Spatial distribution patterns of single framework sand bodies of a shallow-water delta in the Cretaceous Quantou Formation of Xinmin Oilfield, Songliao Basin
-
摘要: 以高分辨率层序地层学和储层构型理论为指导,利用岩芯、测井曲线和生产动态等资料,在沉积相分析的基础上,对松辽盆地新民油田白垩系泉四段浅水三角洲骨架单砂体空间发育特征进行系统研究并建立相关模式。研究表明,研究区泉四段主要发育浅水三角洲平原亚相和前缘亚相,分别以分支河道和水下分支河道为骨架砂体。泉四段整体处于湖平面上升的沉积背景,浅水三角洲不断向陆退积,骨架单砂体的空间发育特征表现出一定的规律性。可容空间与沉积物供应量的比值(A/S)是控制骨架单砂体空间发育特征的主要因素。A/S< <1时, 发育浅水三角洲平原沉积环境,分支河道单砂体垂向叠置样式主要为侧向切叠式和垂向切叠式,平面呈连片状展布;单砂体发育规模大,平均宽度为396~463m,平均厚度为5.2~5.8m。A/S≤1时,发育浅水三角洲平原沉积环境,分支河道单砂体垂向叠置样式主要为侧向叠加式和垂向叠加式,平面呈网状展布;单砂体发育规模较大,平均宽度为308~412m,平均厚度为4.2~5.2m。A/S>>1时,发育浅水三角洲前缘沉积环境,水下分支河道单砂体垂向叠置样式主要为孤立式,平面呈枝状展布;单砂体发育规模较小,平均宽度为165~325m,平均厚度为2.4~4.0m。Abstract: Guided by the principles of high-resolution sequence stratigraphy and reservoir architecture, the spatial distribution pattern of single framework sand bodies of the 4th Member of the Cretaceous Quantou Formation(K1q4) in the Min 36 block of Xinmin Oilfield of the Songliao Basin is studied. Some models have been established on the basis of depositional features acquired from cores, logging and production performance data. Shallow-water deltaic plain and front are well developed in the K1 q4 of the study area and their framework sand bodies are mainly the deposits of distributary channels and subaqueous distributary channels respectively. Research results suggest that during the deposition of K1q4, the lake level was rising. As the results, the shallow-water delta gradually retrograded toward the land. The A/S value is the main factor controlling the spatial distribution pattern of single sand bodies. When A/S value is far less than 1, there developed shallow water deltaic plain and the vertical stacking of single sand bodies are dominated by lateral and vertical tangency, and in view of plane distribution, sandbodies are contiguous. Individual sand bodies may reach 396 to 463 meters in length and 5.2 to 5.8 meters in width on average. However, when A/S value is less than or equal to 1, the vertical stacking patterns of single sand bodies are dominated by lateral and vertical superposition. In a plane view, sandbodies are distributed in a reticular pattern. Single sand bodies are 308 to 412 meters long and 4.2 to 5.2 meters wide on average. When A/S value is far more than 1, the sand bodies are dominated by a vertical stacking pattern by separated sandbodies, in the plane view, sandbodies are distributed in a dendritic pattern consisting of sand bodies 165 to 325 meters long and 2.4 to 4.0 meters wide on average.
-
