Herbaceous vegetation expansion on the north equatorial Sundaland during the last glacial maximum
-
摘要: 末次盛冰期(Last Glacial Maximum, LGM)全球低海平面时,巽他陆架大面积暴露,其上的植被类型对于生物多样性演化和全球陆地碳储库有重要影响。但目前植被重建结果仍存在很大争议:一种观点认为LGM时巽他陆架主要分布稀树草原植被,雨林只零星存在于少数区域;而一些数值模拟结果和沉积记录显示巽他陆架上不存在大面积跨赤道的稀树草原,雨林植被仍占主导。LGM时巽他大陆北部可靠的植被记录十分有限。本研究依据靠近巽他陆架北部古河流入海口的沉积物岩芯,利用叶蜡烷烃含量和正构烷烃平均链长指标重建LGM时北巽他大陆的植被信息,结果显示平均链长在22~14.5 kaBP期间出现最大值,推测相对于全新世,冰期时巽他大陆北部草本成分增加。海平面降低使得冰期太平洋沃克环流减弱,呈现类厄尔尼诺状态,导致巽他大陆地区干旱加重,特别是赤道外围区域(南北纬7°以外)降水季节性增强,这种气候状态可能是草本植被成分增多的主要因素。Abstract: Vegetation types on the exposed Sunda Shelf are important to understand the evolution of regional biodiversity and to assess the global terrestrial carbon storage during glacial periods. There are two conflicting opinions on glacial vegetation distribution over the exposed Sundaland, one considers that savannah occupied most of the exposed shelves while rainforest contracted into a ‘refugia’ condition; and the other believes that tropical rainforest prevailed over the most glacial Sundaland. So far well-dated paleo-vegetation reconstructions from the northern Sundaland are still lacking, which impedes the unveiling of this mystery. In this study, changes in the distribution of plant wax-derived n-alkanes of a marine sediment core from the southern South China Sea, close to the northern Sundaland paleo-river mouths, are used to reconstruct the vegetation changes over the northern Sundaland since LGM. The Average Chain Length(ACL)of n-alkanes is as high as 30.0 between 22 and 14.5 kaBP, indicating that herbaceous vegetation expanded on the northern Sundaland during the LGM compared to the Holocene. Previous modelling results suggest that a fell down of sea-level during the LGM can induce a weakened Walker circulation and the prevailing of El Niño-like conditions. This may further result in overall drought and increased dry-season water stress conditions on the glacial Sundaland, which may have contributed to the flourish of herbaceous vegetation.
-
Keywords:
- herbaceous vegetation /
- long- chain alkane /
