Response of alluvial fans to climatic changes and fault activities in the north front of South Yongchang Mountains, Northeast margin of Tibet Plateau
-
摘要: 永昌南山位于河西走廊东段,北麓受丰乐断裂控制。丰乐断裂是祁连山东北缘冲断带的重要组成部分, 其晚第四纪活动地表行迹西起西大河东到西营河,2期普遍发育地貌面被错断并形成明显断层陡坎。用无人机对杜家团庄、周家庄、西营河河口3个地点进行航空测量,生成数字高程模型(DEM),提取各阶地和洪积扇的断层陡坎剖面,并对断层上下盘面进行线性拟合,计算得到了不同位置的垂直断距。在杜家团庄洪积扇T1和东大河阶地T3砾石层顶部采集黄土样品,用光释光方法测得年龄分别为(19.30±2.45)ka和(27.40±2.47)ka,结合前人测年结果,认为永昌南山北麓普遍发育的两期地貌面年龄分别为19.3~16.3ka和29.9~27.4ka,两期地貌面均形成于气候由冷变暖的过渡阶段。利用地貌面陡坎的位错量和年代数据,得到晚更新世以来丰乐断裂在杜家团庄处的垂直滑动速率为0.65~0.82mm/a,在周家庄处的垂直滑动速率为0.60~0.76mm/a,在西营河河口处的垂直滑动速率为1.99~2.56mm/a。Abstract: Abstract: The South Yongchang Mountains are located in the east part of the Hexi Corridor and controlled by the Fengle fault in the north. The Fengle fault, an important one of the Qilian Mountains thrust belt on the northern east margin of the Tibet Plateau, stretches from the Xida River in the west to the Xiying River in the east. Two surfaces of the Late Quaternary alluvial fans are cut off by the fault and formed fault scarps. Unmanned aerial vehicle (UAV) scanning was implemented to generate the Digital Elevation Model (DEM) for the alluvial fans in the Dujiatuan village, Zhoujia village and the terraces of Xiying River in mountain estuary. Linear regressions were performed both on hanging wall and foot wall of the fault to obtain the offsets. Loess samples, collected from T1, the top of gravel layer of the Dujiatuan village alluvial fan and Dongda river terrace T3, were dated by stimulated luminescence (OSL), and ages of 19.30±2.45ka and 27.40±2.47ka are gained. Combining with published dating ages, the ages of the 2 alluvial fans in the north front of the South Yongchang Mountains are suggested to be 19.3~16.3ka and 29.9~27.4ka, respectively, formed during the transition from cold to warm climate. Based on the offsets and dating results, we obtained that since the last stage of the Late Pleistocene, the vertical slip rate of the Fengle fault in the Dujiatuan village, Zhoujia village and Xiying river estuary are 0.65~0.82, 0.60~0.76 and 1.99~2.56mm/a respectively.
-
Keywords:
- alluvial fan /
- Fengle fault /
- vertical slip rate /
- climatic change /
- Qilian Mountains
-
自新生代以来,印度板块向北俯冲,造成青藏高原的剧烈隆升[1]。青藏高原的隆升不仅对自身及周边区域的地貌和自然环境产生影响,也影响着全球气候变化,同时全球气候变化也不断影响着青藏高原的地貌形态[2-4]。祁连山位于青藏高原东北缘,受青藏高原向北挤压和变形的影响,是中国西北活动构造变形特征最敏感、构造活动和地震运动最剧烈的地区之一[5, 6]。祁连山的抬升形成了众多层状地貌,如夷平面、阶地和洪积扇等[7-9]。构造活动和气候变化是影响洪积扇发育的主要因素[10-12],构造抬升的影响表现在控制河流差异下切的幅度,而气候变化主要通过影响河流流量和泥沙供给量来控制河流下切或堆积[13, 14]。洪积扇对于构造活动或气候变化反应十分灵敏,使其成为研究构造活动和气候变化的重要物质载体[15-18]。