平湖斜坡带位于东海某凹陷西部斜坡区之内,勘探面积约5000 km2,目前探明储量约占整个凹陷的50%以上,是东海某凹陷目前最重要的油气勘探和开发区域之一。近30年的勘探实践表明,在高成本、高风险和区块受限等因素的制约下,构造油气藏的勘探难度不断加大,储量替代率严重不足[1-2]。2017年以来,在平湖斜坡带中部地区,陆续部署了5口以勘探岩性油气藏为目的的探井,相继在平湖组取得了重大发现和商业收获,揭开了平湖斜坡带岩性油气藏勘探的序幕。尽管孔雀亭地区岩性油气藏勘探程度较低,但从地质条件发育来看,认为研究区岩性油气藏勘探潜力巨大。但是由于长期受到构造油气藏勘探思路的禁锢与束缚,研究区缺乏系统的岩性油气藏勘探思路,已成为当下制约该区油气藏勘探的重难点问题。通过调研认为,坡折带对岩性油气藏的发育和形成起至关重要的控制作用[3-4],因此,针对孔雀亭地区开展坡折带研究具有重要意义。
坡折带一词源于海相盆地陆架坡折的概念,指在沉积盆地或剥蚀区中,地形陡缓程度发生剧烈变化的位置[5]。坡折带这一概念最初在国外多被运用于陆架陆棚的研究,随后延伸拓展至油气勘探领域[6]。90年代以来,国内学者开始大量关注坡折带的研究,例如王英民等厘清了断陷湖盆多级坡折带的三种成因类型[7];李相博等划分了深水与浅水坡折,并总结了不同类型坡折对沉积砂体的控制作用[8];黄胜兵等梳理了坡折带类型在基准面旋回变化中对沉积体系和储层发育的影响[9];冉怀江等分析了坡折带对体系域的控制,并总结了两种复合岩性圈闭类型[10]。这些研究表明,坡折带控制着三角洲、水下扇、坡积扇、浊积扇和复合砂坝等沉积体的发育,是岩性油气藏发育的有利区。同时,这些研究理论也有利地推动了渤海湾盆地、莺歌海盆地和珠江口盆地等地区的多个大型整装岩性油气藏的勘探工作持续走向深入[11-12]。
截止目前,关于东海某凹陷坡折带研究内容较少,而针对孔雀亭地区坡折带控相成圈的研究则更少[13-15],这严重限制了东海岩性油气藏的勘探进程,给华东地区能源安全带来一定挑战。因此,本文以平湖斜坡孔雀亭地区平湖组为例,基于坡折带的理论研究,根据不同沉积时期古地貌的变化特点,系统阐述了坡折带对沉积砂体、相带发育和岩性圈闭分布的控制作用。
1. 区域地质概况
孔雀亭地区位于平湖斜坡带内北部,西部紧临海礁隆起,东抵西次凹,北毗临杭州构造带,南以宝云亭地区为界,面积约360 km2(图1)。研究区平湖组沉积时期主要受平湖运动影响,发育顺向断阶和次级洼隆的构造形态,整体上地形突变显著,具备坡折发育的古地貌背景(图2)。孔雀亭地区在始新世早期也就是宝石组与平湖组早期,断陷系统发育到鼎盛阶段,沉积形成宝石组和平湖组五、六段地层;始新世中晚期,裂陷作用逐渐减弱,平湖组进入断-拗转换时期,沉积形成平湖组三、四段和平湖组一、二段地层。渐新世时期,也就是花港组时期,由于欧亚板块大陆边缘蠕散终止,张应力减弱,盆地进入拗陷阶段。通过井震结合分析认为,平湖组的底界面T40与顶界面T30是两个区域不整合面,分别是宝石组与平湖组、平湖组与花港组的分界面;T34与T32分别是平湖组五段至一段的分界面。同时,以上四个界面可以将平湖组划分为一个二级层序和三个三级层序(E2pSQ1、E2pSQ2、E2pSQ3)(表1)。平湖组主要发育受潮汐影响的辫状河三角洲沉积体系[16]。E2pSQ1时期,水体较浅,发育潮河联控的辫状河三角洲沉积体系;E2pSQ2时期,水体快速上升,发育海侵背景下潮汐影响的辫状河三角洲沉积体系;E2pSQ3时期,水体快速退却,发育辫状河三角洲沉积体系[17]。
2. 坡折带类型与特征
平湖斜坡孔雀亭地区具有典型的构造成坡特点。早始新世沉积期已形成斜坡,各时期地层均向斜坡西部的高处超覆、减薄,且受晚期构造抬升影响,斜坡顶部遭受风化剥蚀。平湖组沉积时期,一系列NE-NNE向正断裂和NW-NWW向隐伏断裂的发育[18],控制研究区地貌在东西、南北两个方向上出现多次剧烈转折,这些发生突变的部位称为坡折带[15]。沿坡折带上倾和下倾方向坡度均减缓,转折处坡度变化最大。孔雀亭区在同沉积断裂影响下,地形上出现坡度多次变化,使先存斜坡这个主体自西向东构成一个顺向多级断阶坡折带(图2)。这种顺向多级断阶坡折影响了水体深浅、水系聚散和地层厚薄,同时控制了体系域的分布,进而制约了岩性复合圈闭的发育。
为更好地研究这种顺向多级断阶坡折带对砂体汇聚、相带发育和圈闭形成的控制作用,根据坡折带发育的构造位置及与洼陷的匹配关系,将顺向多级断阶坡折带划分为“高区坡折带、中区坡折带、低区坡折带”(图3)。不同区带内会形成不同成因的坡折类型。根据成因机制的差异,可进一步细分为3种类型,分别是断裂坡折、挠曲坡折与侵蚀坡折。
2.1 断裂坡折
断裂坡折是因持续的NE-NNE向同沉积断裂活动导致断层两盘差异升降和地形地貌产生突变的构造枢纽带[19]。识别该类型坡折的主要标志是断层下盘沉积厚度明显大于上盘,且断层生长指数多数为1.4~2.0[7]。由于同沉积断裂广泛发育,断裂坡折在孔雀亭地区最常见。这种坡折在其下延方向可容纳空间迅速增大,成为沉积砂体有利的汇聚富集区,产生的裂缝可为油气运移提供良好通道。在E2pSQ1与E2pSQ2时期,这类坡折发育在1号洼陷西侧、K-1至K-5井一线南侧、以及2号洼陷以西地区,控制了辫状河三角洲平原上坡积扇体和前缘水下扇体的发育。在E2pSQ3时期,断裂坡折在K-4井上倾方向控制平原上的坡积扇体发育,在K-4井下倾方向则控制辫状河三角洲前缘水下扇体和复合砂坝体的发育。由此构成了断裂坡折控制下的辫状河三角洲扇体与复合坝体尖灭的沉积模式(图4)。
2.2 挠曲坡折
挠曲坡折发育在构造活动相对偏弱区域。该坡折是由于同沉积时期深层NW-NWW向隐伏断裂活动而导致浅地层发生的挠曲变形,或是同沉积褶皱所形成断鼻构造两翼的挠曲变形,亦或是先存古隆之上披覆作用而形成的。该型坡折由于成因机制上的差异,也造成了其发育规模的不同。这类坡折的主要标志为坡折之下的沉积地层明显增厚,且可识别典型的上超现象[13]。以E2pSQ1时期K-1井区为例,该时期井区地形受挠曲坡折影响明显,自南向北延坡折方向地层明显增厚,沉积的楔形体上部可见向南发育的上超现象。研究区该型坡折主要控制辫状河三角洲前缘沉积发育,前缘水下扇体在坡折之下汇聚,平面朵叶体形态限制性展布,整体构成辫状河三角洲前缘朵叶体在上倾坡折点处尖灭的沉积模式(图5)。
2.3 侵蚀坡折
侵蚀坡折带主要是由于侵蚀风化等外部地质动力持续作用导致地形发生突变而形成。其主要发育在区域不整合面之上,且有下切侵蚀产生负向地貌的部位[7]。通过三维地震资料的识别,发现这种类型的坡折主要发育在孔雀亭西部高带地区,其表现出孤立发育且横向限制性展布的特征。这主要是由于平湖构造运动导致西部高带地层抬升后遭受风化剥蚀所致,其形成的下切沟谷为孔雀亭地区提供了充足物源(图6)。