- Last Glacial Maximum /
- Sunda Shelf /
- South China Sea
-
东海盆地西湖凹陷历经40年的勘探,目前已钻探井100余口,天然气探明储量达数千亿方,证实了该凹陷巨大的勘探潜力[1]。西湖凹陷油气分布总体呈现西部斜坡带圈闭“小而散”[2]、中央反转构造带“大构造、小油气藏”[3]的特点,油气分布规律复杂,勘探难度较大。目前凹陷内已发现的大中型油气田较少,大中型油气田储量占整个凹陷总储量的四分之三以上,且主要分布在中央反转构造带。因此,在中央反转构造带上寻找大中型油气田是当前东海地区增储上产、建设华东地区清洁能源基地的重要保障。玉泉构造位于中央反转构造带中部,是东海盆地已发现的最大背斜构造,面积超过500 km2,是西湖凹陷寻找大中型油气田的最有利区带之一。自 1985 年至今,玉泉构造共钻探井5口,揭示天然气三级地质储量超 2500亿m3,但探明程度不到5%[3]。究其原因,是因为对该构造的油气成藏关键要素认识不够全面,对油气成藏关键要素间的动态时空匹配关系研究不够深入,从而制约了有利勘探目标的精准定位。
目前针对西湖凹陷整体油气成藏规律研究主要存在塔式成藏[4]、超压控藏[5]、“储保耦合”控藏[2]等成藏理论,但缺乏对油气成藏关键要素发育史及其时空匹配关系的深入研究。对于西湖凹陷中央反转构造带油气成藏要素演化史,前人在反转背斜成因演变[6]、圈闭的递进式演变史[7]、生烃演化历史[8]等方面有一定的研究,对于油气充注史分析主要存在两种观点:一种认为中央反转构造带存在三期油气充注[9-10]且以后两期油气充注为主;另一种认为中央反转构造带存在两期油气充注[11-12],但该两期的油气充注主次关系未明确。鉴于玉泉构造油气成藏要素演化史特别是油气充注史研究的薄弱,再加上各油气成藏要素间的联系不够密切,本文在西湖凹陷中央反转构造带挤压反转背景下,研究了玉泉构造演化史、断裂发育史、圈闭发育史、成岩史、生烃史与油气充注史的时空匹配关系并据此指出有利勘探方向,以期为下一步钻探评价及决策提供依据。
1. 区域地质背景
1.1 区域构造地层特征
西湖凹陷位于东海盆地东部大陆架东缘,呈NNE展布,南北长约400 km,东西宽约100 km,面积约为5.18× 104 km2[13]。西湖凹陷东部为钓鱼岛隆褶带,西部由北向南依次为长江凹陷、海礁隆起、钱塘凹陷和渔山东低隆起,南临钓北凹陷,凹陷自西向东依次可分为西部斜坡带、中央反转构造带和东部断阶带[14]。其中,中央反转构造带发育一系列反转背斜构造,其由北向南进一步划分为嘉兴反转带、宁波反转带和天台反转带,玉泉构造位于宁波反转带,与北部古珍构造均发育大型反转背斜构造样式,西侧紧邻印月构造(图1)。
参考前人地震层序划分[6-13, 15],西湖凹陷主要划分出8个不同级别的地震反射界面(T0、T10、T20、T30、T40、T50、T100、Tg),分别代表着发育较齐全的西湖凹陷新生界,由老至新分别为:古新统(具体组段不详),始新统宝石组、平湖组,渐新统花港组,中新统龙井组、玉泉组、柳浪组,上新统三潭组,第四系东海群(图2)。本文研究主要目的层为龙井组和花港组,龙井组以T17地震反射界面为界分为龙井组上段和龙井组下段,花港组以T21地震界面为界分为上、下两段,花港组上段分为H1—H5五个砂层组,花港组下段分为H6—H10五个砂层组。
1.2 区域构造演化特征
运用平衡剖面技术结合地震剖面特征研究发现,西湖凹陷主要经历了古新统至宝石组沉积末期(约43.0 Ma)的断陷期、宝石组沉积末期至平湖组沉积末期(约32.0 Ma)的断拗转换期、平湖组沉积末期至龙井组沉积末期(约16.4 Ma)的拗陷期、龙井组沉积末期至玉泉组沉积末期(约13.0 Ma)的强反转期、玉泉组沉积末期至柳浪组沉积末期(约5.3 Ma)的弱反转期(拗陷-区域沉降转换)和柳浪组沉积末期至今的区域沉降期(图3),中央构造带于龙井运动时期经历了强烈构造反转,形成玉泉、古珍等背斜构造,同时,花港组上段及以浅层系晚期NWW向断层伴生背斜发育,表现为横张弱扭性质。
图 3 西湖凹陷中部构造演化剖面图剖面位置见图1①。Figure 3. Structural evolution profile in the middle of the Xihu SagSee Fig.1① for profile location.2. 油气成藏关键要素发育史
在西湖凹陷中央构造带挤压反转背景下,以区域构造演化为基础,对玉泉构造断裂发育史、圈闭发育史、生烃史、油气充注史及成岩阶段进行综合分析,研究其油气成藏要素时空匹配关系,挖掘该构造的勘探潜力。
2.1 断裂演化阶段
玉泉构造断裂发育主要经历了3个阶段:前挤压反转期(龙井运动前)、挤压反转早期和挤压反转晚期(图4)。