永昌南山位于河西走廊东段,北麓洪积扇发育,但相关研究缺乏。本文通过卫星影像、野外调查、无人机航测、光释光测年等方法来分析洪积扇形成时间、期次、对应气候变化以及丰乐断裂垂直滑动速率,对于弥补祁连山东北缘区域研究薄弱环节和服务区域发展有着重要意义。
1. 研究区概况
1.1 地质地貌背景
河西走廊位于祁连山构造带与阿拉善地块之间(图 1),南侧发育祁连山北缘断裂带,北侧山麓发育多条南缘断裂[1]。河西走廊南缘的多组逆冲断裂及其NNW向构造隆起将河西走廊盆地分割成4个次级盆地,自西向东依次为酒西盆地、酒东盆地、张掖盆地和武威盆地。祁连山北缘山麓地带广泛发育洪积扇,前人已做过许多研究[15, 19-23]。Hu等[19]利用光释光测年法获得金塔河阶地T2年龄为(34±3)ka;Pan等[15]利用光释光测年法获得黄羊河阶地T3年龄为(28.1±3.0)ka;Palumbo等[20]利用10Be测年法获得榆木山中部阶地T1年龄为(15.5±2.3)ka,洪积扇T2年龄为(35.1±2.3)ka;Hetzel等[21]利用10Be测年法获得张掖断裂东段洪积扇年龄为(31±5)ka;杨海波[22]利用10Be测年法获得丰乐河阶地T3年龄为(16.33±0.30)ka;李安等[23]利用10Be测年法获得玉门断裂东段洪积扇T2年龄为(26.5±2.9)ka。杨海波[22]统计发现祁连山北缘在(38±7)ka和(15±3)ka普遍发育两期地貌面。
前人对位于祁连山北缘的断裂开展了很多研究[23-31]。闵伟等[25]和李安等[23]得到玉门断裂全新世以来的垂直滑动速率为0.25~0.49mm/a。杨海波等[26]获得佛洞庙-红崖子断裂垂直滑动速率约为1.1mm/a。郑文俊等[27]和Palumbo等[20]获得榆木山断裂全新世以来垂直滑动速率0.5~0.8mm/a。艾晟等[28]获得全新世以来武威盆地南缘断裂垂直滑动速率约为0.44mm/a。雷惊昊等[29]得出晚更新世以来民乐-大马营断裂滑动速率约为0.91mm/a。统计分析,祁连山北缘断裂带晚更新世以来的运动学速率,在空间分布上展现中间大、两端小的特点[18, 30, 31]。
丰乐断裂是一条位于永昌南山北麓的逆冲断裂,为祁连山北缘断裂带向北部盆地扩展的前锋带。丰乐断裂晚第四纪活动地表行迹西起西大河,向东延伸,经新城子镇、杜家团庄、周家庄、石家园子至西营河,长度约80km(图 2)。永昌南山北麓主要发育3期洪积扇,最新一期为现代洪积扇。丰乐断裂错断永昌南山北麓普遍发育的两期早期洪积扇。Champagnac等[32]计算得丰乐断裂30ka以来垂直滑动速率约为2.8mm/a。Hu等[19]认为滑动速率偏大,可能是地貌年龄偏大所致。Hetzel[33]认为是Champagnac实测断层陡坎高度偏大导致。本文通过卫星影像解译、无人机航测、年代样品测试和断层剖面测量等工作来厘定丰乐断裂晚更新世以来的垂直滑动速率。
1.2 气候背景
前人的研究认为河西走廊西段主要受西风带控制,而河西走廊东段可受亚洲夏季风的影响[34]。武威盆地属温带大陆性干旱气候,气候干燥,夏季太阳辐射较为强烈,日照时间长,昼夜温差大,降雨集中在每年6—9月,8月最多。武威年平均气温7.7℃,平均气温年较差29.4℃,年平均蒸发量2163.6mm,年平均降水量212.2mm。由于蒸发量远大于降水量,武威盆地的水资源主要来源于祁连山区降水和冰雪融水补给。区域内的主要河流有东大河、西营河、石羊河等河流,其他河流大多源近流短,出山后消失在冲、洪积扇附近。
姚檀栋等[35]根据古里雅冰心,将末次间冰期以来的气候分为5个阶段,分别是MIS5末次间冰期125~75ka、MIS4早冰盛期75~58ka、MIS3间冰期58~31ka、MIS2末次冰盛期31~16ka、MIS1冰消期约15ka至今,通过与格陵兰冰心和南极冰心对比,认为重大气候事件是全球范围发生,而不同地区气温变化幅度可能不尽相同。郑绵平等[36]通过对青藏高原湖区研究,认为在约40~30ka青藏高原及以北腾格里沙漠都出现高湖面,存在特强的南亚夏季风。在末次冰盛期气候相对干冷,进入15~13ka,气候波状回升,湿度较高,冰雪融水增加[37, 38]。
2. 材料与方法
2.1 样品采集及测定
在东大河阶地T3和杜家团庄洪积扇T1砾石层与上覆黄土层交界部位采集黄土样品(图 2)。采样前先剥去剖面至少30cm厚度的黄土,然后在20cm×5cm的钢管一端塞上黑色塑料袋并与剖面接触,从另一端用锤将钢管垂直砸入新鲜剖面中,取出钢管时用黑色塑料袋塞紧里端,然后用锡箔纸包裹两端,最后用胶带封紧。
样品光释光分析测试按照前处理、光释光等效剂量(ED)和环境剂量率测试、数据处理4个部分进行,由地壳动力学重点实验室(中国地震局地壳应力研究所)完成。
2.2 DEM获取