3. 坡折带对相带发育的控制作用
孔雀亭平湖组从E2pSQ1到E2pSQ3时期,随着构造运动不断减弱[20],坡折带的组合样式表现出一定差异,导致各时期地形地貌形态不同,因而造成古水流方向、可容纳空间以及沉积卸载区的不同,使得差异化富集的沉积砂体发育形成不同的相带类型。其中断裂坡折和挠曲坡折控沉积作用较强,而侵蚀坡折控沉积作用较弱。
E2pSQ1时期,断裂活动强烈,断裂坡折和挠曲坡折控制了洼隆相间且坡度较大的古地貌,辫状河道只能推进至K-3井附近的岸线地区,构造坡折(断裂阶坡折和挠曲坡折)控制了小型低位扇体发育。研究区南部自西向东沿断裂坡折发育辫状河三角洲前缘水下扇体;北部挠曲坡折控制的斜坡引导水下分流河道携带陆源碎屑岩沿断层根部汇入2号洼地,形成限制性前缘水下扇朵叶体(图7A,图8)。侵蚀坡折在西部高区坡折带内,控制辫状河道或坡积扇的发育。E2pSQ2时期,断裂活动强度中等,坡折带控制古地貌表现出填平补齐特征,坡度有所减弱。在水体大规模快速上升的背景下,孔雀亭K-5井以东地区水体深且受潮汐作用影响强烈,断裂坡折引起的地层突变处起到遮挡作用,使得复合型砂坝在坡折带之下发育(图7B,图8)。E2pSQ3时期,断裂活动进一步减弱,研究区以发育断裂坡折为主,控制宽缓斜坡的古地貌特征。由于该时期坡折带的坡降减缓,水体快速下降,断裂坡折通过引导水系的汇聚方向,控制向洼地推进的辫状河三角洲扇体顺坡发育(图7C,图8)。
4. 坡折带对圈闭的控制作用
不同的坡折带类型控制着不同的构造古地貌,同时约束着沉积砂体和沉积相带的发育,进而控制着不同类型复合岩性圈闭的形成。高区坡折带位于研究区西部,地势高,下切沟谷发育且地层往往遭受风化剥蚀易形成侵蚀坡折,该类坡折又控制着侵蚀沟谷岩性圈闭的发育。中区坡折带坡度变陡,坡降增大,NE-NNE向同沉积正断层控制断块-岩性复合圈闭发育,而深层NW-NWW向隐伏断裂的活动控制挠曲-岩性复合圈闭形成[20]。低区坡折带靠近洼陷,主要受单向同沉积正断层控制,坡降较中带有所降低,主要发育断块-透镜体岩性复合圈闭。
4.1 高区坡折带
高区坡折带处于平湖斜坡边缘,靠近西部海礁隆起物源区。由于长期处于暴露环境,侵蚀风化作用强烈,是侵蚀坡折发育的有利区域。平湖组时期,这类坡折主要控制辫状河三角洲平原亚相体系的发育。在低水位期,下切沟谷控制辫状河道砂体的沉积与充填;在高水位时期,泥岩披覆在辫状河道砂体之上即可形成侵蚀沟谷圈闭。然而晚期的构造抬升运动多会导致这类圈闭被破坏导致油气难以富集。目前,在海上少井背景下,这类圈闭的实例研究甚少,仅能依靠二维或三维地震资料识别。高带坡折区由于远离1、2号富烃洼陷,油气运移距离较远,晚期构造运动破坏严重,储盖组合差,因此认为该区域虽然物源供给充足,但油气圈闭很难规模性形成,油气勘探潜力低(图9)。
图 9 孔雀亭区平湖组构造-岩性复合圈闭发育模式①侵蚀沟谷型油气圈闭,②断块-河道侧向尖灭型油气圈闭,③挠曲-河道侧向尖灭型油气圈闭,④断块-透镜体型复合油气圈闭。Figure 9. Development model of structural-lithologic traps in Pinghu Formation of Kongqueting area① The oil and gas trap of river valley, ② The oil and gas trap of fault block-river pinchout type, ③ The oil and gas trap of flexure-river pinchout type, ④ The oil and gas trap of fault block-lenses type.4.2 中区坡折带
中区坡折带紧邻2号洼陷,是断裂坡折和挠曲坡折发育的主要区域。E2pSQ1时期与E2pSQ2早期,该区水体浅且物源供给强,但古地貌洼隆相间,地势高差大。中区坡折带以南,断裂坡折控制辫状河三角洲平原辫状河道、坡积扇和前缘水下分流河道侧向尖灭型岩性体发育;中区坡折带以北,挠曲坡折主要控制前缘水下分流河道侧向尖灭岩性体发育。E2pSQ2中期至E2pSQ3早期,在规模性海侵背景下,中区坡折带内多形成水下分流河道侧向尖灭型或泥岩包裹复合砂坝透镜体型岩性体。上述岩性体与断层有机耦合后可形成断块-岩性体复合圈闭。孔雀亭中带坡折区整体临近富烃洼陷,油源断层发育,储盖组合优越,岩性油气藏勘探潜力巨大(图9)。
4.3 低区坡折带
低区坡折带距1号洼陷距离最近,主要发育顺向断阶坡折。平湖组时期,该区域处于水下沉积环境,在此环境中断裂坡折控制了辫状河三角洲前缘扇体和复合砂坝的发育。E2pSQ1时期,洼隆相间的地形限制了辫状河三角洲前缘向东的推进范围,表现出“有坡少砂”特征;E2pSQ2时期,在填平补齐规模性海侵背景下,同沉积正断层控制的断裂坡折起到了遮挡作用,形成了泥岩包裹、底平顶凸的断块-砂坝复合型岩性圈闭;E2pSQ3时期,在宽缓斜坡快速海退背景下,发育前缘水下分流河道侧向尖灭型岩性圈闭。低区坡折带坐拥1号富烃洼陷,运移距离近,利于油气成藏。但是该区也存在一定不利因素:一方面其埋深较大,E2pSQ1时期受压实作用影响储层已经超过4700 m下限[20],易探不易得;另一方面,E2pSQ3晚期低带断裂活动相对较弱,砂砂对接概率较大,断层封堵存在一定风险。综上所述,低区坡折带岩性勘探潜力不如中区坡折带,但仍为孔雀亭地区今后重要的勘探区域之一(图9)。
4.4 顺向多级断阶坡折带对圈闭的控制作用
平湖斜坡孔雀亭区顺向多级断阶坡折带控制着岩性复合圈闭的分布和规模。高区坡折带位于斜坡西部构造高部位,侵蚀坡折发育,控制规模小、分布局限的侵蚀沟谷型岩性圈闭。但其远离富烃洼陷,后期破坏严重,难以形成商业性油气圈闭。低区坡折带位于斜坡东部构造低部位,断裂坡折发育,控制复合砂坝发育,形成规模中等、分布局限的断块-透镜体型复合岩性圈闭。其油气运保效率高,但储层埋深大,物性差,采收率低。中区坡折带位于高区和低区之间,断裂坡折和挠曲坡折发育,控制多种类型沉积砂体,形成规模大、分布广的断块-河道侧向尖灭和挠曲-河道侧向尖灭型复合圈闭。其接受两个富烃洼陷供给,运保高效,生储盖配置优越,为油气汇聚优势区。从区域构造图上圈闭统计结果来看,中区坡折带圈闭数量最多,面积最大(图1)。