前挤压反转期:以花港组沉积末期(约23.3 Ma)为例,该期断裂活动弱,仅F1—F7断裂持续活动,多为NE—NNE,且F2、F6等断裂南北不连续(图4a)。
挤压反转早期:约玉泉组沉积末(约13.0 Ma),NWW向构造应力挤压与NE—NNE向断层南北活动差异背景下,构造开始发生反转,并在应力更强的中北区局部高点发育Ft1—Ft4等NWW向调节断层,向下延伸至T21界面附近,同时,油源断裂F1、F2南北连接,F3断层向南延伸(图4b)。
挤压反转晚期:约柳浪组沉积末期(约5.3 Ma),构造反转后地层沉降趋于稳定,Ft1—Ft4等NWW向调节断层大量发育于玉泉构造中北部局部高点。挤压反转晚期形成的EW向断层(向上断至玉泉组,向下多断至T20界面)发育于玉泉构造南部(图4c),该期构造总体断裂组合样式基本定型。
2.2 圈闭发育史
在上文断裂发育演化背景下,玉泉构造同样经历了前挤压反转期(龙井运动前)、挤压反转早期和挤压反转晚期3个圈闭发育阶段(图5)。
前挤压反转期:花港组沉积末期(约23.3 Ma),多条断层控制,南北连续性差。断层形态受到刚性基底边界影响(刚性地层相对塑性地层而言不易变形,盆地内Tg界面以上地层普遍相对较软,挤压力主要通过相对刚性盆地基底向上传递[6])。该期圈闭基本不发育(图5a),但不排除局部背斜圈闭的形成,花港组在玉泉构造及周边构造普遍沉积。
挤压反转早期:玉泉组沉积末(约13.0 Ma),挤压反转过程中,多条断层控制多个背斜发育,背斜轴迹延伸方向多与断层走向平行,同时形成几个构造鞍部,由于SEE向应力的影响,断层伴生背斜之间多以NWW向的鞍部分隔(图5b)。该期花港组埋深约在1500~3400 m,龙井组下段埋深在400~1500 m,龙井组上段顶部及玉泉组被剥蚀(图3d)。
挤压反转晚期:柳浪组沉积末(约5.3 Ma),刚性基底嵌入段挤压持续增强,中块背斜持续抬高,分隔中-北块、中-南块的鞍部被抬高,多条断层伴生背斜连结形成巨型背斜,该期圈闭基本定型(图5c)。玉泉构造西北部两条通源断层F1、F2的分割使其与印月构造并未连结,刚性基底在构造北部的缺失导致玉泉构造北区的构造鞍部抬升并不明显,使古珍与玉泉构造分隔。该期花港组埋深1900~3800 m,龙井组下段深度约为800~1900 m,龙井组上段顶部被剥蚀后埋深约为350~800 m,柳浪组稳定沉积(图3e)。
2.3 生烃演化史
西湖凹陷中央反转构造带钻遇气层普遍为干气,始新统平湖组烃源岩在凹陷范围内大面积分布,且沉积厚度大,为西湖凹陷的主力烃源岩层系[16-19]。通过已钻井揭示的玉泉构造烃源岩厚度、埋深以及有机质丰度、氢指数、地温梯度等参数,利用Trinity软件进行模拟,认为该洼主要经历了两期大规模生烃期:第一期大规模生烃发生在约20~9 Ma,对应龙井组沉积中期至柳浪组沉积中期,从生排烃曲线斜率来看,该期生排烃强度最大;第二期大规模生烃发生在约5 Ma至今,对应柳浪组沉积末期至今,该期生排烃强度相对第一次较弱(图6)。值得注意的是,中央洼陷总排烃量为18.4万亿方天然气(换算石油约147亿t),相对总生烃量68.0万亿方天然气(换算石油约542亿t)来说排烃率仅为27%,这与平湖组泥岩厚度大及地层致密有较大的关系。
2.4 油气成藏史
由于玉泉构造样品分析化验资料较少,该构造已有的资料无法支撑准确厘定油气成藏史。而紧邻玉泉构造北部的古珍构造录井化验资料丰富,与玉泉构造在断裂发育史、圈闭发育史上相似度颇高,且二者均由中央洼陷平湖组供烃,古珍构造的油气充注史可以与玉泉构造进行有效类比。周心怀等[10]通过对古珍构造花港组盐水包裹体的研究,结合储层自生伊利石同位素测年技术,明确古珍构造油气有效成藏期次为两期:12~9 Ma和3 Ma至今。第一期成藏对应龙井运动时期,为构造大规模挤压抬升期,且处于第一次大规模生排烃期内,该期H7已经致密,H3孔隙演化基本定型;第二期成藏对应冲绳运动时期,表现为大面积的区域沉降和海水侵入,处于第二次大规模生排烃期内,该期H5砂层组以下普遍致密。据此认为玉泉构造同样经历了龙井运动时期和上新世以来的两次油气充注期,下面依据玉泉构造唯一具有包裹体资料的YQ-1井盐水包裹体均一温度结合埋藏地温史准确厘定玉泉构造的油气充注时间。
玉泉构造流体包裹体主要集中在H7、H3和龙井组下段,H1层存在少量流体包裹体,鉴于各层捕获包裹体深度差异较大,反映的均一温度不集中,取各层内具有代表性深度段(小于80 m)内的盐水包裹体统计其均一温度,结果表明H7均一温度主要在145~165 ℃之间,H3均一温度主要为114~133 ℃,龙井组下段均一温度主要为83~94 ℃。结合埋藏地温史分析玉泉构造各层油气充注时间,H7自17.9 Ma以来基本一直处于油气充注期内,可能与H7砂层组靠近平湖组烃源岩且上覆H6为一套巨厚泥岩层有关,该层成藏时间为13.0 Ma至今;H3主要经历了14.6~11.4 Ma和4.2 Ma至今两期油气充注,成藏时间为13.0~11.4 Ma和4.2 Ma至今两期;龙井组下段则为3.4 Ma至今晚期一期充注成藏(图7)。
