Study of the Caroline plate: Initial subduction, initial spreading and fluid-solid interaction
-
摘要: 西太平洋具有全球最活跃的板块构造与海陆相互作用过程,西太平洋的卡罗琳(Caroline)海盆形成于特提斯海与太平洋之间,处于印尼海道的咽喉区域,海盆范围正好对应了西太平洋暖池的大部分海域。其内部地形复杂,具有特征的隆起和残留洋中脊,而周围具有年轻活跃的俯冲带和洋中脊,并且与菲律宾海、太平洋、Ontong-Java大火成岩省、众多深海沟等相互作用,是研究俯冲带和洋中脊初始形成机理与动力学以及固体地球与海水相互作用的理想场所。过去对Caroline海盆的研究主要是美国和日本科学家在20世纪70—80年代完成的,在很多构造单元的成因和属性的解释上存在很大争议,很少涉及多圈层相互作用方面的研究。国家自然科学基金委重大研究计划“西太平洋地球系统多圈层相互作用”的实施推动了西太平洋基础海洋科学研究的步伐,通过综合地球物理和地球化学分析,对Caroline海盆的构造边界过程和海盆岩石圈蛇纹岩化程度等开展详细研究,探索深部过程与海底过程之间,特别是在水和热流通量方面的联系。Caroline海盆是提出典型海洋微板块演化模式和未来进一步深入研究(包括科学大洋钻探)的关键区域,其复杂多样的边界发育初始俯冲边界、初始扩张边界以及火山链和张裂中心,其板内地质构造也曾存在复杂的海底扩张和构造转换,并且显示强烈的板块边界和板内构造耦合过程。Abstract: The western Pacific has the most active plate tectonic processes and land-ocean interactions. The Caroline Basin is a small plate formed between the Tethys and the Pacific, currently located at the throat of the Indonesian seaway, and takes a large area of the western Pacific warm pool. The Caroline plate is rather complex topographically and is characterized by ridges and relic spreading centers. The plate is bordered by young active subduction zones and active spreading centers, and strongly interacts with the surrounding Philippine Sea plate, the Pacific plate, the Ontong-Java large igneous province, and many deep trenches. Therefore, it is an ideal place for studying process and dynamics of initiation of subduction and seafloor spreading, as well as the interaction of the solid earth with seawater. In the past, the investigation of the Caroline Basin was done mostly in the 70—80 s of last century. So far, many controversies remain unsolved on the nature and genesis of some tectonic units, and the interactions among multiple geospheres were seldom explored. The implementation of the major research project on " Multi-sphere Interaction of the Western Pacific Earth System” supported by the National Natural Science Foundation of China greatly accelerate the pace of marine research in the Western Pacific region. In this project, we conduct comprehensive geophysical and geochemical analyses of the tectonic boundary process of the Caroline Basin and the extent of serpentinization of the uppermost lithospheric mantle in the basin. We also examine the coupling between the deep process in the lithosphere and the shallow process on the seabed, in particular the relationship between water and heat flux. Based upon the research, we propose in this paper an evolutional model for this unique oceanic micro-plate and its tectonic boundaries. Further research activities, including scientific ocean drilling, are recommended.
-
浮游有孔虫壳体元素组成作为重要的海洋环境参数替代性指标,在古海洋学研究中发挥着重要的作用。随着浮游有孔虫壳体元素比值测试技术的快速发展,通过对浮游有孔虫壳体元素比值的分析,取得了一系列重要成果[1-3]。其中,Globigerinoides ruber(白色)和Trilobatus sacculifer壳体作为定量重建地质历史时期表层海水温度和盐度的重要信息载体,得到了广泛的研究和应用[1, 4-5]。然而,在利用G. ruber和T. sacculifer壳体进行测试时,通常忽略G. ruber和T. sacculifer不同形态类型的壳体对重建结果的可能影响。