5. 结论
(1)根据成因机制的差异,孔雀亭地区平湖组共可识别出3种坡折带类型,即断裂坡折、挠曲坡折与侵蚀坡折。同沉积断裂体系的发育对研究区坡折带的形成起到至关重要的作用,构造坡折为该区主要坡折发育类型。
(2)孔雀亭区整体为顺向多级断阶坡折带发育区。根据坡折带发育的构造位置与洼陷匹配关系,可将研究区划分为高区坡折带、中区坡折带、低区坡折带。高区坡折带以发育侵蚀坡折为主,控制辫状河三角洲平原沉积体系;中区坡折带以发育断裂坡折和挠曲坡折为主,早期控制辫状河三角洲前缘沉积体系,晚期控制辫状河三角洲平原沉积体系,形成诸如辫状河道、坡积扇等微相;低区坡折带以发育辫状河三角洲前缘沉积体系为主,控制水下分流河道和复合砂坝微相的发育。
(3)高区坡折带控制少量侵蚀沟谷型圈闭,受晚期构造运动的严重破坏,且远离富烃洼陷,该区油气勘探潜力低;中区坡折带发育断块和挠曲岩性复合圈闭,其紧邻富烃洼陷,运移保存条件好,为平湖组岩性油气藏勘探的最有利区域;低区坡折带虽受储层下限和断层封堵性影响,但断块-透镜体复合岩性圈闭发育,仍为岩性油气藏勘探的重点区域之一。
-
图 3 松辽盆地新民油田泉四段浅水三角洲相标志
a.灰绿色泥岩,民31-3井,1125.6m;b.紫红色泥岩,民36井,1231.8m;c.草莓状黄铁矿,民106井,1190.6m;d.小型槽状交错层理,民106井,1293.5m;e.底部滞留沉积,民36井,1266.2m;f.河道冲刷面,民106井,1292.9m
Figure 3. Depositional features of shallow-water delta of K1 q4 of Xinmin Oilfield, Songliao Basin
a. grayish-green mudstone, well 31-3, 1125.6m; b. purplish red mudstone, well 36, 1231.8m; c. strawberry pyrite, well 106, 1190.6m; d. small-scale trough cross bedding, well 106, 1293.5m; e. bottom lag deposits, well 36, 1266.2m; f. channel scouring surface, well 106, 1292.9m
图 5 松辽盆地新民油田民36区块邻区M1井泉四段骨架砂体测井响应特征
a.分支河道测井响应特征;b.水下分支河道测井响应特征
Figure 5. Logging characteristics of framework sand bodies in Q4 Member of well M1 adjacent to Min 36 block, Xinmin Oilfield, Songliao Basin
a. logging response of distributary channel; b. logging response of underwater distributary channel
图 8 松辽盆地新民油田民36区块泉四段骨架单砂体空间发育模式图
a.分支河道单砂体发育模式(A/S< <1);b.分支河道单砂体发育模式(A/S≤1);c.水下分支河道单砂体发育模式(A/S≥1)
Figure 8. Spatial development pattern of framework single sand bodies of Q4 Member in Min 36 block, Xinmin Oilfield, Songliao Basin
a. the development pattern of distributary channel single sand bodies(A/S< <1); b. the development pattern of distributary channel single sand bodies(A/S≤1); c. the development pattern of underwater distributary channel single sand bodies(A/S≥1)
-
[1] 朱筱敏, 刘媛, 方庆, 等.大型坳陷湖盆浅水三角洲形成条件和沉积模式[J].地学前缘, 2012, 19 (1): 89-99. http://d.old.wanfangdata.com.cn/Periodical/dxqy201201013 ZHU Xiaomin, LIU Yuan, FANG Qing, et al. Formation and sedimentary model of shallow delta in large-scale lake. example from Cretaceous Quantou Formation in Sanzhao Sag, Songliao Basin[J]. Earth Science Frontiers, 2012, 19 (1): 89-99. http://d.old.wanfangdata.com.cn/Periodical/dxqy201201013
[2] Fisk H N, Kolb C R, Mcfarlan E, et al. Sedimentary framework of the modern Mississippi Delta[J]. Journal of Sedimentary Petrology, 1954, 24 (2): 76-99. doi: 10.1306/D4269661-2B26-11D7-8648000102C1865D
[3] Postma G. An analysis of the variation in delta architecture[J]. Terra Nova, 1990, 2 (2):124-130. doi: 10.1111/j.1365-3121.1990.tb00052.x
