印尼马都拉海峡盆地上新统颗粒灰岩生物礁形成和演化模式

刘嘉程, 栾锡武, 冉伟民, 魏新元, 王阔, 张豪, 石艳峰, 鲁银涛, MohammadSaiful Islam

刘嘉程, 栾锡武, 冉伟民, 魏新元, 王阔, 张豪, 石艳峰, 鲁银涛, MohammadSaiful Islam. 印尼马都拉海峡盆地上新统颗粒灰岩生物礁形成和演化模式[J]. 海洋地质与第四纪地质, 2020, 40(3): 87-98. DOI: 10.16562/j.cnki.0256-1492.2019021401
引用本文: 刘嘉程, 栾锡武, 冉伟民, 魏新元, 王阔, 张豪, 石艳峰, 鲁银涛, MohammadSaiful Islam. 印尼马都拉海峡盆地上新统颗粒灰岩生物礁形成和演化模式[J]. 海洋地质与第四纪地质, 2020, 40(3): 87-98. DOI: 10.16562/j.cnki.0256-1492.2019021401
LIU Jiacheng, LUAN Xiwu, RAN Weinmin, WEI Xinyuan, WANG Kuo, ZHANG Hao, SHI Yanfeng, LU Yintao, Mohammad Saiful Islam. A genetic and evolutionary model for the Pliocene granular limestone reef in the Madura Strait Basin, Indonesia[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 87-98. DOI: 10.16562/j.cnki.0256-1492.2019021401
Citation: LIU Jiacheng, LUAN Xiwu, RAN Weinmin, WEI Xinyuan, WANG Kuo, ZHANG Hao, SHI Yanfeng, LU Yintao, Mohammad Saiful Islam. A genetic and evolutionary model for the Pliocene granular limestone reef in the Madura Strait Basin, Indonesia[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 87-98. DOI: 10.16562/j.cnki.0256-1492.2019021401

印尼马都拉海峡盆地上新统颗粒灰岩生物礁形成和演化模式

基金项目: 青岛海洋科学与技术国家实验室基金项目“印尼爪哇盆地新生代构造变形及古地理演化”(No.QNLM201708);外交部、财政部亚洲区域合作专项“中国-东盟海洋地震数据平台与研究中心建设”(No.12120100500017001);鳌山科技创新计划项目“深海专项(预研)”(No.2017ASKJ02,2016ASKJ13,2016ASKJ11)
详细信息
    作者简介:

    刘嘉程(1994—),男,研究实习员,主要研究方向为海洋地球物理学,E-mail:lhhlhh@126.com

    通讯作者:

    栾锡武(1966—),男,研究员,主要研究方向为海底冷泉与深水油气研究,E-mail:xluan@qnlm.ac

  • 中图分类号: P736.3

A genetic and evolutionary model for the Pliocene granular limestone reef in the Madura Strait Basin, Indonesia

  • 摘要: 马都拉海峡盆地北部外陆架台地发育有E-W向一字排列的颗粒灰岩生物礁体。该生物礁是有孔虫(主要为抱球虫目)壳体经过各种沉积作用形成的堆积体,发育于早上新世挤压反转期盆地北部边缘区。由于生物礁生长发育所经历的特殊性,其岩石学特征等信息常常具有标志性的反映,因此礁体的剖面反射特征和地震属性相比于围岩会存在不小的差异。这些差异为人们利用地震解释和地震属性提取技术识别生物礁奠定了基础,如在地震剖面上,生物礁往往出现对称丘状外形反射、礁前斜坡前积反射、礁内部杂乱反射和不连续强反射的特征等等。以O-2井钻遇的存在抱球虫化石的马都拉海峡盆地上新统芒杜组沉积地层为研究对象,从地质背景入手,描述了盆地的新生代构造特征和发育各时期所对应的地层。通过进行层位标定和三维地震解释,结合地震属性提取技术,同时考虑到生物礁的发育形态与环境,最终获得了盆地抱球虫颗粒灰岩生物礁在空间上的分布。最后,本文结合盆地历史上的沉积构造活动,提出反转断裂带活动是研究区控制生物礁生长的重要因素,并据此总结了马都拉海峡盆地芒杜组台地边缘生物礁的发育模式。
    Abstract: Granular limestone reefs in an east-west direction are well developed on the outer shelf platform along the northern margin of the Madura Strait Basin, Indonesia. The reefs were formed by foraminifera shells during the compression and inversion period of early Pliocene in this region. Because of their specific origin, the petrological characteristics and seismic reflection attributes are obviously different from the surrounding rocks. These differences make it possible to identify reefs from others with seismic interpretation and seismic attribute extraction technology. For example, the reefs are often in a symmetrical hilly shape in seismic profiles, with inclined fore-reef reflection, disordered reflection and discontinuous strong reflections etc. This paper is devoted to the deposits of Pliocene Mundu Formation in the Madura Strait Basin mainly consisting of coccidian fossils from the drilling hole of Well O-2. It starts from the geological background of the region. An introduction is made to the Cenozoic tectonics and stratigraphic sequences of the basin. Through horizon calibration and three-dimensional seismic interpretation with seismic attribute extraction technology, and considering the development history and environmental patterns of the reefs, the spatial distribution of the granular coccidia limestone reefs in the basin is finally described. The study of the basin history suggests that the inverted fault zone activity is an important factor to control the reef growth in the study area. Upon the basis of this, a reef development model of the Madura Strait Basin is summarized.
  • 图  1   东爪哇盆地一级大断裂带分布图[18]