大部分海洋沉积物样品中G. ruber壳体存在两种形态类型,分别为狭义种(sensu stricto, s.s.)和广义种(sensu lato, s.l.)。根据分类学标准,G. ruber s.s. 壳体的主要形态为:一个近球形房室对称地生长于原有结构上,而形成具有高角度拱形的较大口孔;而G. ruber s.l. 壳体具有相对紧凑的结构特征:一个扁平的房室不对称地生长于原有结构之上,从而形成具有中等角度的拱形和相对较小的口孔[6]。研究发现浮游有孔虫G.ruber壳体的两种形态类型具有不同的稳定同位素组成,且G. ruber s.s.的生活水深浅于G. ruber s.l.,因此两种形态类型的G. ruber壳体记录的海洋环境信息可能存在差异[4, 7-8]。此外,也有研究发现热带和亚热带海区G. ruber s.s.和G. ruber s.l.壳体的元素比值也存在差异[4, 9]。
T. sacculifer作为另外一个重要的浮游有孔虫混合层水种,其壳体在古海洋学研究中也得到了广泛的应用[10-11]。尽管从分类学角度来看,T. sacculifer的分类更加复杂,但其在形态方面的主要区分依据为是否具有最后一个似袋状房室[12]。因此,T. sacculifer从形态学上可以分为T. sacculifer(with sac)和T. sacculifer(without sac)。Elderfield等[11]和 Anand等[13]通过对取自大西洋的沉积岩芯以及沉积物捕获器样品的分析,发现T. sacculifer(with sac)和T. sacculifer(without sac)壳体的元素比值同样存在一定的差异。
已有研究表明有孔虫壳体的Sr/Ca比值在第四纪以来存在着明显的冰期-间冰期变化特征,可能是指示海水Sr/Ca水平的潜在替代性指标[14-15]。此外,有孔虫壳体Sr/Ca比值的变化可能可以指示第四纪冰期旋回中的海平面变化[16]。也有研究发现浮游有孔虫壳体的Sr/Ca受海水温度和盐度等因素的影响[17]。因此,有孔虫壳体Sr/Ca是古海洋学研究的潜在指标之一。本文通过西菲律宾海MD06-3047B岩芯中G. ruber s.s.和G. ruber s.l.以及T. sacculifer
(with sac)和T. sacculifer(without sac)壳体Sr/Ca比值的测试分析,探讨它们之间是否存在着显著性差异,并分析不同形态类型壳体Sr/Ca比的影响因素,为未来利用两个浮游有孔虫表层水种在该区域开展古海洋学工作提供借鉴。 1. 材料与方法
1.1 研究材料
MD06-3047B岩芯(17º00.44′N、124º47.93′E)位于吕宋岛以东约240 km的西菲律宾海本哈姆高原(图1a),水深2510 m。该沉积岩芯沉积连续, 没有发现明显的沉积间断以及浊流沉积层,沉积柱状样主要由黄色粉砂质泥组成。根据前人研究,西菲律宾海现代碳酸盐溶跃面深度约为3400 m [18],MD06-3047B孔位于海区溶跃面深度之上,因此该沉积物岩芯中有孔虫保存程度较好[19]。在本次研究中,我们选取钻孔岩芯上部60 cm,按4 cm间隔取样,取得15个层位的样品。每个层位样品分别挑选30~50枚粒径范围为250~300 μm的G. ruber s.s.、G. ruber s.l.、T. sacculifer(with sac)和T. sacculifer
(without sac)壳体(图2)。并对这59个有孔虫样品(G. ruber s.s.有一层位缺失)进行Sr/Ca比值测试。尽管G. ruber和T. sacculifer的生活水深存在差异,但两者的平均钙化深度均位于混合层内[7, 13],该层内海水温度和盐度随深度的变化较小(图1b)。 1.2 壳体元素测试
有孔虫壳体的清洗主要依据Barker等[21]的方法。首先,将有孔虫壳体在显微镜下压碎,保证每个房室均被打开;分别对每一个有孔虫样品用去离子水进行超声清洗5次、乙醇(优级纯)超声清洗2 次、去离子水清洗2 次,用以去除黏土等;用加热的H2O2缓冲溶液进行氧化处理,并用去离子水进行清洗,以去除有机质等;在镜下剔出非有孔虫壳体碎片的杂物(暗色矿物、絮尘等);转移并进行淋洗保存等待上机测试。元素测试在中国科学院海洋研究所电感耦合等离子发射光谱仪(ICP-OES)上进行。通过对标准溶液(Sr/Ca=1.20 mmol/mol)进行45次重复测试分析,得到Sr/Ca测试的标准偏差为1.1% (1σ)。
1.3 统计分析
为了从统计学角度分析G.ruber和T. sacculifer
不同形态类型壳体的Sr/Ca比值差异,我们依照Antonarakou等[8]的方法,对MD06-3047B岩芯中上述4类有孔虫壳体的Sr/Ca测试结果进行韦尔奇检验。首先,假设相比较的两组数据均值结果相当,如果G.ruber s.s.和G. ruber s.l.或T. sacculifer (with sac)和T. sacculifer(without sac)壳体的Sr/Ca结果相当,即接受虚假设(H=H0),说明G.ruber或T. sacculifer不同形态类型的Sr/Ca比值的差异不大;相反,如果对比结果存在显著差异,即拒绝虚假设(H=Ha),说明不同形态类型壳体的Sr/Ca存在显著差异。 2. 壳体Sr/Ca结果
MD06-3047B孔的年龄框架由Jia等建立[19],主要依据全球大洋底栖有孔虫氧同位素堆叠曲线[22],并辅以粉红色G. ruber末现面(~120 ka)作为参考点[23]而确立。本次研究的样品时间跨度约48 ka,覆盖了MIS 3-1。图3所示为MD06-3047B孔MIS 3期以来的G.ruber s.s. 和G. ruber s.l. 以及T. sacculifer(with sac)和T. sacculifer(without sac)壳体的Sr/Ca比值。48 ka以来 G.ruber s.s.和G. ruber s.l.壳体的Sr/Ca整体上具有相同的变化趋势,其差值变化范围为−0.006~0.022 mmol/mol,平均差值约0.006 mmol/mol。G. ruber(白色)的两种形态类型壳体的Sr/Ca比值并没有表现出明显的阶段性高低变化规律,但G.ruber s.l.壳体Sr/Ca波动幅度相对较大。T. sacculifer(with sac)和T. sacculifer(without sac)壳体Sr/Ca比值存在差异,整体上T. sacculifer(with sac)壳体的Sr/Ca比值相对较高,两者的差值变化范围为−0.008~0.034 mmol/mol,平均约0.017mmol/mol。
图 3 MD06-3047B孔G. ruber s.s.、G. ruber s.l.、T. sacculifer(with sac)和T. sacculifer(without sac)壳体的Sr/Ca比值,以及G. ruber和T. sacculifer不同形态类型壳体Sr/Ca差值Figure 3. Shell Sr/Ca of G. ruber s.s., G. ruber s.l., T. sacculifer (with sac), and T. sacculifer (without sac) from Core MD06-3047B, and the difference in shell Sr/Ca between morphotypes of the species3. 讨论