利用Phantom 4 Pro四旋翼无人机系统对杜家团庄、周家庄洪积扇和西营河出山口阶地进行数据采集。该无人机系统相机配备1英寸2000万像素影像传感器,保证了影像分辨率高、畸变小以及色彩还原度高的特性。在开始采集影像数据之前,在每个测图区域均匀布设了9~11个地面控制点,之后使用Trimble Geo7X差分GPS进行了实测,浮动测量精度在厘米级。航测在晴朗弱风的天气下进行,以保证飞机的稳定性并更好地保留地物的光学纹理特性[39]。室内处理步骤:①将航拍影像导入Photoscan软件,剔除模糊、光照不佳的照片,对齐照片;②导入地面控制点坐标,并对照片中自动检测出的控制点标志位置进行校正,再次对齐照片;③生成密集点云;④生成网格;⑤生成DEM和DOM。本文所采集的三个地区DEM数据中,杜家团庄区域9个控制点的平均高程误差为0.61m,DEM分辨率为8.78cm/pix;周家庄区域10个控制点的平均高程误差为0.59m,DEM分辨率为10.4cm/pix;西营河出山口区域9个控制点的平均高程误差为0.32m,DEM分辨率为8.52cm/pix。本文所测数据精度和分辨率完全可以反映真实地貌特征,达到提取复杂地貌信息的要求。
3. 结果
3.1 地貌面分期
永昌南山北麓发育2级西营河阶地和3期洪积扇。阶地从新到老依次为T1—T2,洪积扇面从新到老依次为T0—T2,T0为现代洪积扇。洪积扇总体坡度约为2°~6°,3期洪积扇在山麓地带普遍发育,连续分布。本文基于遥感影像和野外调查,并通过无人机对杜家团庄处洪积扇(图 3)、周家庄洪积扇(图 4)和西营河河口西侧阶地(图 5)进行航空测量,详细展示研究区地貌面分布。
3.2 地貌面年龄
Champagnac等[32]用10Be剖面法对西营河河口西侧阶地测年,获得T2年龄为(29.9±7.8)ka,T1年龄为(16.3±4.4)ka。本文在砾石层与上覆黄土层交界部位采集黄土样品,样品沉积年代被认为与阶地或洪积扇废弃的年代相同,并被视为阶地和洪积扇形成的年代。杜家团庄洪积扇T1采样点位于丰乐断裂上盘,保存较好的扇中部位;东大河T3阶地采样点位于丰乐断裂上盘,虽然距离断层稍远但阶地连续且剖面出露较好,可以代表被错断阶地的年代,光释光测试结果如表 1。祁连山北缘部分地貌面测年数据汇总见表 2。根据气候曲线比对结果,认为研究区洪积扇T1和西营河阶地T1为19.3~16.3ka形成的同一期地貌面,洪积扇T2、西营河阶地T2和东大河阶地T3为29.9~27.4ka形成的同一期地貌面。
表 1 杜家团庄洪积扇T1和东大河阶地T3测年数据Table 1. Dating results of alluvial fan T1 in Dujiatang village and Dongda River terrace T3编号 U/(Bq/kg) Th/(Bq/kg) Ra/(Bq/kg) K/(Bq/kg) 环境剂量率/ (Gy/ka) 等效剂量/Gy 年龄/ka 杜家团庄洪积扇T1 52.52±1.71 103.88±3.50 710.16±38.15 35.58±9.46 6.31±0.45 121.75±12.61 19.30±2.45 东大河T3 44.24±1.44 61.37±2.17 552.48±29.80 44.54±10.83 4.53±0.32 124.16±6.62 27.40±2.47 表 2 祁连山北缘地貌面测年数据Table 2. Dating results of alluvial surfaces in the north of Qilian Mountains样品坐标 采样地层 年龄/ka 测年方法 资料来源 杜家团庄 杜家团庄洪积扇T1 19.30±2.45 OSL 本文 东大河 东大河T3 27.40±2.47 OSL 本文 西营河 西营河T1 16.3±4.4 10Be [32] 西营河 西营河T2 29.9±7.8 10Be [32] 西大河 阶地T2 30.79±6.15 TL [40] 金塔河 阶地T2 34±3 OSL [24] 古浪河 阶地T2 19.2±1.5 OSL [15] 黄羊河 阶地T3 28.1±3.0 OSL [15] 童子坝河 阶地T5 16.70±1.81 14C [18] 丰乐河 阶地T3 16.33±0.30 10Be [26] 石油河 阶地T2 29 TL [41] 石油河 阶地T3 19 TL [41] 榆木山中部 阶地T1 15.5±2.3 10Be [31] 榆木山中部 洪积扇T2 35.1±2.3 10Be [31] 张掖断裂东段 洪积扇 31±5 10Be [6] 玉门断裂东段 洪积扇T2 26.5±2.9 10Be [23] 3.3 断层垂直断距
在杜家团庄断层陡坎处开挖探槽,探槽底部据下盘地貌面3m,探槽剖面中上盘砾石层出露,而下盘砾石层未出露,因此本文所测地貌面陡坎高度代表的是断层最小垂直断距。
在东大河东侧杜家团庄处,断层错断两期洪积扇T1和T2。通过在DEM(图 3B)上提取多条断层陡坎剖面线,并对断层上下盘分别进行线性拟合,测得洪积扇T2上陡坎平均高度(17.62±1.07)m(图 6A),洪积扇T1上陡坎平均高度(12.46±0.46)m(图 6B),现今的洪积扇面T0上未发现陡坎。
在周家庄处,断层错断两期洪积扇T1和T2。在正射影像上将洪积扇划分3期,在洪积扇T1、T2上提取多条断层陡坎横剖面(图 4C),并对断层上下盘分别进行线性拟合,测得洪积扇面(T2)上断层陡坎平均高度约为(24.20±3.14)m(图 7A),洪积扇面(T1)上断层陡坎平均高度约为(11.48±1.73)m (图 7B),现今的洪积扇面T0上未发现陡坎。周家庄洪积扇位于东大河右岸2km处,陡坎上下盘剖面出露扇物质,剖面未见东大河物质。因此本文认为该处陡坎主要是由断裂活动形成,受东大河影响可能性小。
