J]. Earth and Planetary Science Letters, 2014, 392: 177-191. doi: 10.1016/j.jpgl.2014.02.026
[9] Zhou J B, Cao J L, Wilde S A, et al. Paleo-Pacific subduction-accretion: Evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China [J]. Tectonics, 2014, 33(12): 2444-2466. doi: 10.1002/2014TC003637
[10] Cloos M. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts [J]. Geological Society of America Bulletin, 1993, 105(6): 715. doi: 10.1130/0016-7606(1993)105<0715:LBACOS>2.3.CO;2
[11] Mason W G, Moresi L, Betts P G, et al. Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones [J]. Tectonophysics, 2010, 483(1-2): 0-79.
[12] Tetreault J L, Buiter S J H. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones [J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B8).
[13] Vogt K, Gerya T V. From oceanic plateaus to allochthonous terranes: numerical modelling [J]. Gondwana Research, 2014, 25(2): 494-508. doi: 10.1016/j.gr.2012.11.002
[14] Yang S H, Li Z H, Gerya T, et al. Dynamics of terrane accretion during seaward continental drifting and oceanic subduction: Numerical modeling and implications for the Jurassic crustal growth of the Lhasa Terrane, Tibet [J]. Tectonophysics, 2018, 746: 212-228. doi: 10.1016/j.tecto.2017.07.018
[15] 李三忠, 张勇, 郭玲莉, 等. 那丹哈达地体及周缘中生代变形与增生造山过程[J]. 地学前缘, 2017, 24(4):200-212. [LI Sanzhong, ZHANG Yong, GUO Lingli, et al. Mesozoic deformation and accretionary orogenic processes around the Nadanhada Terrane [J]. Earth Science Frontiers, 2017, 24(4): 200-212. [16] Liu Y J, Li W, Feng Z, et al. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt [J]. Gondwana Research, 2017, 43: 123-148. doi: 10.1016/j.gr.2016.03.013
[17] 刘永江, 张兴洲, 金巍, 等. 东北地区晚古生代区域构造演化[J]. 中国地质, 2010, 37(04):943-951. [LIU Yongjiang, ZHANG Xingzhou, JIN Wei, et al. Paleozoic tectonic evolution in Northeast China [J]. Geology in China, 2010, 37(04): 943-951. doi: 10.3969/j.issn.1000-3657.2010.04.010 [18] Ouyang H G, Mao J W, Santosh M, et al. Geodynamic setting of Mesozoic magmatism in NE China and surrounding regions: Perspectives from spatio-temporal distribution patterns of ore deposits [J]. Journal of Asian Earth Sciences, 2013, 78(12): 222-236.
[19] Li S Z, Jahn B, Zhao S J, et al. Triassic southeastward subduction of North China Block to South China Block: Insights from new geological, geophysical and geochemical data [J]. Earth-Science Reviews, 2017, 166: 270-285. doi: 10.1016/j.earscirev.2017.01.009
[20] Wu F Y, Yang J H, Lo C H, et al. The Heilongjiang Group: a Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China [J]. Island Arc, 2007, 16(1): 156-172. doi: 10.1111/j.1440-1738.2007.00564.x
[21] Li J Y. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate [J]. Journal of Asian Earth Sciences, 2006, 26(3): 207-224.
[22] Tang J, Xu W, Niu Y, et al. Geochronology and geochemistry of Late Cretaceous-Paleocene granitoids in the Sikhote-Alin Orogenic Belt: Petrogenesis and implications for the oblique subduction of the paleo-Pacific plate [J]. Lithos, 2016, 266: 202-212.
[23] Kojima S. Mesozoic terrane accretion in Northeast China, Sikhote-Alin and Japan regions [J]. Palaeogeography Palaeoclimatology Palaeoecology, 1989, 69(3-4): 213-232.
[24] Mizutani S, Kojima S, Shao J A, et al. Mesozoic radiolarians from the Nadanhada area, northeast China [J]. Proceedings of the Japan Academy Ser B Physical and Biological Sciences, 1986, 62(9): 337-340. doi: 10.2183/pjab.62.337
[25] Gerya T V, Yuen D A. Charaterictics-based marker method with conservative finite-difference schemes for modeling geological flows with strongly variable transport properties [J]. Physics of the Earth and Planetary Interiors, 2003, 140(4): 293-318. doi: 10.1016/j.pepi.2003.09.006
[26] Burg J P, Gerya T V. The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps [J]. Journal of Metamorphic Geology, 2005, 23(2): 21.
[27] Gerya T V, 2010. Introduction to Numerical Geodynamic Modelling[M]. Cambridge University Press, New York.
[28] Ranalli G. Rheology of the Earth: Deformation and Flow Processes in Geophysics and Geodynamics, 2nd ed[M]. Springer Science and Business Media, 1995.