3.1 G.ruber和T. sacculifer 不同形态类型壳体Sr/Ca差异
如图3所示,G.ruber s.s.和G. ruber s.l.壳体Sr/Ca变化趋势较为一致,平均差值仅约0.006 mmol/mol,小于Sr/ Ca比值的测试误差(± 0.011 mmol/mol)。T. sacculifer(with sac)和T. sacculifer(without sac)壳Sr/Ca平均差值为约0.017 mmol/mol,大于测试误差(± 0.011 mmol/mol)。同时,统计学韦尔奇检验结果也显示G.ruber s.s.和G. ruber s.l. 壳体Sr/Ca平均值差异结果不具有显著差异;而T. sacculifer(with sac)和T. sacculifer(without sac)壳Sr/Ca平均值差异显著(p<0.05,表1)。综上,我们判断在MD06-3047B站位的附近海区G. ruber不同形态类型壳体Sr/ Ca比值的差异较小;而T. sacculifer不同形态类型壳体Sr/Ca的差异较大。因此,在西菲律宾海区对浮游有孔虫表层水种Sr/Ca比值进行测试分析时,如在样品量不足的情况下,可以选择G. ruber的不同形态类型壳体,但需要尽量选择T. sacculifer(with sac)或T. sacculifer
(without sac)的单一形态类型壳体,以免造成结果偏差。 表 1 MD06-3047B孔G. ruber s.s.和G. ruber s.l.以及T. sacculifer(with sac)和T. sacculifer(without sac)壳体Sr/Ca平均值(mmol/mol)以及韦尔奇检验结果(p<0.05)Table 1. Mean shell Sr/Ca (mmol/mol) of G. ruber s.s., G. ruber s.l., T. sacculifer (with sac), and T. sacculifer (without sac) of Core MD06-3047B with the results of the Welch’s t-test at p<0.05 levelSr/Ca Sr/Ca G.ruber s.s. 1.393 G.sacculifer (without sac) 1.383 G.ruber s.l. 1.387 G.sacculifer (with sac) 1.401 H H0 H Ha 注:其中H = H0表示接受虚假设,H = Ha表示拒绝虚假设。 3.2 不同形态类型壳体Sr/Ca差异的影响因素
浮游有孔虫壳体Sr/Ca主要受到海水Sr/Ca、海水温度、盐度和溶解作用等因素的影响[17, 24-27]。根据前人关于海水Sr/Ca的冰期-间冰期变化特征的研究可知,海水Sr/Ca在冰期时高,而在间冰期时低[28-29]。这一特征与我们的结果并不完全一致(图4),特别是MIS 3期的Sr/Ca整体低于MIS 1期。此外,不同形态类型壳体的Sr/Ca变化并没有表现出完全一致的变化,也说明其他因素在其中发挥作用。因此,海水Sr/Ca可能不是影响研究区浮游有孔虫壳体Sr/Ca变化特征的唯一因素。有研究表明,G.ruber
壳体Sr/Ca可能受到海水温度和盐度的影响,而受pH的影响较小[26],随着海水温度和盐度的升高,G.ruber壳体Sr/Ca呈增大趋势。T. sacculifer壳体Sr/Ca同样受到温度和盐度的影响[27],海水温度升高,T. sacculifer壳体Sr/Ca越大,而盐度越高,Sr/Ca越小。 如图3和图4所示,同一粒径范围下,MIS 3期以来G. ruber两种形态类型的壳体Sr/ Ca十分相似,说明两者的变化可能受到相同影响因素的控制。而T. sacculifer(with sac)和T. sacculifer(without sac)壳体Sr/Ca存在显著差异(本文3.1节),可能指示二者受不同因素的影响。进一步将G.ruber s.s.、G. ruber s.l.、T. sacculifer(with sac)和T. sacculifer(without sac)壳体Sr/Ca进行对比可发现(图4),G.ruber s.s.、G. ruber s.l.和T. sacculifer(without sac)壳体Sr/Ca呈现较为一致的变化趋势,并两两进行线性相关分析,发现三组记录之间具有较好的相关性,因此这两个种的3种形态类型壳体Sr/Ca的记录可能受到相同因素的影响。为方便分析,将这三组记录进行堆叠平均(Sr/Castack),并与同站位48 ka以来的表层海水温度和盐度等古海洋学记录[19]进行对比和线性相关分析。结果显示Sr/Castack与表层海水温度呈现线性正相关(图5a),从整体趋势上,G.ruber s.s.、G. ruber s.l.和T. sacculifer (without sac)的Sr/Ca的增大对应表层海水温度的升高(图4)。而Sr/Castack与表层海水盐度替代性指标(δ18Osw-ice)之间不具有明显的相关性(图5b),并且G.ruber s.s.、G. ruber s.l.和T. sacculifer(without sac)壳体Sr/Ca与表层海水盐度的变化趋势也存在较大差异(图4)。因此,研究区G.ruber s.s.、G. ruber s.l.和T. sacculifer(without sac)壳体的Sr/Ca变化可能主要受到表层海水温度的影响,而受到盐度的影响较小。其中,Sr/Ca的高值并未完全出现在MIS 1期,而整体出现在末次冰消期,即MIS 2期向MIS 1期的过渡阶段(图4)。这可能是由于太平洋区域存在显著的末次冰消期表层海水温度显著增暖的特征[30]。此外,MD06-3047B孔年龄框架由底栖有孔虫氧同位素建立,而根据前人工作,研究区SST在变化特征上超前于底栖有孔虫氧同位素的变化[31]。