在西营河出山口西侧,断层错断两级阶地T1和T2。Champagnac等[32]测得阶地T2断层陡坎高度为96.4m,阶地T1断层陡坎高度为40.1m。Hetzel[33]认为Champagnac断层陡坎测量数据偏大。本文利用无人机航测生成3D影像模型(图 5C),并在1:50000 DEM上提取多条断层陡坎横剖面线。通过对两级错断阶地上下盘分别进行线性拟合,得到阶地T2断层陡坎平均高度(85.89±2.38)m(图 8A),阶地T1断层陡坎平均高度(37.97±2.38)m(图 8B)。Champagnac[32]所测阶地T2陡坎高度比本文所测数据高10.51m,测量结果相对较大,阶地T1陡坎高度与本文所测结果基本一致。本文根据本次测量结果进行区域断裂活动性评价。
4. 讨论
4.1 永昌南山北麓地貌面下切与气候变化关系
Thompson等[42]将格陵兰冰心、古里雅冰心和南极冰心所测成分对比,得出所测成分随时间变化曲线(图 9)。在MIS2阶段, 格陵兰冰心18 O和CH4、古里雅冰心18 O、南极冰心CH4含量均较低,出现全球范围冰期。但29.9~27.4ka为冰阶向间冰阶过渡阶段,格陵兰冰心18O和CH4、南极冰心CH4含量上升,气温变暖。此时期冰雪融水增加,河流流量增大,河流侵蚀下切能力增强,形成东大河阶地T3、西营河阶地T2和永昌南山北麓洪积扇T2。
图 9 永昌南山北麓地貌面形成时段与其他古气候记录对比A.格陵兰冰芯记录132ka年以来,18O(蓝)和CH4(红)含量变化,亮蓝色虚线表示110ka年前受冰盖变形影响的记录,古里雅冰芯记录110ka年以来18O含量变化;B.古里雅冰芯18O含量变化与格陵兰冰芯CH4含量和南极冰芯粉尘(蓝)、甲烷(红)和二氧化碳(黑)含量变化趋势相同;C.表示5d阶段同位素随时间变化连续性Figure 9. Comparison of abandoned period of the alluvial fan in the north front of South Yongchang Mountains with other paleoclimatic recordsA. The GISP2 δ18O (blue) and CH4 records (red) are shown with time for the past 132ka. The record is compromised by ice deformation below 110 ka, as shown by the light blue dotted line. The Guliya δ18O record over the past 110 ka. B. is matched to the GISP2 CH4 record over the past 110 ka. The Guliya record is also compared to the Vostok δD (blue), CH4 (red) and CO2 (black). C. which display temporal continuity below isotope Stage 5d.19.3~16.3ka是末次冰盛期向冰消期过渡阶段,格陵兰冰芯18 O和CH4、南极冰芯18 O和CH4、古里雅冰芯18 O含量均上升,此时气候逐渐变暖,冰雪融水增加,河流流量增大,河流侵蚀下切能力增强,下切形成西营河阶地T1和永昌南山北麓洪积扇T1。
本文所测阶地及洪积扇年龄和气候变化事件比对吻合,都形成于冰期向间冰期或冰阶向间冰阶气候过渡阶段,此时期温度升高、冰雪融水增多、河流流量增大,下切侵蚀能力增强,利于阶地和洪积扇的形成发育。本文认为研究区阶地和洪积扇为气候成因。阶地T2和洪积扇T2在29.9~27.4ka冰阶向间冰阶过渡阶段形成,阶地T1和洪积扇T1在19.3~16.3ka末次冰盛期向冰消期过渡阶段形成。
4.2 垂直滑动速率
研究区地貌面T1年龄上限为(19.30±2.45)ka,年龄下限为(16.3±4.4)ka,所测断层陡坎高度为最小垂直断距。杜家团庄洪积扇T1平均陡坎高度为(12.46±0.46)m,算得该处晚更新世以来垂直滑动速率为0.65~0.82mm/a。周家庄洪积扇T1平均陡坎高度为(11.48±1.73)m,计算得该处晚更新世以来的垂直滑动速率为0.60~0.76mm/a。西营河河口西侧阶地T1平均陡坎高度为(37.97±2.38)m,计算得该处晚更新世以来的垂直滑动速率为1.99~2.56mm/a。
5. 结论
(1) 永昌南山北麓在19.3~16.3和29.9~27.4ka发育两期地貌面,主要在冰期向间冰期或冰阶向间冰阶过渡、气候由冷变暖过程中形成。
(2) 晚更新世以来丰乐断裂在杜家团庄处的垂直滑动速率为0.65~0.82mm/a,在周家庄处的垂直滑动速率为0.60~0.76mm/a,在西营河河口处的垂直滑动速率为1.99~2.56mm/a。丰乐断裂在西营河河口的活动性远远大于其在杜家团庄和周家庄的活动性。
(3) 丰乐断裂在西营河河口活动性增大的原因:民乐-大马营断裂在丰乐断裂西端消失,丰乐断裂补偿构造分量。
致谢: 感谢地震局地壳应力研究所对本文样品年龄测试的辛劳付出! -
图 9 永昌南山北麓地貌面形成时段与其他古气候记录对比
A.格陵兰冰芯记录132ka年以来,18O(蓝)和CH4(红)含量变化,亮蓝色虚线表示110ka年前受冰盖变形影响的记录,古里雅冰芯记录110ka年以来18O含量变化;B.古里雅冰芯18O含量变化与格陵兰冰芯CH4含量和南极冰芯粉尘(蓝)、甲烷(红)和二氧化碳(黑)含量变化趋势相同;C.表示5d阶段同位素随时间变化连续性
Figure 9. Comparison of abandoned period of the alluvial fan in the north front of South Yongchang Mountains with other paleoclimatic records