    Figure  1.   Distribution map of first-order large fault zones in East Java Basin

    图  2   O-2井不同深度岩心薄片数字图像

    a:深度906 m;b:深度912 m;c:深度926 m;d:深度933 m;e:深度938 m;f:深度956 m。

    Figure  2.   Digital images of thin sections of well O-2 in different depths

    a. 906 m deep; b. 912 m deep; c. 926 m deep; d. 933 m deep; e. 938 m deep; f. 956 m deep.

    图  3   东爪哇盆地新生代地层柱状图[19-21]

    Figure  3.   Cenozoic stratigraphic column of the East Java Basin[19-21]

    图  4   东爪哇盆地南部马都拉海峡盆地测线及断裂带

    Figure  4.   Seismic survey area and fault zone in southern East Java Basin

    图  5   O-2井测井曲线及岩心薄片数字图像对应位置

    Figure  5.   Log curve of well O-2 and locations of digital images of thin sections

    图  6   芒杜组属性提取图

    a:均方根振幅;b:总振幅;c:峰值谱频率;d:平均反射强度;e:瞬时频率斜率;f:平均瞬时相位;圆圈为O-2钻井位置。

    Figure  6.   Attribute extraction diagrams of Mundu Formation

    a. RMS amplitude; b. total amplitude; c. peak spectral frequency; d. average reflection strength; e. slope of instantaneous frequency; f. average instantaneous phase; the circle is O-2 drilling position.

    图  7   生物礁平面分布图

    Figure  7.   Reef spatial distribution map

    图  8   a测线三维区芒杜组生物礁丘状特征地震相

    Figure  8.   Seismic facies of the mound-like reefs in Mundu Formation along section a

    图  9   b测线三维区芒杜组生物礁丘状特征地震相

    Figure  9.   Seismic facies of a mound-like reef in Mundu Formation along section b

    图  10   生物礁区域局部放大图

    a:图8黄色框区域;b:图9黄色框区域。

    Figure  10.   Locally exaggerated diagrams of reef area

    a. represent the yellow box area in Fig.8; b. represent the yellow box area in Fig.9.

    图  11   生物礁的分类[22-23]

    Figure  11.   Classification of reefs

    图  12   线状生物礁结构[24]

    Figure  12.   Structural classification of a linear reef

    图  13   芒杜组颗粒灰岩生物礁形成和演化模式

    Figure  13.   Formation and evolution model of granular limestone reef in Mundu Formation

  • [1] 卫平生, 刘全新, 张景廉, 等. 再论生物礁与大油气田的关系[J]. 石油学报, 2006, 27(2):38-42. [WEI Pingsheng, LIU Quanxin, ZHANG Jinglian, et al. Re-discussion of relationship between reef and giant oil-gas fields [J]. Acta Petrolei Sinica, 2006, 27(2): 38-42. doi: 10.3321/j.issn:0253-2697.2006.02.008
    [2] 宋国明. 东盟矿业投资环境[J]. 国土资源情报, 2011(12):21-27, 50. [SONG Guoming. ASEAN mining investment environment [J]. Land and Resources Information, 2011(12): 21-27, 50.
    [3]

    Hamilton W. Tectonics of the Indonesian region[R]. US Government Printing Office, Washington, D.C.: Geological Survey Professional Paper, 1979: 345.

    [4]

    Cole J M, Crittenden S. Early tertiary basin formation and the development of lacustrine and quasi-lacustrine/marine source rocks on the Sunda Shelf of SE Asia [J]. Geological Society London Special Publications, 1997, 126(1): 147-183. doi: 10.1144/GSL.SP.1997.126.01.12

    [5]

    Sharaf E F, Simo J A, Carroll A R, et al. Stratigraphic evolution of Oligocene-Miocene carbonates and siliciclastics, East Java Basin, Indonesia [J]. AAPG Bulletin, 2005, 89(6): 799-819. doi: 10.1306/01040504054

    [6]

    Kusumastuti A. Sequence stratigraphy of Miocene carbonate buildups, Madura Strait, east Java, Indonesia[D]. Master Dissertation of University of Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam, 1998: 53.

    [7] 朱弟成, 潘桂棠, 莫宣学, 等. 印度大陆和欧亚大陆的碰撞时代[J]. 地球科学进展, 2004, 19(4):564-571. [ZHU Dicheng, PAN Guitang, MO Xuanxue, et al. The age of collision between India and Eurasia [J]. Advance in Earth Sciences, 2004, 19(4): 564-571. doi: 10.3321/j.issn:1001-8166.2004.04.012
    [8]

    Longley L M. The tectonostratigraphic evolution of SE Asia [J]. Geological Society, London, Special Publications, 1997, 126(1): 311-339. doi: 10.1144/GSL.SP.1997.126.01.19

    [9]

    Hall R. Cenozoic plate tectonic reconstructions of SE Asia[M]//Fraser A J, Matthews S J, Murphy R W. Petroleum Geology of Southeast Asia. Geological Society, London, Special Publication, 1997, 126(1): 11-23.