图 5 MD06-3047B孔浮游有孔虫表层水种Sr/Ca与表层海水温度和盐度记录[19]的线性相关分析SST为表层海水温度,δ18Osw-ice为表层海水盐度替代性指标(高值指示高盐),Sr/Castack为G.ruber s.s.、G. ruber s.l.和T. sacculifer(without sac)壳体Sr/Ca记录的堆叠结果。Figure 5. Linear correlation of shell Sr/Ca ratio of planktonic surface-water-dwelling foraminifer species and sea surface temperature and salinity[19] from Core MD06-3047BSST: sea surface temperature, δ18Osw-ice: the proxy of sea surface salinity (high δ18Osw-ice means higher salinity), Sr/Castack: the stack of Sr/Ca records of G.ruber s.s., G. ruber s.l., and T. sacculifer (without sac).由于T. sacculifer(with sac)壳体Sr/Ca与G.ruber s.s.、G. ruber s.l.和T. sacculifer(without sac)的变化趋势存在明显差异(图4),故将其单独进行分析。如图5c和图5d所示,T. sacculifer (with sac)壳体Sr/Ca与表层海水温度记录无显著相关性,而与表层海水盐度呈反相关。因此,T. sacculifer(with sac)壳体的Sr/Ca可能主要受表层海水盐度的影响,这一关系与Dissard等的研究结果一致[27]。
4. 结论
通过对西太平洋暖池北部边缘海区MD06-3047B孔中浮游有孔虫表层水种G.ruber(G.ruber s.s.与G. ruber s.l.)和T. sacculifer(T. sacculifer(with sac)与T. sacculifer(without sac))壳体的Sr/ Ca进行分析,发现MIS 3期以来,G. ruber不同形态类型壳体的Sr/ Ca差异较小;而T. sacculifer不同形态类型壳体的Sr/ Ca相差较大。因此,在利用G. ruber和T. sacculifer 壳体的Sr/Ca结果重建古海洋信息的过程中,如在样品量有限的条件下,可以选择G. ruber壳体不同形态类型进行测试,但应尽量选择T. sacculifer单一形态类型壳体。不同形态类型壳体Sr/Ca与海水温度和盐度古海洋学记录对比显示,研究区G.ruber s.s.、G. ruber s.l.和T. sacculifer(without sac)壳体Sr/Ca可能主要受海水温度的影响;T. sacculifer(with sac)壳体Sr/Ca主要受到盐度的影响。
致谢:感谢中法合作MARCO POLO 2航次的全体工作人员在取样过程中提供的帮助。
-
图 2 Caroline海盆与邻域水深和构造单元图(a) 及Caroline海盆与邻域三维立体地形图(b)
红色虚线A、B、C、D为建议的海底地震仪和海底大地电磁仪的剖面。测线A:过Ayu海盆;测线B:过Caroline海脊系统和Sorol海槽裂谷;测线C:过Eauripik海岭;测线D:过Mussau俯冲海沟和Lyra海槽,到达Ontong-Java大火成岩省
Figure 2. Bathymetric and tectonic map (a) and three-dimensional topographic map (b) of the Caroline Basin and its adjacent areas
The red dashed lines A, B, C and D are designed profiles of ocean bottom seismic and submarine magnetotelluric surveys. Profile A: over the Ayu Basin; Profile B: over the Caroline Ridge system and Sorol Trough rifting system; Profile C: over the Eauripik Ridge; Line D: over the Mussau subduction trench and Lyra Trough, and reaching the Ontong-Java large igneous province
表 1 Caroline海盆研究现状
Table 1 Current research status in the Caroline Basin
研究者 研究范围 研究数据 初步结论 Weissel and Anderson, 1978[2] Caroline 海盆 地震数据等 存在独立 Caroline 海板块 Gaina and Müller, 2007[3];Bracey, 1975[4];MacLeod et al., 2017[5] Caroline 海盆 磁异常 海盆扩张历史复杂,可能存在扩张中断、
洋脊跃迁、重新活动Li and Wang, 2016[6] Caroline 海脊和
Eauripik 海岭重磁、热流数据等 两者地球物理场和深部结构差异大,不可能同源 Erlandson et al., 1976[7];Weissel and
Anderson, 1978[2];Hegarty et al., 1983[8]Mussau 俯冲海沟 重力、水深数据等 Mussau 海沟是初始俯冲的产物,
俯冲程度由北向南加大Weissel and Anderson, 1978[2];Fujiwara et al., 1995[9];Fujiwara et al., 2000[10];Lee, 2004[11] Ayu 海盆 水深数据等 洋中脊年龄、海底扩张动力学机制未明 Weissel and Anderson, 1978[2];Bracey, 1983[12];
Li and Wang, 2016[8]Caroline 海脊及
Sorol 海槽岩石地球化学、重磁、
热流、水深数据等Sorol 海槽为斜向张裂转换系统;
Caroline 海脊大陆边缘张裂演化模式Ryan, 1988[13];Tregoning and Gorbatov, 2004[14] 新几内亚俯冲带 地震层析成像 活跃俯冲带,~9 Ma 以来 ~650 km 板片俯冲 -
[1] 宋晓晓, 李春峰. 西太平洋科学大洋钻探的地球动力学成果[J]. 热带海洋学报, 2016, 35(1):17-30. [SONG Xiaoxiao, LI Chunfeng. Geodynamic results of scientific ocean drilling in the western Pacific [J]. Journal of Tropical Oceanography, 2016, 35(1): 17-30. doi: 10.11978/2014121 [2] Weissel J K, Anderson R N. Is there a Caroline plate? [J]. Earth and Planetary Science Letters, 1978, 41(2): 143-158. doi: 10.1016/0012-821X(78)90004-3