[4] Olariu C, Bhattacharya J P. Terminal distributary channels and delta front architecture of river-dominated delta systems[J]. Journal of Sedimentary Research, 2006, 76 (76): 212-233. http://www.researchgate.net/publication/228344063_Terminal_distributary_channels_and_delta_front_architecture_of_river-dominated_delta_systems
[5] Lee K, Mcmechan G A, Gani M R, et al. 3-D architecture and sequence stratigraphic evolution of a forced regressive top-truncated mixed-influenced delta, Cretaceous Wall Creek Sandstone, Wyoming, U.S.A.[J]. Journal of Sedimentary Research, 2007, 77 (4): 303-323. doi: 10.2110/jsr.2007.031
[6] Edmonds D, Slingerland R, Best J, et al. Response of river-dominated delta channel networks to permanent changes in river discharge[J]. Geophysical Research Letters, 2010, 37 (12): 107-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9fc6173ca3c032f53d3e5a3cb9d93030
[7] Geleynse N, Storms J E A, Walstra D J R, et al. Controls on river delta formation; insights from numerical modelling[J]. Earth and Planetary Science Letters, 2011, 302 (1-2): 217-226. doi: 10.1016/j.epsl.2010.12.013
[8] Hoy R G, Ridgway K D. Sedimentology and sequence stratigraphy of fan-delta and river-delta deposystems, Pennsylvanian Minturn Formation, Colorado[J]. AAPG Bulletin, 2003, 87(7): 1169-1191. doi: 10.1306/03110300127
[9] Leckie D A, Wallace-Dudley K E, Vanbeselaere N A, et al. Sedimentation in a low-accommodation setting: non-marine (Cretaceous) Mannville and marine (Jurassic) Ellis Groups, Manyberries Field, Southeastern Alberta[J]. AAPG Bulletin, 2004, 88 (10): 1391-1418. doi: 10.1306/05120403131
[10] Lemons D R, Chan M A. Facies Architecture and sequence stratigraphy of fine-grained lacustrine deltas along the eastern margin of Late Pleistocene Lake Bonneville, Northern Utah and Southern Idaho[J]. AAPG Bulletin, 1999, 83 (4): 635-665. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6f83824b1ac3c41bc75199105177c9aa
[11] Gani M R, Bhattacharya J P. Basic building blocks and process variability of a Cretaceous delta: internal facies architecture reveals a more dynamic interaction of river, wave, and tidal processes than is indicated by external ehape[J]. Journal of Sedimentary Research, 2007, 77 (4): 284-302. doi: 10.2110/jsr.2007.023
[12] 龚绍礼.河南禹县早二叠世晚期浅水三角洲沉积和聚煤环境[J].煤田地质与勘探, 1986, 6: 4-11. http://www.cnki.com.cn/Article/CJFDTotal-MDKT198606000.htm GONG Shaoli. Deposit of shallow-water delta and coal gather environment in Early Permian late stage, Yu County, Henan Province[J]. Coal Geology and Exploration, 1986, 6: 4-11. http://www.cnki.com.cn/Article/CJFDTotal-MDKT198606000.htm