A. The GISP2 δ18O (blue) and CH4 records (red) are shown with time for the past 132ka. The record is compromised by ice deformation below 110 ka, as shown by the light blue dotted line. The Guliya δ18O record over the past 110 ka. B. is matched to the GISP2 CH4 record over the past 110 ka. The Guliya record is also compared to the Vostok δD (blue), CH4 (red) and CO2 (black). C. which display temporal continuity below isotope Stage 5d.
表 1 杜家团庄洪积扇T1和东大河阶地T3测年数据
Table 1 Dating results of alluvial fan T1 in Dujiatang village and Dongda River terrace T3
编号 U/(Bq/kg) Th/(Bq/kg) Ra/(Bq/kg) K/(Bq/kg) 环境剂量率/ (Gy/ka) 等效剂量/Gy 年龄/ka 杜家团庄洪积扇T1 52.52±1.71 103.88±3.50 710.16±38.15 35.58±9.46 6.31±0.45 121.75±12.61 19.30±2.45 东大河T3 44.24±1.44 61.37±2.17 552.48±29.80 44.54±10.83 4.53±0.32 124.16±6.62 27.40±2.47 表 2 祁连山北缘地貌面测年数据
Table 2 Dating results of alluvial surfaces in the north of Qilian Mountains
样品坐标 采样地层 年龄/ka 测年方法 资料来源 杜家团庄 杜家团庄洪积扇T1 19.30±2.45 OSL 本文 东大河 东大河T3 27.40±2.47 OSL 本文 西营河 西营河T1 16.3±4.4 10Be [32] 西营河 西营河T2 29.9±7.8 10Be [32] 西大河 阶地T2 30.79±6.15 TL [40] 金塔河 阶地T2 34±3 OSL [24] 古浪河 阶地T2 19.2±1.5 OSL [15] 黄羊河 阶地T3 28.1±3.0 OSL [15] 童子坝河 阶地T5 16.70±1.81 14C [18] 丰乐河 阶地T3 16.33±0.30 10Be [26] 石油河 阶地T2 29 TL [41] 石油河 阶地T3 19 TL [41] 榆木山中部 阶地T1 15.5±2.3 10Be [31] 榆木山中部 洪积扇T2 35.1±2.3 10Be [31] 张掖断裂东段 洪积扇 31±5 10Be [6] 玉门断裂东段 洪积扇T2 26.5±2.9 10Be [23] -
[1] 国家地震局地质研究所.祁连山-河西走廊活动断裂系[M].北京: 地震出版社, 1993. Institute of Geology, China Earthquake Administration. Qilian Mountain Hexi Corridor Active Fault System[M]. Seismological Press, 1993.
[2] An Z S, John E K, Warren L P, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66. doi: 10.1038/35075035
[3] Kent D V, Muttoni G. Equatorial convergence of India and early Cenozoic climate trends[C]//Proceedings of the National Academy of Sciences of the United States of America. 2008, 105(42): 16065-16070.
[4] Liu X D, Dong B W. Influence of the Tibetan Plateau uplift on the Asian monsoon-arid environment evolution[J]. Chinese Science Bulletin, 2013, 58(34): 4277-4291. doi: 10.1007/s11434-013-5987-8
[5] Tapponnier P, Meyer B, Avouac J P, et al. Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet[J]. Earth and Planetary Science Letters, 1990, 97: 382-403. doi: 10.1016/0012-821X(90)90053-Z
[6] Hetzel R. Late Pleistocene/Holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau[J]. Tectonics, 2004, 23: TC6006, DOI: 1029/2004TC001653.