[3] Gaina C, Müller D. Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins [J]. Earth-Science Reviews, 2007, 83(3-4): 177-203. doi: 10.1016/j.earscirev.2007.04.004
[4] Bracey D R. Reconnaissance geophysical survey of the Caroline Basin [J]. Geological Society of America Bulletin, 1975, 86(6): 775-784. doi: 10.1130/0016-7606(1975)86<775:RGSOTC>2.0.CO;2
[5] MacLeod S J, Williams S E, Matthews K J, et al. A global review and digital database of large-scale extinct spreading centers [J]. Geosphere, 2017, 13(3): 911-949. doi: 10.1130/GES01379.1
[6] Li C F, Wang J. Variations in Moho and curie depths and heat flow in Eastern and Southeastern Asia [J]. Marine Geophysical Research, 2016, 37(1): 1-20. doi: 10.1007/s11001-016-9265-4
[7] Erlandson D L, Orwig T L, Kiilsgaard G, et al. Tectonic interpretations of the East Caroline and Lyra basins from reflection-profiling investigations [J]. Geological Society of America Bulletin, 1976, 87(3): 453-462. doi: 10.1130/0016-7606(1976)87<453:TIOTEC>2.0.CO;2
[8] Fujiwara T, Tamaki K, Fujimoto H, et al. Morphological studies of the Ayu trough, Philippine sea–Caroline plate boundary [J]. Geophysical Research Letters, 1995, 22(2): 109-112. doi: 10.1029/94GL02719
[9] Fujiwara T, Tamura C, Nishizawa A, et al. Morphology and tectonics of the Yap Trench [J]. Marine Geophysical Researches, 2000, 21(1-2): 69-86.
[10] Lee S M. Deformation from the convergence of oceanic lithosphere into Yap trench and its implications for early-stage subduction [J]. Journal of Geodynamics, 2004, 37(1): 83-102. doi: 10.1016/j.jog.2003.10.003
[11] Bracey D R. Geophysics and tectonic development of the Caroline basin[R]. Bay St. Louis, MS: Naval Oceanographic Office, 1983.
[12] Ryan H F, Marlow M S. Multichannel seismic-reflection data collected at the intersection of the Mussau and Manus trenches, Papua New Guinea[M]//Marlow M S, Dadisman S V, Exon N F. Geology and Offshore Resources of Pacific Island Arc: New Ireland and Manus Region, Papua New Guinea. Houston: Circum-Pacific Council for Energy, 1988: 203-210.
[13] Tregoning P, Gorbatov A. Evidence for active subduction at the New Guinea Trench [J]. Geophysical Research Letters, 2004, 31(13): L13608.
[14] Harrison C G A. Magnetization of the oceanic crust [J]. Geophysical Journal International, 1976, 47(2): 257-283. doi: 10.1111/j.1365-246X.1976.tb01273.x
[15] Den N, Ludwig W J, Murauchi S, et al. Sediments and structure of the Eauripik‐New Guinea rise [J]. Journal of Geophysical Research, 1971, 76(20): 4711-4723. doi: 10.1029/JB076i020p04711
[16] Mammerickx J. Re-evaluation of some geophysical observations in the Caroline Basins [J]. Geological Society of America Bulletin, 1978, 89(2): 192-196. doi: 10.1130/0016-7606(1978)89<192:ROSGOI>2.0.CO;2
[17] Hegarty K A, Weissel J K, Hayes D E. Convergence at the Caroline‐Pacific plate boundary: collision and subduction[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. Washington, DC: American Geophysical Union., 1983: 326-348.