3. 油气成藏要素时空匹配关系
对油气聚集成藏要素进行“六史”综合分析,能够明确成藏要素时空匹配关系、有效性及油气聚集程度。前文已分析在两次油气成藏期内H7砂层组埋深两次至3820 m以下处于致密状态,从现今成岩阶段来看,深度3820 m刚好处于中成岩A2期向中成岩B期转化的界线附近,3820 m以下为碱性成岩环境,原生孔大量减少,仅剩少量次生溶孔,深部储层致密后有利于油气向浅层运移。第一次大规模生烃阶段刚好处于玉泉构造挤压反转早期,NWW向断层于该期大量形成,背斜大量发育,对应油气第一期成藏;第二次大规模生排烃时期对应冲绳海槽运动期,为区域较稳定沉降期,该期断裂组合样式和圈闭基本定型,对应油气第二期成藏,玉泉构造油气成藏史与构造演化史、成岩史、生烃史、埋藏史、圈闭发育史“六史”耦合关系良好(图8)。
第一期油气成藏期虽然供烃洼陷生排烃强度较大,但玉泉构造正经历构造反转期,背斜尚处于雏形和发育阶段,油气成藏规模并未成型,而第二次成藏期内断裂组合样式与圈闭均已定型且区域较稳定沉降,再加上现今油气分布以干气为主,与第二次大规模生烃期排烃类型相符,因此,晚期4.2 Ma以来的油气充注最为有利。综合来看,花港组下段H6—H7为晚期油气持续充注成藏,但储层物性较差;花港组上段为两期油气充注成藏且第二期为主要油气成藏期,成藏时间与两次大规模生烃期、挤压反转早期和晚期、中成岩阶段A期时空匹配关系良好,储层物性较好;龙井组及更浅层位整体为晚期一期规模成藏,与第二次大规模生烃期、挤压反转晚期、早成岩阶段B期时空匹配关系良好,储层物性最好。
4. 有利勘探方向预测
根据前文玉泉构造“六史”分析及其时空匹配关系研究,早期发育的NE向断层F1、F2、F3持续活动,沟通烃源岩,玉泉构造北部、古珍双向持续供烃,油气藏规模明显大于其他地区(图9)。晚期发育的NWW向断层多下断至花港组上段底部的H5砂层组,其活动时间与构造反转期、圈闭形成期及第一期油气充注时间相似,不利于油气的保存,对花港组上段气藏有较大的破坏作用,这是玉泉构造各井区花港组上段油气充满度明显低于古珍油气充满度的主要原因。同时,应该注意到,晚期发育的NWW向断层在破坏花港组上段油气藏的同时,油气沿断层运移至龙井组及更浅层位,在龙井组有利圈闭聚集成藏,如YQ-1井区龙井组下段顶部,探明天然气储量达30亿m3。另外,花港组下段虽然自13.0 Ma以来油气持续充注,油气成藏期与两次大规模生烃期及圈闭发育期耦合良好,但由于经历过深埋,处于中成岩阶段B期,储层物性较差,以当前技术水平来看,该段基本不具有经济开发价值。
图 9 西湖凹陷玉泉构造近南北向气藏剖面图剖面位置见图5c②。Figure 9. The near N-S gas reservoir profile of Yuquan structure in Xihu SagSee Fig. 5c② for profile location.由此总结出玉泉构造乃至整个中央反转构造带寻找有利勘探目标的关键条件,对于花港组目标应具备以下条件:① 靠近早期发育的NNE油源断层;② 避开晚期NWW向调节断层;③ 以花港组上段为勘探主要目的层。对于龙井组及以浅层位的目标应具备条件:① 紧邻晚期NWW向调节断层;② NWW向调节断层向下切穿花港组H3—H5储层。
综上,认为YQ-3井区北部、YQ-1井区北部花港组上段与YQ-3井区NWW向断层上盘龙井组、YQ-1井区龙井组上段为有利勘探区(图5c、图9)。
5. 结论
(1)玉泉构造断裂发育主要经历了前挤压反转期、挤压反转早期和挤压反转晚期3个阶段,NWW向调节断层在挤压反转早期发育于构造局部高点,在挤压反转晚期断层活动趋于稳定,同时挤压反转早期和挤压反转晚期也是圈闭发育和圈闭定型的重要阶段。
(2)玉泉构造花港组下段H6—H7自13.0 Ma以来油气持续充注成藏至今,但储层物性较差;花港组上段为13.0~11.4 Ma和4.2 Ma至今两期油气充注成藏且第二期为主要油气成藏期,成藏时间与两次大规模生烃期、挤压反转早期和晚期、中成岩阶段A期时空匹配关系良好,储层物性较好;龙井组及更浅层位整体为3.4 Ma至今一期充注成藏,与第二次大规模生烃期、挤压反转晚期、早成岩阶段B期时空匹配关系良好,储层物性最好。
(3)玉泉3井区北部、玉泉1井区北部花港组上段与玉泉3井区NWW向断层北翼龙井组、玉泉1井区龙井组上段为玉泉构造的有利勘探区。
-
图 1 巽他大陆地形与本文涉及的研究站位
(地形数据来自:http://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1)。紫色虚线代表巽他陆架古河流[26-27]。黄色五角星为本次研究站位MD 05-2894,黑色实心点为前人研究站位。