    [10]

    Kopp H, Flueh E R, Petersen D J, et al. The Java margin revisited: Evidence for subduction erosion off Java [J]. Earth and Planetary Science Letters, 2006, 242(1-2): 130-142. doi: 10.1016/j.jpgl.2005.11.036

    [11]

    Clements B, Hall R, Smyth H R, et al. Thrusting of a volcanic arc: a new structural model for Java [J]. Petroleum Geoscience, 2009, 15(2): 159-174. doi: 10.1144/1354-079309-831

    [12]

    McCaffrey R. Active tectonics of the eastern Sunda and Banda arcs [J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B12): 15163-15182. doi: 10.1029/JB093iB12p15163

    [13]

    Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations [J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431. doi: 10.1016/S1367-9120(01)00069-4

    [14]

    Audley-Charles M G. Ocean trench blocked and obliterated by Banda forearc collision with Australian proximal continental slope [J]. Tectonophysics, 2004, 389(1-2): 65-79. doi: 10.1016/j.tecto.2004.07.048

    [15]

    Schiller D M, Seubert B W, Musliki S, et al. The reservoir potential of globigerinid sands in Indonesia[C]//Proceedings Indonesian Petroleum Association 23rd annual convention. Jakarta, Indonesia: Indonesian Petroleum Association, 1994, 1: 189-212.

    [16]

    Triyana Y, Harris G I, Basden W A, et al. The Maleo Field: An example of the Pliocene Globigerina bioclastic limestone play in the East Java Basin, Indonesia[C]//Proceedings of the 31st Annual IPA Convention. Jakarta, Indonesia: Indonesian Petroleum Association, 2007: 45-61.

    [17] 倪军娥, 孙立春, 何娟, 等. 印尼马都拉海峡A气田底流沉积-抱球虫灰岩储层特征[J]. 石油与天然气地质, 2016, 37(5):773-778. [NI Jun’e, SUN Lichun, HE Juan, et al. Characteristics of globigerinid limestone reservoirs of bottom current deposition in Gas Field A of Madura Strait, Indonesia [J]. Oil & Gas Geology, 2016, 37(5): 773-778. doi: 10.11743/ogg20160517
    [18]

    Manur H, Barraclough R. Structural control on hydrocarbon habitat in the Bawean area, East Java Sea[C]//Proceedings Indonesian Petroleum Association 23rd annual convention. Jakarta, Indonesia: Indonesian Petroleum Association, 1994, 1: 129-144.

    [19]

    Matthews S J, Bransden P J E. Late cretaceous and cenozoic tectono-stratigraphic development of the East Java Sea Basin, Indonesia [J]. Marine and Petroleum Geology, 1995, 12(5): 499-510. doi: 10.1016/0264-8172(95)91505-J

    [20]

    Rutley D W. Quantitative seismic reservoir characterisation: A model-based approach for the Sampang PSC, East Java, Indonesia [J]. Exploration Geophysics, 2001, 32(4): 275-278.

    [21] 杨福忠, 罗良, 贾东, 等. 印尼东爪哇盆地新生代构造演化[J]. 高校地质学报, 2011, 17(2):240-248. [YANG Fuzhong, LUO Liang, JIA Dong, et al. Cenozoic tectonic evolution of the east Java Basin, Indonesia [J]. Geological Journal of China Universities, 2011, 17(2): 240-248. doi: 10.3969/j.issn.1006-7493.2011.02.009
    [22]

    Tucker M E, Wright V P. Carbonate Sedimentology[M]. Oxford: Blackwell Scientific Publications, 1990.

    [23]

    Bubb J N, Hatledid W G, Payton C E. Seismic recognition of carbonate buildups in seismic stratigraphy[C]//Applications to Hydrocarbon Exploration: AAPG Memoir. Oklahoma, US: American Association of Petroleum Geologists, 1977, 26: 185-204.

    [24]

    James N P. Reef Environment[M]. Oklahoma, US: American Association of Petroleum Geologists, 1983.

    [25]

    Ran W M, Luan X W, Lu Y T, et al. Formation and evolution of the tertiary carbonate reefs in the Madura Strait Basin of Indonesia [J]. Journal of Oceanology and Limnology, 2019, 37(1): 47-61. doi: 10.1007/s00343-018-7394-0

    [26]

    James N P. Facies Models 8. Shallowing upward sequences in carbonates [J]. Geoscience Canada, 1977, 4(3): 126-137.

图(13)
计量
  • 文章访问数:  3289
  • HTML全文浏览量:  527
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-13
  • 修回日期:  2019-05-11
  • 网络出版日期:  2020-05-24
  • 刊出日期:  2020-05-31

目录

    /

    返回文章
    返回