[7] 李有利, 杨景春.河西走廊平原区全新世河流阶地对气候变化的响应[J].地理科学, 1997, 17(3): 248-252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700043925 LI Youli, YANG Jingchun. Response of alluvial terraces to Holocene climatic changes in the Hexi Corridor basins, Gansu, China[J].Scientia Geographica Sinica, 1997, 17(3): 248-252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700043925
[8] 潘保田, 邬光剑, 王义祥, 等.祁连山东段沙沟河阶地的年代与成因[J].科学通报, 2000, 45(24): 2669-2675. doi: 10.3321/j.issn:0023-074X.2000.24.019 PAN Baotian, WU Guangjian, WANG Yixiang, et al. Age and genesis of the Shagou River terraces in eastern Qilian Mountains[J]. Chinese Science Bulletin, 2000, 45(24): 2669-2675. doi: 10.3321/j.issn:0023-074X.2000.24.019
[9] 潘保田, 高红山, 李炳元, 等.青藏高原层状地貌与高原隆升[J].第四纪研究, 2004, 24(1): 50-57. doi: 10.3321/j.issn:1001-7410.2004.01.006 PAN Baotian, GAO Hongshan, LI Bingyuan, et al. Step-Like landforms and uplift of the Qinghai-Xizang Plateau[J]. Quaternary Sciences, 2004, 24(1): 50-57. doi: 10.3321/j.issn:1001-7410.2004.01.006
[10] Starkel L. Climatically controlled terraces in uplifting mountain areas[J]. Quaternary Science Reviews, 2003, 22(20): 2189-2198. doi: 10.1016/S0277-3791(03)00148-3
[11] Huang W L, Yang X P, Li, A, et al. Late Pleistocene shortening rate on the northern margin of the Yanqi Basin, southeastern Tian Shan, NW China[J]. JAES, 2015, 112: 11-24.
[12] Huang W L, Yang X P, Li A, et al. Climatically controlled formation of river terraces in a tectonically active region along the southern piedmont of the Tian Shan, NW China[J]. Geomorphology, 2015, 220: 15-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e6b09e89d4ce909776898926ec62f068
[13] Pan B, Su H, Hu Z, et al. Evaluating the role of climate and tectonics during non-steady incision of the Yellow River: evidence from a 1.24 Ma terrace record near Lanzhou, China[J]. QSR, 2009, 28(27): 3281-3290.
[14] 黄伟亮.天山内部焉耆盆地中晚第四纪地壳缩短速率研究[D].北京: 中国地震局地质研究所, 2015. HUANG Weiliang. Late Pleistocene shortening rate on the northern margin of the Yanqi Basin, southeastern Tian Shan, NW China[D]. Institute of Geology, China Earthquake Administration, 2015.
[15] Pan B T, Hu X F, Gao H S, et al. Late Quaternary river incision rates and rock uplift pattern of the eastern Qilian Shan Mountain, China[J].Geomorphology, 2013, 184(430) : 84-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=91806fd7baed4784163886ac8185e2d4
[16] Zheng W J, Zhang P Z, Ge W P, et al. Late Quaternary slip rate of the South Heli Shan Fault(northern Hexi Corridor, NW China) and its implications for northeastward growth of the Tibetan Plateau[J]. Tectonics, 2013, 32(2):271-293. doi: 10.1002/tect.20022
[17] Lu H H, Zhang T Q, Zhao J X, et al. Late Quaternary alluvial sequence and uplift-driven incision of the Urümqi River in the north front of the Tian Shan, northwestern China[J]. Geomorphology, 2014, 219(219): 141-151.
[18] 钟岳志, 李有利, 熊建国, 等.祁连山东段童子坝河阶地对气候变化与新构造运动的响应[J].古地理学报, 2017, 19(6):1076-1086. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201706011 ZHONG Yuezhi, LI Youli, XIONG Jianguo, et al. Terraces of the Tongziba River, eastern Qilian Mountain and their responses to neotectonic movement and climate change[J]. Journal of Palaeogeography, 2017, 19(6):1076-1086. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201706011
[19] Hu X F, Pan B T, Kirby E, et al. Rates and kinematics of active shortening along the eastern Qilian Shan, China, inferred from deformed alluvial terraces[J]. Tectonics, 2015, 34, doi: 10.1002/2015TC003978.
[20] Palunbo L, Hetzel R, Tao M X, et al. Deciphering the rate of mountain growth during topopraphic presteady state: An example from the NE margin of the Tibetan Plateau[J]. Tectonics, 2009, 28: TC4017, DOI: 10.1029/2009TC002455.