Figure 1. Topography of the Sundaland and location of study sites
(topographic data is from the website: http://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1).Purple dashed lines represent paleo-rivers on the Sundaland[26-27]. Yellow star denotes the coring site MD 05-2894. Black solid circles represent previous research sites.
图 2 MD 05-2894烷烃含量,CPI、ACL和C31/(C29+C31)比值及其五点平滑结果
红色三角形为AMS 14C年龄控制点,垂直蓝色阴影代表末次盛冰期。
Figure 2. Alkane contents, CPI, ACL and the C31/(C29+C31)ratio at site MD 05-2894
Bold lines indicate the 5-point smoothing results. Red triangles represent AMS 14C age control points. The vertical blue shading indicates the Last Glacial Maximum.
图 3 MD 05-2894站位烷烃含量(b)和ACL(c)指标与其他古环境重建记录的对比
对比的记录包括巽他陆架的海平面变化[24](a),婆罗洲石笋δ18O[44](d),中国石笋δ18O[45-46](e),0°N地区10月太阳辐射[47](d. 粉色线条)和65°N 地区7月太阳辐射[47](e. 粉色线条)。垂直蓝色阴影代表末次盛冰期持续时间。
Figure 3. Comparison of n-alkane contents and the ACL results from site MD 05-2894 with other climate reconstructions
Sundaland sea level[24](a), Borneo stalagmites δ18O[44](d), Chinese stalagmites δ18O[45-46](e), 0°N area October insolation(d. Pink line)and 65°N area July insolation[47](e. Pink line). Vertical blue shading indicates the Last Glacial Maximum.
图 4 LGM时期巽他大陆植被分布
甘谷巴洞、巴土洞和尼亚洞蝙蝠粪便、昆虫壳体δ13C,马康特洞蝙蝠粪便昆虫壳体C31烷烃δ13C[10]。MD 05-2894叶蜡烷烃ACL;17964木本花粉比例[11]。18323木本花粉比例[13]。BJ8-03-91GGC,GeoB10067-3和GeoB10065-7叶蜡脂肪酸δ13C[48]。苏门答腊岛北部Pea Sim-sim沼泽沉积物木本花粉比例[49]。苏拉威西岛Wanda沼泽沉积物禾本花粉比例[50]。
Figure 4. The vegetation distribution on Sundaland during the LGM
δ13C values of insect cuticles for Gangub, Batu and Niah guano deposits and δ13C values of C31 n-alkanes for Makangit deposit[10]. ACL results from site MD 05-2894 leaf wax n-alkanes. Woody plant pollen proportion of site 17964[11].Woody plant pollen proportion of site 18323[13].δ13C of vascular plant fatty acids from BJ8-03-91GGC, GeoB10067-3 and GeoB10065-7[48]. Woody plant pollen percentage of swamp Pea Sim-sim sediments in northern Sumatra[49]. Woody plant pollen proportion of swamp Wanda sediments in Sulawesi[50].