[18] Altis S. Origin and tectonic evolution of the Caroline Ridge and the Sorol Trough, western tropical Pacific, from admittance and a tectonic modeling analysis [J]. Tectonophysics, 1999, 313(3): 271-292. doi: 10.1016/S0040-1951(99)00204-8
[19] Bracey D R, Andrews J E. Western Caroline ridge: relic island arc? [J]. Marine Geophysical Researches, 1974, 2(2): 111-125.
[20] Perfit M R, Fornari D J. Mineralogy and geochemistry of volcanic and plutonic rocks from the boundaries of the Caroline plate: tectonic implications [J]. Tectonophysics, 1982, 87(1-4): 279-313. doi: 10.1016/0040-1951(82)90230-X
[21] Keating B H, Mattey D P, Helsley C E, et al. Evidence for a hot spot origin of the Caroline Islands [J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B12): 9937-9948. doi: 10.1029/JB089iB12p09937
[22] Li C F, Wang J. Thermal structures of the Pacific lithosphere from magnetic anomaly inversion [J]. Earth and Planetary Physics, 2018, 2(1): 52-66.
[23] Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations [J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431. doi: 10.1016/S1367-9120(01)00069-4
[24] Stern R J. Subduction initiation: spontaneous and Induced [J]. Earth and Planetary Science Letters, 2004, 226(3-4): 275-292. doi: 10.1016/S0012-821X(04)00498-4
[25] Deschamps A E, Lallemand S E, Collot J Y. A detailed study of the Gagua ridge: a fracture zone uplifted during a plate reorganisation in the Mid-Eocene [J]. Marine Geophysical Research, 1998, 20(5): 403-423. doi: 10.1023/A:1004650323183
[26] Li C F, Zhou Z Y, Li J B, et al. Precollisional tectonics and terrain amalgamation offshore southern Taiwan: characterizations from reflection seismic and potential field data [J]. Science in China Series D: Earth Sciences, 2007, 50(6): 897-908. doi: 10.1007/s11430-007-0025-9
[27] Arculus R J, Ishizuka O, Bogus K, et al. Expedition 351 scientists[C]//Proceedings of the International Ocean Discovery Program, Expedition 351: Izu-Bonin-Mariana Arc Origins. College Station, TX: International Ocean Discovery Program, 2015.
[28] Reagan M K, Pearce J A, Petronotis K, et al. Izu-Bonin-Mariana fore arc[C]//Proceedings of the International Ocean Discovery Program, 352. College Station, TX: International Ocean Discovery Program, 2015.
[29] Tamura Y, Busby C J, Blum P, et al. Izu-Bonin-Mariana rear arc[C]//Proceedings of the International Ocean Discovery Program, Expedition 350: Izu-Bonin-Mariana Rear Arc. College Station, TX: International Ocean Discovery Program, 2015.
[30] Keenan T E, Encarnación J. Unclear causes for subduction [J]. Nature Geoscience, 2016, 9(5): 388.
[31] Li C F. An integrated geodynamic model of the Nankai subduction zone and neighboring regions from geophysical inversion and modeling [J]. Journal of Geodynamics, 2011, 51(1): 64-80. doi: 10.1016/j.jog.2010.08.003
[32] Li C F, Wang J, Lin J, et al. Thermal evolution of the North Atlantic lithosphere: new constraints from magnetic anomaly inversion with a fractal magnetization model [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(12): 5078-5105. doi: 10.1002/2013GC004896
[33] Li C F, Lu Y, Wang J. A global reference model of Curie-point depths based on EMAG2 [J]. Scientific Reports, 2017, 7: 45129. doi: 10.1038/srep45129
[34] Shi X B, Kirby J, Yu C H, et al. Spatial variations in the effective elastic thickness of the lithosphere in Southeast Asia [J]. Gondwana Research, 2017, 42: 49-62. doi: 10.1016/j.gr.2016.10.005
[35] Bai Y L, Dong D D, Kirby J F, et al. The effect of dynamic topography and gravity on lithospheric effective elastic thickness estimation: a case study [J]. Geophysical Journal International, 2018, 214(1): 623-634. doi: 10.1093/gji/ggy162
[36] 付永涛, 李安春, 秦蕴珊. 大洋和大陆边缘岩石圈有效弹性厚度的研究意义[J]. 海洋地质与第四纪地质, 2002, 22(3):69-75. [FU Yongtao, LI Anchun, QIN Yunshan. Effective elastic thickness of the oceanic and continental marginal lithospheres [J]. Marine Geology & Quaternary Geology, 2002, 22(3): 69-75. [37] 杨安, 付永涛, 李安春. 卡罗琳板块及其附近地区的岩石圈有效弹性厚度[J]. 地球物理学报, 2016, 59(9):3280-3290. [YANG An, FU Yongtao, LI Anchun. The effective elastic thickness of the Caroline plate and its adjacent areas [J]. Chinese Journal of Geophysics, 2016, 59(9): 3280-3290. doi: 10.6038/cjg20160913 [38] 赵俐红, 金翔龙, 高金耀, 等. 中西太平洋海山区的岩石圈有效弹性厚度及其地质意义[J]. 地球科学-中国地质大学学报, 2010, 35(4):637-644. [ZHAO Lihong, JIN Xianglong, GAO Jinyao, et al. The effective elastic thickness of lithosphere in the mid-west pacific and its geological significance [J]. Earth Science-Journal of China University of Geosciences, 2010, 35(4): 637-644. [39] Jackson M G, Price A A, Blichert-Toft J, et al. Geochemistry of lavas from the Caroline hotspot, Micronesia: Evidence for primitive and recycled components in the mantle sources of lavas with moderately elevated 3He/4He [J]. Chemical Geology, 2017, 455: 385-400. doi: 10.1016/j.chemgeo.2016.10.038
[40] Chave A D, Jones A G. The Magnetotelluric Method: Theory and Practice[M]. New York: Cambridge University Press, 2012.