[13] 施辉, 刘震, 连良达, 等.柴西南红柳泉地区古近系下干柴沟组下段浅水三角洲控砂特征[J].地球科学与环境学报, 2013, 35(3): 66-74. doi: 10.3969/j.issn.1672-6561.2013.03.006 SHI Hui, LIU Zhen, LIANG Lianda, et al. Sandbody-control characteristics of shallow water delta from lower member of Xiaganchaigou Formation in Hongliuquan Area of Southwestern Qaidam Basin[J]. Journal of Earth Sciences and Environment, 2013, 35 (3): 66-74. doi: 10.3969/j.issn.1672-6561.2013.03.006
[14] 蔡全升, 胡明毅, 胡忠贵, 等.退积型浅水三角洲沉积演化特征及砂体展布规律——以松辽盆地北部临江地区下白垩统泉头组四段为例[J].石油与天然气地质, 2016, 37 (6): 903-914. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201606012 CAI Quansheng, HU Mingyi, HU Zhonggui, et al. Sedimentary evolution and distribution of sand bodies of retrogradational shallow-water delta: a case study from 4th member of the Cretaceous Quantou Formation in the Lingjiang Area, Songliao Basin[J]. Oil and Gas Geology, 2016, 37 (6): 903-914. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201606012
[15] 邓庆杰, 刘新东, 康德江.松辽盆地双城区块扶余油层高分辨率层序格架下沉积相及砂体发育特征[J].古地理学报, 2018, 20 (2): 311-324. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201802011 DENG Qingjie, LIU Xindong, KANG Dejiang. Development and characteristics of sedimentary facies and sand-bodies of the Cretaceous Fuyu oil layer within high-resolution sequence framework, Shuangcheng Block, Songliao Basin[J]. Journal of Palaeogeography, 2018, 20 (2): 311-324. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201802011
[16] 张昌民, 尹太举, 朱永进, 等.浅水三角洲沉积模式[J].沉积学报, 2010, 28(5): 933-944. http://d.old.wanfangdata.com.cn/Periodical/yxyqc200702005 ZHANG Changmin, YIN Taiju, ZHU Yongjin, et al. Shallow-water deltas and models[J]. Acta Sedimentologica Sinica, 2010, 28 (5): 933-944. http://d.old.wanfangdata.com.cn/Periodical/yxyqc200702005
[17] 朱筱敏, 邓秀芹, 刘自亮, 等.大型坳陷湖盆浅水辫状河三角洲沉积特征及模式:以鄂尔多斯盆地陇东地区延长组为例[J].地学前缘, 2013, 20 (2): 19-28. http://d.old.wanfangdata.com.cn/Periodical/dxqy201302003 ZHU Xiaomin, DENG Xiuqin, LIU Ziliang, et al. Sedimentary charaterisitics and model of shallow braided delta in large-scale lacustrine: an example from Triassic Yanchang Formation in Ordos Basin[J]. Earth Science Frontiers, 2013, 20 (2): 19-28. http://d.old.wanfangdata.com.cn/Periodical/dxqy201302003
[18] 蔡佳, 祁鹏, 宋双.东海盆地西湖凹陷花港组下段沉积相分析[J].海洋地质与第四纪地质, 2017, 37 (2): 60-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201702007 CAI Jia, QI Peng, SONG Shuang. Sedimentary facies of the lower Huagang Formation in Xihu Depression of Donghai Basin[J]. Marine Geology & Quaternary Geology, 2017, 37 (2): 60-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201702007
[19] 孙雨, 董毅明, 王继平, 等.松辽盆地红岗北地区扶余油层储层单砂体分布模式[J].岩性油气藏, 2016, 28 (4): 9-15. doi: 10.3969/j.issn.1673-8926.2016.04.002 SUN Yu, DONG Yiming, WANG Jiping, et al. Distribution patterns of single sand body in Fuyu Oil Layer in the northern Honggang Area, Songliao Basin[J]. Lithologic Reservoirs, 2016, 28 (4): 9-15. doi: 10.3969/j.issn.1673-8926.2016.04.002