图 5 LGM东南亚植被分布假说图
图a为早期植被分布假说图[8-9],图b为本文提出的假说。浅灰色代表草本植被扩张,深灰色代表雨林。五角星为本研究站位MD 05-2894,圆点代表沉积物有机碳同位素研究结果,正方形代表孢粉研究结果;红色(绿色)代表植被类型为草本扩张的开放植被(封闭热带雨林)。黑色虚线代表50 m水深线,黑色实线代表海平面下降120 m时海岸线分布。蓝色实线代表现代热带低地雨林分布,蓝色虚线代表本文预测LGM时热带雨林分布。黄色虚线框代表无数据记录。
Figure 5. Map of Southeast Asia land-sea distribution during the LGM estimated from the 120 m bathymetric line
a represents earlier proposed hypothesis[8-9], our hypothesis is outlined in b. Open vegetation and rainforest are indicated by light gray and dark gray shading. Star represent our study site MD 05-2894, circles indicate organic carbon isotope research, squares indicate pollen result; red (green) indicates open vegetation (closed rainforest). Black dashed line indicates the 50 m bathymetric line, while the black solid line indicates the land-sea distribution during LGM estimated from the 120 m bathymetric line. Blue solid line is temporary tropical lowland forest distribution while blue dashed line indicates rainforest distribution estimated from our research. Yellow dashed square represents no record studied yet.
表 1 MD 05-2894站AMS 14C年龄
Table 1 AMS 14C Age of site MD 05-2894
深度/cm AMS 14C年龄/aBP(±1σ) 日历年龄/aBP 备注 5.5 3 390±30 3 261±50 本研究 62.5 5 010±35 5 366±51 据文献[29] 104.5 6 765±40 7 295±47 据文献[29] 113.5 9 140±40 9 909±105 本研究 125.5 9 910±30 10 866±85 本研究 140.5 10 825±45 12 325±121 据文献[29] 159.5 12 020±40 13 457±60 本研究 188.5 13 195±50 15 237±78 据文献[29] 214.5 13 285±45 15 368±108 据文献[29] 284.5 13 785±50 16 102±94 据文献[29] 368.5 14 890±65 17 657±111 据文献[29] 418.5 16 150±50 18 983±70 本研究 519.5 17 550±60 20 678±100 本研究 619.5 17 040±70 20 072±110 本研究 -
[1] Myers N, Mittermeier R A, Mittermeier C G, et al. Biodiversity hotspots for conservation priorities [J]. Nature, 2000, 403(6772): 853-858. doi: 10.1038/35002501
[2] Woodruff D S. Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity [J]. Biodiversity and Conservation, 2010, 19(4): 919-941. doi: 10.1007/s10531-010-9783-3
[3] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica [J]. Nature, 1999, 399(6735): 429-436. doi: 10.1038/20859
[4] Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide [J]. Nature, 2000, 407(6806): 859-869. doi: 10.1038/35038000
[5] Montenegro A, Eby M, Kaplan J O, et al. Carbon storage on exposed continental shelves during the glacial‐interglacial transition [J]. Geophysical Research Letters, 2006, 33(8): L08703.
[6] Otto D, Rasse D, Kaplan J, et al. Biospheric carbon stocks reconstructed at the Last Glacial Maximum: comparison between general circulation models using prescribed and computed sea surface temperatures [J]. Global and Planetary Change, 2002, 33(1-2): 117-138. doi: 10.1016/S0921-8181(02)00066-8
[7] Hoogakker B A A, Smith R S, Singarayer J S, et al. Terrestrial biosphere changes over the last 120 kyr [J]. Climate of the Past Discussions, 2015, 11(2): 1031-1091. doi: 10.5194/cpd-11-1031-2015
[8] Heaney L R. A synopsis of climatic and vegetational change in Southeast Asia [J]. Climatic Change, 1991, 19(1-2): 53-61. doi: 10.1007/BF00142213
[9] Gathorne-Hardy F J, Syaukani, Davies R G, et al. Quaternary rainforest refugia in South-East Asia: using termites (Isoptera) as indicators [J]. Biological Journal of the Linnean Society, 2002, 75(4): 453-466. doi: 10.1046/j.1095-8312.2002.00031.x
[10] Wurster C M, Bird M I, Bull I D, et al. Forest contraction in north equatorial Southeast Asia during the Last Glacial Period [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(35): 15508-15511. doi: 10.1073/pnas.1005507107