[21] Hetzel R, Tao M, Niedermann S, et al. Implications of the fault scaling law for the growth of topography: mountain ranges in the broken foreland of north-east Tibet[J]. Terra Nova, 2004a, 16(3):157-162. doi: 10.1111/j.1365-3121.2004.00549.x
[22] 杨海波.祁连山北缘佛洞庙-红崖子断裂晚第四纪活动速率[D].北京: 中国地震局地质研究所, 2016. http://cdmd.cnki.com.cn/Article/CDMD-85402-1016300075.htm YANG Haibo. Late Quaternary slip rates of the Fodongmiao-Hongyazi fault, North margin of Qilian Shan[D]. Beijing: Institute of Geology, China Earthquake Administration, 2009. http://cdmd.cnki.com.cn/Article/CDMD-85402-1016300075.htm
[23] 李安, 王晓先, 张世民, 等.祁连山北缘玉门断裂晚更新世以来的活动速率及古地震[J].地震地质, 2016, 38 (4): 897-910. doi: 10.3969/j.issn.0253-4967.2016.04.008 LI An, WANG Xiaoxian, ZHANG Shimin, et al. The slip rate and paleoearthquakes of the Yumen fault in the northern Qilian mountains [J]. Seismology and Geology, 2016, 38(4): 897-910. doi: 10.3969/j.issn.0253-4967.2016.04.008
[24] 陈文彬.河西走廊及邻近地区最新构造变形基本特征及构造成因分析[D].北京: 中国地震局地质研究所, 2003. http://cdmd.cnki.com.cn/Article/CDMD-85402-2004096204.htm CHEN Wenbin. Principal features of tectonic deformation and their generation mechanism in the Hexi Corridor and its adjacent regions since late quaternary [D]. Institute of Geology, China Earthquake Administration, Beijing, 2003. http://cdmd.cnki.com.cn/Article/CDMD-85402-2004096204.htm
[25] 闵伟, 张培震, 何文贵, 等.酒西盆地断层活动特征及古地震研究[J].地震地质, 2002, 24(1):35-44. http://d.old.wanfangdata.com.cn/Periodical/dzdz200201004 MIN Wei, ZHANG Peizhen, He Wengui, et al. Research on the active faults and paleoearthquakes in the western Jiuquan Basin[J]. Seismology and Geology, 2017, 24(1): 35-44. http://d.old.wanfangdata.com.cn/Periodical/dzdz200201004
[26] 杨海波, 杨晓平, 黄雄南.祁连山北缘断裂带中段晚第四纪活动速率初步研究[J].地震地质, 2017, 39 (1): 20-42. doi: 10.3969/j.issn.0253-4967.2017.01.002 YANG Haibo, YANG Xiaoping, HUANG Xiongnan. A preliminary study about slip rate of middle segment of the northern Qilian thrust fault zone since late quaternary[J]. Seismology and Geology, 2017, 39 (1): 20-42. doi: 10.3969/j.issn.0253-4967.2017.01.002
[27] 郑文俊.河西走廊及邻区活动构造图像及构造变形模式[D].北京: 中国地震局地质研究所, 2009. http://www.cnki.com.cn/Article/CJFDTotal-GJZT201003011.htm ZHEGN Wenjun. Geometric pattern and active tectonics of the Hexi Corridor and its adjacent regions[D]. Beijing: Institute of Geology, China Earthquake Administration, 2009. http://www.cnki.com.cn/Article/CJFDTotal-GJZT201003011.htm
[28] 艾晟, 张波, 樊春, 等.武威盆地南缘断裂晚第四纪活动地表形迹与活动速率[J].地震地质, 2017, 39 (2): 408-422. doi: 10.3969/j.issn.0253-4967.2017.02.010 AI Sheng, ZHANG Bo, FAN Chun, et al. Surface tracks and slip of the fault along the southern margin of the Wuwei basin in the late Quaternary[J]. Seismology and Geology, 2017, 39 (2): 408-422. doi: 10.3969/j.issn.0253-4967.2017.02.010
[29] 雷惊昊, 李有利, 胡秀, 等.东大河阶地陡坎对民乐-大马营断裂垂直滑动速率的指示[J].地震地质, 2017, 39 (6):1256-1266. doi: 10.3969/j.issn.0253-4967.2017.06.011 LEI Jinghao, LI Youli, HU Xiu, et al. Vertical slip rate of Minle-Damaying fault indicated by scarps on terraces of Dongda River[J]. Seismology and Geology, 2017, 39 (6):1256-1266. doi: 10.3969/j.issn.0253-4967.2017.06.011
[30] 胡小飞.祁连山北部侵蚀速率的时空分布与构造抬升变形研究[D].兰州: 兰州大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10730-1011034159.htm HU Xiaofei. Researches on Temporal and Spatial Distributions of Erosion Rates and Tectonic Deformation in the Northern Qilian Shan[D]. Lanzhou: Lanzhou University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10730-1011034159.htm