[29] Gerya T V, Yuen D A. Rayleigh-Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones [J]. Earth and Planetary Science Letters, 2003, 212(1): 47-62.
[30] Gerya T V, Meilick F I. Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts [J]. Journal of Metamorphic Geology, 2011, 29(1): 7-31. doi: 10.1111/j.1525-1314.2010.00904.x
[31] Bittner D, Schmeling H. Numerical Modelling of Melting Processes and Induced Diapirism In the Lower Crust [J]. Geophysical Journal International, 1995, 123(1): 59-70. doi: 10.1111/j.1365-246X.1995.tb06661.x
[32] Clauser C, Huenges E. Thermal conductivity of rocks and Minerals[M]. Rock Physics and Phase Relations: A Handbook of Physical Constants. American Geophysical Union, 1995: 105-126.
[33] Turcotte D, Schubert G. Geodynamics[M]. Cambridge university press, 2002: 1-456.
[34] Hilairet N, Reynard B, Wang Y, et al. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction [J]. Science, 2007, 318(5858).
[35] Ranalli G, Murphy D C. Rheological stratification of the lithosphere [J]. Tectonophysics, 1987, 132(4): 281-295. doi: 10.1016/0040-1951(87)90348-9
[36] 刘静, 张金玉, 葛玉魁, 等. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究[J]. 科学通报, 2018, 63:3070-3088. [LIU Jing, ZHANG Jinyu, GE Yukui, et al. Tectonic geomorphology: An interdisciplinary study of the interaction among tectonic climatic and surface processes [J]. Chin Sci Bull, 2018, 63: 3070-3088. [37] Mann P, Taira A. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone [J]. Tectonophysics, 2004, 389(3-4): 0-190.
[38] Shulgin A, Kopp H, Mueller C, et al. Structural architecture of oceanic plateau subduction offshore Eastern Java and the potential implications for geohazards [J]. Geophysical Journal International, 2011, 184(1): 12-28. doi: 10.1111/j.1365-246X.2010.04834.x
[39] Dai L M, Li S Z, Li Z H, et al. Dynamic processes and mechanisms for collision to post﹐rogenic extension in the Western Dabie Orogen: Insights from numerical modeling [J]. Geological Journal, 2017, 52: 44-58. doi: 10.1002/gj.2993
[40] Dai L M, Li S Z, Li Z H, et al. Dynamics of exhumation and deformation of HP-UHP orogens in double subduction-collision systems: Numerical modeling and implications for the Western Dabie Orogen [J]. Earth-Science Reviews, 2018, 182: 68-84. doi: 10.1016/j.earscirev.2018.05.005
[41] Liu Z, Dai L M, Li S, et al. Mesozoic magmatic activity and tectonic evolution in the southern East China Sea Continental Shelf Basin: Thermo-mechanical modelling [J]. Geological Journal, 2018, 53: 240-251. doi: 10.1002/gj.3021
[42] Liao J, Wang Q, Gerya T, et al. Modeling craton destruction by hydration‐induced weakening of the upper mantle [J]. Journal of Geophysical Research Solid Earth, 2017, 122(9): 7449-7466. doi: 10.1002/2017JB014157
[43] Gerya T V, Perchuk L L, Burg J P, 20 08. Transient hot channels: perpetrating and regurgitating ultrahigh-pressure, high-temperature crust-mantle associations in collision belts [J]. Lithos, 2008, 103(1-2): 236-256. doi: 10.1016/j.lithos.2007.09.017
[44] Li Z H, Liu M, Gerya T. Lithosphere delamination in continental collisional orogens: A systematic numerical study [J]. Journal of Geophysical Research Solid Earth, 2016, 121: 5186-5211. doi: 10.1002/2016JB013106
[45] Clerc C, Jolivet L, Ringenbach J C. Ductile extensional shear zones in the lower crust of a passive margin [J]. Earth and Planetary Science Letters, 2015, 431: 1-7. doi: 10.1016/j.jpgl.2015.08.038
[46] Ramos A, Fernández O, Torne M, et al. Crustal structure of the SW Iberian passive margin: The westernmost remnant of the Ligurian Tethys [J]. Tectonophysics, 2017, 705: 42-62. doi: 10.1016/j.tecto.2017.03.012
[47] Ruiz M, Díaz J, Pedreira D, et al. Crustal structure of the North Iberian continental margin from seismic refraction/wide-angle reflection profiles [J]. Tectonophysics, 2017, 717: 65-82. doi: 10.1016/j.tecto.2017.07.008
[48] Nair N, Pandey D K. Cenozoic sedimentation in the Mumbai Offshore Basin: Implications for tectonic evolution of the western continental margin of India [J]. Journal of Asian Earth Sciences, 2018, 152: 132-144. doi: 10.1016/j.jseaes.2017.11.037
[49] Schubert G, Sandwell D. Crustal volumes of the continents and of oceanic and continental submarine plateaus [J]. Earth and Planetary Science Letters, 1989, 92(2): 234-246. doi: 10.1016/0012-821X(89)90049-6
[50] Zagorevski A, Lissenberg C J, Van Staal C R. Dynamics of accretion of arc and backarc crust to continental margins: Inferences from the Annieopsquotch accretionary tract, Newfoundland Appalachians [J]. Tectonophysics, 2009, 479(1-2): 150-164. doi: 10.1016/j.tecto.2008.12.002
[51] Johnson H P, Pruis M J. Fluxes of fluid and heat from the oceanic crustal reservoir [J]. Earth and Planetary Science Letters, 2003, 216(4): 0-574.