[41] Constable S C. Marine electromagnetic induction studies [J]. Surveys in Geophysics, 1990, 11(2-3): 303-327. doi: 10.1007/BF01901663
[42] Zhdanov M S. Electromagnetic geophysics: notes from the past and the road ahead [J]. Geophysics, 2010, 75(5): 75A49-75A66. doi: 10.1190/1.3483901
[43] Baba K. Electrical structure in marine tectonic settings [J]. Surveys in Geophysics, 2005, 26(6): 701-731. doi: 10.1007/s10712-005-1831-2
[44] Key K. Marine electromagnetic studies of seafloor resources and tectonics [J]. Surveys in Geophysics, 2012, 33(1): 135-167. doi: 10.1007/s10712-011-9139-x
[45] Baba K, Tarits P, Chave A D, et al. Electrical structure beneath the northern MELT line on the East Pacific Rise at 15°45’S [J]. Geophysical Research Letters, 2006, 33(22): L22301. doi: 10.1029/2006GL027528
[46] Evans R L, Tarits P, Chave A D, et al. Asymmetric electrical structure in the mantle beneath the East Pacific Rise at 17°S [J]. Science, 1999, 286(5440): 752-756. doi: 10.1126/science.286.5440.752
[47] Heinson G, White A, Lilley F E M. Rifting of a passive margin and development of a lower-crustal detachment zone: evidence from marine magnetotellurics [J]. Geophysical Research Letters, 2005, 32(12): L12305.
[48] Jegen M, Avdeeva A, Berndt C, et al. 3-D magnetotelluric image of offshore magmatism at the Walvis Ridge and rift basin [J]. Tectonophysics, 2016, 683: 98-108. doi: 10.1016/j.tecto.2016.06.016
[49] Evan R L, Chave A D, Booker J R. On the importance of offshore data for magnetotelluric studies of ocean-continent subduction systems [J]. Geophysical Research Letters, 2002, 29(9): 16-1-16-4.
[50] Ichiki M, Baba K, Toh H, et al. An overview of electrical conductivity structures of the crust and upper mantle beneath the northwestern Pacific, the Japanese Islands, and continental East Asia [J]. Gondwana Research, 2009, 16(3-4): 545-562. doi: 10.1016/j.gr.2009.04.007
[51] Toh H, Baba K, Ichiki M, et al. Two-dimensional electrical section beneath the eastern margin of Japan Sea [J]. Geophysical Research Letters, 2006, 33(22): L22309. doi: 10.1029/2006GL027435
[52] Worzewski T, Jegen M, Kopp H, et al. Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone [J]. Nature Geoscience, 2011, 4(2): 108-111. doi: 10.1038/ngeo1041
[53] Matsuno T, Seama N, Evans R L, et al. Upper mantle electrical resistivity structure beneath the central Mariana subduction system [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(9): Q09003.
[54] Mattey D P. The minor and trace element geochemistry of volcanic rocks from Truk, Ponape and Kusaie, Eastern Caroline Islands; the evolution of a young hot spot trace across old pacific ocean crust [J]. Contributions to Mineralogy and Petrology, 1982, 80(1): 1-13. doi: 10.1007/BF00376730
[55] Lee S M, Kim S S. Vector magnetic analysis within the southern Ayu Trough, equatorial western Pacific [J]. Geophysical Journal International, 2004, 156(2): 213-221. doi: 10.1111/j.1365-246X.2003.02125.x
[56] Allègre C J. Isotope Geology[M]. New York: Cambridge University Press, 2008: 512.
[57] Andreani M, Daniel I, Pollet-villard M. Aluminum speeds up the hydrothermal alteration of olivine [J]. American Mineralogist, 2015, 98(10): 1738-1744.
[58] Berndt M E, Allen D E, Seyfried W E Jr. Reduction of CO2 during serpentinization of olivine at 300°C and 500 bar [J]. Geology, 1996, 24(4): 351-354. doi: 10.1130/0091-7613(1996)024<0351:ROCDSO>2.3.CO;2
[59] McCollom T M. Abiotic methane formation during experimental serpentinization of olivine [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49): 13965-13970. doi: 10.1073/pnas.1611843113
[60] McCollom T M, Klein F, Robbins M, et al. Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine [J]. Geochimica et Cosmochimica Acta, 2016, 181: 175-200. doi: 10.1016/j.gca.2016.03.002
[61] Huang R, Song M S, Ding X, et al. Influence of pyroxene and spinel on the kinetics of peridotite serpentinization [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(9): 7111-7126. doi: 10.1002/2017JB014231
[62] Rollinson H R. Using Geochemical Data: Evaluation, Presentation, Interpretation[M]. New York: Longman Scientific and Technical, 1993: 352.