[11] Sun X J, Li X, Luo Y L, et al. The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 160(3-4): 301-316. doi: 10.1016/S0031-0182(00)00078-X
[12] Hope G, Kershaw A P, van der Kaars S, et al. History of vegetation and habitat change in the Austral-Asian region [J]. Quaternary International, 2004, 118-119: 103-126. doi: 10.1016/S1040-6182(03)00133-2
[13] Wang X M, Sun X J, Wang P X, et al. Vegetation on the Sunda shelf, South China Sea, during the last glacial maximum [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 278(1-4): 88-97. doi: 10.1016/j.palaeo.2009.04.008
[14] Cannon C H, Morley R J, Bush A B G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27): 11188-11193. doi: 10.1073/pnas.0809865106
[15] Raes N, Cannon C H, Hijmans R J, et al. Historical distribution of Sundaland's Dipterocarp rainforests at Quaternary glacial maxima [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16790-16795. doi: 10.1073/pnas.1403053111
[16] Eglinton G, Hamilton R J. Leaf epicuticular waxes [J]. Science, 1967, 156(3780): 1322-1335. doi: 10.1126/science.156.3780.1322
[17] Schwark L, Zink K, Lechterbeck J. Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments [J]. Geology, 2002, 30(5): 463-466. doi: 10.1130/0091-7613(2002)030<0463:ROPTEH>2.0.CO;2
[18] Schefuß E, Schouten S, Schneider R R. Climatic controls on central African hydrology during the past 20, 000?years [J]. Nature, 2005, 437(7061): 1003-1006. doi: 10.1038/nature03945
[19] Rommerskirchen F, Eglinton G, Dupont L, et al. A north to south transect of Holocene southeast Atlantic continental margin sediments: relationship between aerosol transport and compound-specific δ13C land plant biomarker and pollen records [J]. Geochemistry, Geophysics, Geosystems, 2013, 4(12): 1101.
[20] Cranwell P A. Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment [J]. Organic Geochemistry, 1981, 3(3): 79-89. doi: 10.1016/0146-6380(81)90002-4
[21] Yan X H, Ho C R, Zheng Q A, et al. Temperature and size variabilities of the Western pacific warm pool [J]. Science, 1992, 258(5088): 1643-1645. doi: 10.1126/science.258.5088.1643
[22] Moerman J W, Cobb K M, Adkins J F, et al. Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology [J]. Earth and Planetary Science Letters, 2013, 369-370: 108-119. doi: 10.1016/j.jpgl.2013.03.014
[23] Lea D W, Pak D K, Spero H J. Climate impact of late quaternary equatorial pacific sea surface temperature variations [J]. Science, 2000, 289(5485): 1719-1724. doi: 10.1126/science.289.5485.1719
[24] Hanebuth T J J, Voris H K, Yokoyama Y, et al. Formation and fate of sedimentary depocentres on Southeast Asia’s Sunda Shelf over the past sea-level cycle and biogeographic implications [J]. Earth-Science Reviews, 2011, 104(1-3): 92-110. doi: 10.1016/j.earscirev.2010.09.006
[25] Molengraaff G A F. Modern deep-sea research in the East Indian archipelago [J]. The Geographical Journal, 1921, 57(2): 95-118. doi: 10.2307/1781559
[26] Solihuddin T. A drowning Sunda shelf model during Last Glacial Maximum (LGM) and Holocene: a review [J]. Indonesian Journal on Geoscience, 2014, 1(2): 99-107.
[27] Voris H K. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations [J]. Journal of Biogeography, 2000, 27(5): 1153-1167. doi: 10.1046/j.1365-2699.2000.00489.x
[28] Laj C, Wang P, Balut Y. MD147-Marco Polo IMAGES XII Cruise Report[R]. France: Institut Paul-Emile Victor, 2005: 36-38.