[52] Vogt K, Gerya T. Deep plate serpentinization triggers skinning of subducting slabs [J]. Geology, 2014, 42(8): 723-726. doi: 10.1130/G35565.1
[53] Campbell I H, Griffiths R W. Implications of mantle plume structure for the evolution of flood basalts [J]. Earth and Planetary Science Letters, 1990, 99(1): 79-93.
[54] Davies G F. Topography: a robust constraint on mantle fluxes [J]. Chemical Geology, 1998, 145(3-4): 479-489. doi: 10.1016/S0009-2541(97)00156-3
[55] Hill R I, Campbell I H, Davies G F, et al. Mantle Plumes and Continental Tectonics [J]. Science, 1992, 256(5054): 186-193. doi: 10.1126/science.256.5054.186
[56] Niu Y, O'Hara M J, Pearce J A. Initiation of Subduction Zones as a Consequence of Lateral Compositional Buoyancy Contrast within the Lithosphere: a Petrological Perspective [J]. Journal of Petrology, 2003, 44(11): 764-778.
[57] Burke K, Fox P J, Şengör A M C. Buoyant ocean floor and the evolution of the Caribbean [J]. Journal of Geophysical Research: Solid Earth, 1978, 83(B8).
[58] Alsaad N, Van A R, Pranger A D, et al. Continental accretion: from oceanic plateaus to allochthonous terranes [J]. Science, 1981, 213: 47-54. doi: 10.1126/science.213.4503.47
[59] Abbott D H, Drury R, Mooney W D. Continents as lithological icebergs: the importance of buoyant lithospheric roots [J]. Earth and Planetary Science Letters, 1997, 149(1-4): 0-27.
[60] Mueller R F, Saxena S K. Metamorphic mineral facies[M]//Chemical Petrology. Springer, New York, NY, 1977: 181-198.
[61] Gulick S P S, Bangs N L B, Shipley T H, et al. Three-dimensional architecture of the Nankai accretionary prism's imbricate thrust zone off Cape Muroto, Japan: prism reconstruction via en echelon thrust propagation [J]. Journal of Geophysical Research Solid Earth, 2004: 109.
[62] Gutscher M A, Kukowski N, Malavieille J, et al. Episodic imbricatethrusting and underthrusting: analog experiments and mechanical analysis applied to the Alaskan accretionary wedge [J]. Journal of Geophysical Research Solid Earth, 1998, 103: 10161-10176. doi: 10.1029/97JB03541
[63] 万阔. 完达山地体构造特征、结构及增生过程[D]. 吉林大学, 2017 WAN Kuo. Tectonic features, structures and accretionary processes of the Wandashan Terrane, NE China[D]. Jilin University, 2017
[64] 兰浩圆. 华北东部及东北早中生代变形特征与构造演化[D]. 中国海洋大学, 2018 LAN Haoyuan. Early Mesozoic structural features and tectonic evolution in the eastern North China and Northeast China[D]. Ocean University of China, 2018
[65] 张魁武, 邵济安, 唐克东, 等. 黑龙江省东部跃进山群中绿片岩的地球化学特征及地质意义[J]. 岩石学报, 1997(02):43-47. [ZHANG Kuiwu, SHAO Jian, TANG Kedong, et al. The Geochemical Characteristics and the Geological Significance of Green-schists in Yuejinshan Group, East Heilongjiang Province, China [J]. Acta Petrologica Sinica, 1997(02): 43-47. [66] Sun M D, Xu Y G, Wilde S A, et al. Provenance of Cretaceous trench slope sediments from the Mesozoic Wandashan Orogen, NE China: Implications for determining ancient drainage systems and tectonics of the Paleo‐Pacific [J]. Tectonics, 2015, 34(6): 1269-1289. doi: 10.1002/2015TC003870
-
期刊类型引用(2)
1. 刘文良,褚宏宪,法鸿洁,王洪松,鲍宽乐,李晓阳,刘京强. 基于机载LiDAR和剖面数据的海滩地形动态监测. 海洋地质前沿. 2025(01): 81-92 . 百度学术
2. 郜业勇. 无人机摄影在新汴河河道测量中的应用. 水利技术监督. 2025(02): 42-45 . 百度学术
其他类型引用(0)