[63] Ellam R M. Lithospheric thickness as a control on basalt geochemistry [J]. Geology, 1992, 20(2): 153-156. doi: 10.1130/0091-7613(1992)020<0153:LTAACO>2.3.CO;2
[64] Gibson S A, Thompson R N, Dickin A P, et al. High-Ti and low-Ti mafic potassic magmas: key to plume–lithosphere interactions and continental flood-basalt genesis [J]. Earth and Planetary Science Letters, 1995, 136(3-4): 149-165. doi: 10.1016/0012-821X(95)00179-G
[65] Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites [J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9
[66] Porter K A, White W M. Deep mantle subduction flux [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(12): Q12016.
[67] Sobolev A V, Hofmann A W, Jochum K P, et al. A young source for the Hawaiian plume [J]. Nature, 2011, 476(7361): 434-437. doi: 10.1038/nature10321
[68] Herzberg C, Asimow P D, Arndt N, et al. Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites [J]. Geochemistry, Geophysics, Geosystems, 2007, 8(2): Q02006.
[69] Herzberg C, Asimow P D. Petrology of some oceanic island basalts: PRIMELT2. XLS software for primary magma calculation [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(9): Q09001.
[70] Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses [J]. Earth and Planetary Science Letters, 1973, 19(2): 290-300. doi: 10.1016/0012-821X(73)90129-5
[71] Weaver B L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints [J]. Earth and Planetary Science Letters, 1991, 104(2-4): 381-397. doi: 10.1016/0012-821X(91)90217-6
[72] Klein E M, Langmuir C H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness [J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B8): 8089-8115. doi: 10.1029/JB092iB08p08089
[73] Winterer E L, Riedel W R. Initial reports of the deep sea drilling project[R]. Washington, DC: U.S. Government Printing Office, 1971.
[74] Rosenthal Y, Holbourn A E, Kulhanek D K, et al. Western pacific warm pool[C]//Proceedings of the International Ocean Discovery Program. College Station, TX: International Ocean Discovery Program, 2018, 363.
-
期刊类型引用(12)
1. 李林致,郭刚,廖计华,王欣,李婧婧,吴斌,张晓庆. 丽水-椒江凹陷月桂峰组湖相烃源岩的主控因素与分布预测. 海洋地质前沿. 2024(04): 9-17 . 百度学术
2. 何雁兵 ,雷永昌 ,邱欣卫 ,肖张波 ,郑仰帝 ,刘冬青 . 珠江口盆地陆丰南地区文昌组沉积古环境恢复及烃源岩有机质富集主控因素研究. 地学前缘. 2024(02): 359-376 . 百度学术
3. 郑仰帝,彭光荣,肖张波,黄鑫,何雁兵,杨兴业. 古近系文昌组湖盆古环境及其对烃源岩的控制作用——以珠江口盆地陆丰15洼为例. 华南地震. 2024(01): 11-24 . 百度学术
4. 郭奕浩,曾德铭,张芮,王兴志,黄董,张本健,谢圣阳. 川中—川东地区侏罗系大安寨段古环境及油气地质意义. 沉积学报. 2024(03): 1016-1031 . 百度学术
5. 阙晓铭,舒誉,汪旭东,雷永昌,王宇辰,吴琼玲. 珠一坳陷古近纪物源特征及其沉积演化:来自碎屑锆石年龄的指示. 地球科学. 2024(07): 2373-2387 . 百度学术
6. 耿名扬,刘志峰,吴斌. 渤海海域秦南凹陷沙河街组烃源岩沉积环境及发育模式. 大庆石油地质与开发. 2024(06): 20-28 . 百度学术
7. 党昭卿,陈莹,吕成福,白志钊,肖月也,周钱山. 利用三角洲前积层的厚度恢复湖泊最大古水深:以渤海湾盆地秦南凹陷和珠江口盆地惠州凹陷为例. 高校地质学报. 2024(06): 726-736 . 百度学术
8. 谢世文,柳保军,庞雄,丁琳,吴宇翔,刘冬青,王宇辰. 珠江口盆地白云凹陷裂陷期沉积环境演化与控烃作用. 天然气地球科学. 2023(02): 296-311 . 百度学术
9. 阙晓铭,雷永昌,汪旭东,贾连凯,宋伟. 珠江口盆地陆丰南文五段低矿化度水化学特征及成因分析. 中国海上油气. 2023(02): 23-32 . 百度学术
10. 林义华,梁定勇,魏昌欣,吕昭英,吴迪,黄武轩,许国强,杜鹃. 海南岛西北部晚更新世海滩岩地球化学特征及其古环境意义. 科学技术与工程. 2023(10): 4079-4090 . 百度学术
11. 贾培蒙,杜家元,陈维涛,杨兴业,熊万林,靳瑶瑶. 断陷盆地边缘洼陷优质烃源岩形成机制——以珠江口盆地惠州26洼东北次洼为例. 海洋地质与第四纪地质. 2022(03): 140-148 . 本站查看
12. 古榕,王智闻,周华. 准噶尔南缘中段上侏罗统—下白垩统沉积古环境分析. 中国锰业. 2022(05): 11-15 . 百度学术
其他类型引用(4)