[29] 安阳, 翦知湣. 末次冰消期南海南部的普林虫低值事件[J]. 科学通报, 2009, 54(17):2527-2532. [30] Reimer P J, Baillie M G L, Bard E, et al. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50 000 Years cal BP [J]. Radiocarbon, 2009, 51(4): 1111-1150. doi: 10.1017/S0033822200034202
[31] Marzi R, Torkelson B E, Olson R K. A revised carbon preference index [J]. Organic Geochemistry, 1993, 20(8): 1303-1306. doi: 10.1016/0146-6380(93)90016-5
[32] Collister J W, Rieley G, Stern B, et al. Compound-specific δ 13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms [J]. Organic Geochemistry, 1994, 21(6-7): 619-627. doi: 10.1016/0146-6380(94)90008-6
[33] Cranwell P A. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change [J]. Freshwater Biology, 1973, 3(3): 259-265. doi: 10.1111/j.1365-2427.1973.tb00921.x
[34] Zech M, Zech R, Morrás H, et al. Late Quaternary environmental changes in Misiones, subtropical NE Argentina, deduced from multi-proxy geochemical analyses in a palaeosol-sediment sequence [J]. Quaternary International, 2009, 196(1-2): 121-136. doi: 10.1016/j.quaint.2008.06.006
[35] Vogts A, Schefuß E, Badewien T, et al. n-Alkane parameters from a deep sea sediment transect off southwest Africa reflect continental vegetation and climate conditions [J]. Organic Geochemistry, 2012, 47: 109-119. doi: 10.1016/j.orggeochem.2012.03.011
[36] Vogts A, Moossen H, Rommerskirchen F, et al. Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species [J]. Organic Geochemistry, 2009, 40(10): 1037-1054. doi: 10.1016/j.orggeochem.2009.07.011
[37] Pelejero C. Terrigenous n-alkane input in the South China Sea: high-resolution records and surface sediments [J]. Chemical Geology, 2003, 200(1-2): 89-103. doi: 10.1016/S0009-2541(03)00164-5
[38] Hu J F, Peng P A, Fang D Y, et al. No aridity in Sunda Land during the last glaciation: evidence from molecular-isotopic stratigraphy of long-chain n-alkanes [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 201(3-4): 269-281. doi: 10.1016/S0031-0182(03)00613-8
[39] Li L, Li Q Y, Tian J, et al. Low latitude hydro-climatic changes during the Plio-Pleistocene: evidence from high resolution alkane records in the southern South China Sea [J]. Quaternary Science Reviews, 2013, 78: 209-224. doi: 10.1016/j.quascirev.2013.08.007
[40] Hanebuth T, Stattegger K, Grootes P M. Rapid flooding of the Sunda shelf: a late-glacial sea-level record [J]. Science, 2000, 288(5468): 1033-1035. doi: 10.1126/science.288.5468.1033
[41] Pelejero C, Kienast M, Wang L J, et al. The flooding of Sundaland during the last deglaciation: imprints in hemipelagic sediments from the southern South China Sea [J]. Earth and Planetary Science Letters, 1999, 171(4): 661-671. doi: 10.1016/S0012-821X(99)00178-8
[42] Liu Z F, Zhao Y L, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea [J]. Earth-Science Reviews, 2016, 153: 238-273. doi: 10.1016/j.earscirev.2015.08.005
[43] Jiwarungrueangkul T, Liu Z F, Zhao Y L. Terrigenous sediment input responding to sea level change and East Asian monsoon evolution since the last deglaciation in the southern South China Sea [J]. Global and Planetary Change, 2019, 174: 127-137. doi: 10.1016/j.gloplacha.2019.01.011
[44] Partin J W, Cobb K M, Adkins J F, et al. Millennial-scale trends in West Pacific warm pool hydrology since the last glacial maximum [J]. Nature, 2007, 449(7161): 452-455. doi: 10.1038/nature06164
[45] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 2001, 294(5550): 2345-2348. doi: 10.1126/science.1064618
[46] Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon [J]. Science, 2004, 304(5670): 575-578. doi: 10.1126/science.1091220
[47] Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth [J]. Astronomy and Astrophysics, 2004, 428(1): 261-285. doi: 10.1051/0004-6361:20041335
[48] Dubois N, Oppo D W, Galy V V, et al. Indonesian vegetation response to changes in rainfall seasonality over the past 25 000 years [J]. Nature Geoscience, 2014, 7(7): 513-517. doi: 10.1038/ngeo2182
[49] Maloney B K. Pollen analytical evidence for early forest clearance in North Sumatra [J]. Nature, 1980, 287(5780): 324-326. doi: 10.1038/287324a0
[50] Hope G. Environmental change in the Late Pleistocene and later Holocene at Wanda site, Soroako, South Sulawesi, Indonesia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 171(3-4): 129-145. doi: 10.1016/S0031-0182(01)00243-7
[51] Kershaw A P, van der Kaars S, Flenle J R. The quaternary history of Far Eastern rainforests[M]//Bush M B, Flenley J R. Tropical Rainforest Responses to Climatic Change. Berlin, Heidelberg: Springer, 2007.
[52] Clement A C, Seager R, Cane M A. Orbital controls on the El Niño/Southern Oscillation and the tropical climate [J]. Paleoceanography, 1999, 14(4): 441-456. doi: 10.1029/1999PA900013
[53] DiNezio P N, Tierney J E. The effect of sea level on glacial Indo-Pacific climate [J]. Nature Geoscience, 2013, 6(6): 485-491. doi: 10.1038/ngeo1823