[20] 赵汉卿, 张建民, 李栓豹, 等.长周期基准面下降半旋回内浅水三角洲沉积演化规律及其在开发中的应用——以渤海A油田明下段为例[J].海洋地质与第四纪地质, 2018, 38 (5): 71-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201805007 ZHAO Hanqing, ZHANG Jianmin, LI Shuanbao, et al. Sedimentary evolution of a shallow-water delta in a long-term semin-cycle of base-level falling and its application to oilfield development—taking Oilfield A of Bohai Basin as an example[J]. Marine Geology & Quaternary Geology, 2018, 38 (5): 71-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201805007
[21] 孙雨, 马世忠, 丛琳, 等.松辽盆地扶新隆起带南部扶余油层沉积特征及沉积模式探讨[J].沉积学报, 2012, 30 (4): 706-715. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201204012 SUN Yu, MA Shizhong, CONG Lin, et al. Study on depositional characteristics and model of Fuyu oil layer in the southern Fuxin Uplift of Songliao Basin[J]. Acta Sedimentology Sinica, 2012, 30 (4): 706-715. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201204012
[22] 赖洪飞, 秦智, 王红军, 等.高频基准面旋回控制下浅水三角洲及其砂体发育模式:以松辽盆地扶余油田白垩系泉头组为例[J].古地理学报, 2017, 19 (4): 609-622. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201704004 LAI Hongfei, QIN Zhi, WANG Hongjun, et al. Development pattern of shallow-water delta and sandbodies under control of high-frequency base-level cycles: A case study of the Cretaceous Quantou Formation in Fuyu Oilfield, Songliao Basin [J]. Journal of Palaeogeography, 2017, 19 (4): 609-622. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201704004
[23] 王俊, 赵家宏, 滕军, 等.浅水三角洲前缘砂体地震沉积学研究——以松南乾安地区上白垩统青三段为例[J].沉积学报, 2018, 36 (3): 570-583. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201803012 WANG Jun, ZHAO Jiahong, TENG Jun, et al. Seismic sedimentology research on shallow water delta front sandbodies: a case study on Member 3 of Upper Cretaceous Qingshankou Formation in Qian'an Area, South Songliao Basin, NE China [J]. Acta Sedimentology Sinica, 2018, 36 (3): 570-583. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201803012
[24] 陈清华, 曾明, 章凤奇, 等.河流相储层单一河道的识别及其对油田开发的意义[J].油气地质与采收率, 2004, 11 (3): 13-15. doi: 10.3969/j.issn.1009-9603.2004.03.005 CHEN Qinghua, ZENG Ming, ZHANG Fengqi, et al. Identification of single channel in fluvial reservoir and its significance to the oilfield development[J]. Petroleum Geology and Recovery Efficiency, 2004, 11 (3): 13-15. doi: 10.3969/j.issn.1009-9603.2004.03.005