[31] Palumbo L, Hetzel R, Tao M, et al. Catchment-wide denudation rates at the margin of NE Tibet from in situ-produced cosmogenic 10Be[J].Terra Nova, 2011, 23(1): 42-48. doi: 10.1111/j.1365-3121.2010.00982.x
[32] Champagnac J D, Yuan D M, Ge W P, et al. Slip rate at the north-eastern front of the Qilian Shan, China [J]. Terra Nova, 2010, 22:180-187. doi: 10.1111/j.1365-3121.2010.00932.x
[33] Hetzel R. Active faulting, mountain growth, and erosion at the margins of the Tibetan Plateau constrained by in situ-produced cosmogenic nuclides[J]. Tectonophysics, 2013, 582:1-24. doi: 10.1016/j.tecto.2012.10.027
[34] 王岳.河西走廊东西段全新世古湖泊演化对比研究[D].兰州: 兰州大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10730-1016723430.htm WANG Yue. The Comparative Study of Paleolakes Evolution between the Eastern and Western Parts of the Hexi Corridor on Holocene[D].Lanzhou: Lanzhou University, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10730-1016723430.htm
[35] Yao T D, Thompson L.G, Shi T F, et al. Climate variation since the Last Interglaciation recorded in the Guliya ice core[J]. Science in China, 1997, 40(6):6662-6678. doi: 10.1007-BF02877697/
[36] 郑绵平, 袁鹤然, 赵希涛, 等.青藏高原第四纪泛湖期与古气候[J].地质学报, 2006, 80(2): 176-180. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200602001 ZHENG Mianping, YUAN Heran, ZHAO Xitao, et al. The Quarternary pan-lake (overflow) period and paleoclimate on the Qinghai-Tibet Plateau[J]. Acta Geologica Sinica, 2006, 80(2): 176-180. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200602001
[37] SHI Y F, LIU X D, LI B Y, et al. A very strong summer monsoon event during 30-40 ka BP in the Qinghai-Xizang (Tibet) Plateau and its relation to precessional cycle[J]. Chinese Science Bulletin, 1999, 40(20): 1851-1857.
[38] Zuza A V, Cheng X, Yin A. Testing models of Tibetan Plateau for mation with Cenozoic shortening estimates across the Qilian ShanNan Shan thrust belt[J]. Geosphere, 2016, 12(2): 501-532. doi: 10.1130/GES01254.1
[39] 艾明, 毕海芸, 郑文俊, 等.利用无人机摄影测量技术提取活动构造定量参数[J].地震地质, 2018, 40 (6):1276-1292. http://d.old.wanfangdata.com.cn/Periodical/dzdz201806006 AI Ming, BI Haiyun, ZHENG Wenjun, et al. Using unmanned aerial vehicle photogrammetry technology to obtain Quantitative parameters of active tectonics[J]. Seismology and Geology, 2018, 40 (6):1276-1292. http://d.old.wanfangdata.com.cn/Periodical/dzdz201806006
[40] 郑文涛, 杨景春, 段锋军.武威盆地晚更新世河流阶地变形与新构造运动[J].地震地质, 2000, 22 (3): 318-328. doi: 10.3969/j.issn.0253-4967.2000.03.012 ZHENG Wentao, YANG Jingchun, DUAN Fengjun. A study on the relation between deformation of river terraces and neotectonic activity for the Wuwei Basin[J]. Seismology and Geology, 2000, 22 (3): 318-328. doi: 10.3969/j.issn.0253-4967.2000.03.012
[41] 陈杰, 卢演俦, 丁国瑜.祁连山西段酒西盆地区阶地构造变形的研究[J].西北地震学报, 1998, 20 (1): 28-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800703441 CHEN Jie, LU Yanchou, DING Guoyu. The latest Quaternary tectonic deformation of terraces of Jiuxi Basin in west Qilian Mountains[J]. Northwestern Seismological Journal, 1998, 20 (1): 28-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800703441
[42] Thompson L G, T Yao, Davis M E, et al. Tropical Climate Instability: The Last Glacial Cycle from a Qinghai-Tibetan Ice Core[J]. Science, 1997, 276:1821-1825. doi: 10.1126/science.276.5320.1821
-
期刊类型引用(4)
1. 巨广宏,杨芸,杨天俊,王启鸿,符文熹,叶飞. 西藏尼洋河多布水电站深厚覆盖层成因分析. 地质灾害与环境保护. 2024(01): 63-69 . 百度学术
2. 郑荣荧,陈柏旭,周文杰,杨晨爽. 河西走廊西洞西滩冲洪积扇线性陡坎非构造成因分析. 地震科学进展. 2023(05): 203-213 . 百度学术
3. 何翔,杜星星,刘健,李艺豪,李群. 武威盆地第四纪沉积过程及其构造意义. 地震地质. 2022(01): 76-97 . 百度学术
4. 卢海峰,陈海龙,杨勇,张进忠. 甘肃武威盆地南缘断裂带晚第四纪活动特征及变形分析. 地质通报. 2022(Z1): 327-346 . 百度学术
其他类型引用(1)