[25] 赵小庆, 鲍志东, 刘宗飞, 等.河控三角洲水下分流河道砂体储集层构型精细分析——以扶余油田探51区块为例[J].石油勘探与开发, 2013, 40 (2): 181-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201302008 ZHAO Xiaoqing, BAO Zhidong, LIU Zongfei, et al. An in-depth analysis of reservoir architecture of underwater distributary channel sand bodies in a river dominated delta: a case study of T51 Block, Fuyu Oilfield[J]. Petroleum Exploration and Development, 2013, 40 (2): 181-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201302008
[26] 肖佃师, 张飞飞, 卢双舫, 等.井震联合识别复合砂体中单一河道——以朝44区块扶余油层为例[J].石油地球物理勘探, 2016, 51 (1): 148-157. http://d.wanfangdata.com.cn/Periodical/sydqwlkt201601019 XIAO Dianshi, ZHANG Feifei, LU Shuangfang, et al. Single channel identification in compound sand bodies by well and seismic data integration: an example in area of Chao 44 Region, Fuyu Oilfield[J]. Oil Geophysical Prospecting, 2016, 51 (1): 148-157. http://d.wanfangdata.com.cn/Periodical/sydqwlkt201601019
[27] Leeder M R. Fluviatile fining-upward cycles and the magnitude of paleochannels[J]. Geological Magazine, 1973, 110 (3): 265-276. doi: 10.1017/S0016756800036098
[28] 邱隆伟, 杨保良, 张阳, 等.湖泊水位对三角洲前缘主要砂体类型的影响:以鄂尔多斯盆地神木地区侏罗系延安组剖面为例[J].古地理学报, 2016, 18 (6): 939-950. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201606004 QIU Longwei, YANG Baoliang, ZHANG Yang, et al. Lake level effect on main sandbodies of delta front: a case study from outcrops of the Jurassic Yan'an Formation in Shenmu Area, Ordos Basin[J]. Journal of Palaeogeography, 2016, 18 (6): 939-950. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201606004
[29] 张云峰, 刘宗堡, 赵容生, 等.三角洲平原亚相储层砂体静态连通性定量表征——以松辽盆地肇州油田扶余油层为例[J].中国矿业大学学报, 2017, 46 (6): 1314-1322. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201706015 ZHANG Yunfeng, LIU Zongbao, ZHAO Rongsheng, et al. Quantitative characterization of delta plainsubfacies reservoir sandbody static connectivity: taking Fuyu Oil Layer of Zhaozhou Oil Field in Songliao Basin as an example[J]. Journal of China University of Mining and Technology, 2017, 46 (6): 1314-1322. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201706015
[30] 郑荣才, 文华国, 李凤杰.高分辨率层序地层学[M].北京:地质出版社, 2010: 30-31. ZHENG Rongcai, WEN Huaguo, LI Fengjie. High-resolution Sequence Stratigraphy[M]. Beijing: Geological Publishing House, 2010: 30-31.
-
期刊类型引用(7)
1. 伍亮,李昆,周锋,谢春雨,唐大卿,张勇杰. 西湖凹陷冷泉亭地区断裂构造特征及演化. 海洋地质前沿. 2025(01): 31-43 . 百度学术
2. 马皓然,苏金宝,王毛毛,任培罡,谈明轩. 边缘海盆地断层差异演化成因的数值模拟:以西湖凹陷平北斜坡带为例. 海洋地质与第四纪地质. 2024(01): 81-95 . 本站查看
3. 张尚虎,黄建军,李昆,万丽芬,庄建建,王丹萍,王修平,蒋涔. 西湖凹陷孔雀亭地区复合圈闭发育模式与油气富集差异控制因素. 海洋地质与第四纪地质. 2023(01): 128-137 . 本站查看
4. 和子琛,刘豪,林鹤鸣,邱欣卫,汪旭东,剧永涛,阙晓明. 断陷湖盆坡折带-古沟谷对沉积的控制作用——以珠江口盆地海丰33洼陷古近系文昌组为例. 石油与天然气地质. 2023(02): 441-451 . 百度学术
5. 徐东浩,秦兰芝,何新建,张书平,袁悦. 西湖凹陷PH斜坡超覆带源-汇特征及岩性地层圈闭模式. 海相油气地质. 2023(02): 157-168 . 百度学术
6. 黎祺,蒋云鹏,徐博,石美雪,刘启楠. 西湖凹陷天然气井诱喷返排规律及主控因素研究. 天津科技. 2022(06): 80-84 . 百度学术
7. 黎祺,胡明毅,邓猛,王伟. 海上气田生产后期深层挖潜砂体预测——以西湖凹陷X气田为例. 科学技术与工程. 2021(29): 12422-12430 . 百度学术
其他类型引用(0)