松辽盆地新民油田下白垩统泉四段浅水三角洲骨架单砂体空间发育特征

李敏, 陈博, 阮金凤, 鲍志东, 臧东升, 郑金海, 肖杭州, 史经民

李敏, 陈博, 阮金凤, 鲍志东, 臧东升, 郑金海, 肖杭州, 史经民. 松辽盆地新民油田下白垩统泉四段浅水三角洲骨架单砂体空间发育特征[J]. 海洋地质与第四纪地质, 2019, 39(4): 46-55. DOI: 10.16562/j.cnki.0256-1492.2019010601
引用本文: 李敏, 陈博, 阮金凤, 鲍志东, 臧东升, 郑金海, 肖杭州, 史经民. 松辽盆地新民油田下白垩统泉四段浅水三角洲骨架单砂体空间发育特征[J]. 海洋地质与第四纪地质, 2019, 39(4): 46-55. DOI: 10.16562/j.cnki.0256-1492.2019010601
Min LI, Bo CHEN, Jinfeng RUAN, Zhidong BAO, Dongsheng ZANG, Jinhai ZHENG, Hangzhou XIAO, Jingmin SHI. Spatial distribution patterns of single framework sand bodies of a shallow-water delta in the Cretaceous Quantou Formation of Xinmin Oilfield, Songliao Basin[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 46-55. DOI: 10.16562/j.cnki.0256-1492.2019010601
Citation: Min LI, Bo CHEN, Jinfeng RUAN, Zhidong BAO, Dongsheng ZANG, Jinhai ZHENG, Hangzhou XIAO, Jingmin SHI. Spatial distribution patterns of single framework sand bodies of a shallow-water delta in the Cretaceous Quantou Formation of Xinmin Oilfield, Songliao Basin[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 46-55. DOI: 10.16562/j.cnki.0256-1492.2019010601

松辽盆地新民油田下白垩统泉四段浅水三角洲骨架单砂体空间发育特征

基金项目: 

国家重点研发计划“超深层有效储层形成机制、表征技术与分布预测” 2017YFC0603104

详细信息
    作者简介:

    李敏(1994—),女,硕士研究生,沉积学及古地理学方向,E-mail:liminupcqd@163.com

    通讯作者:

    鲍志东: 李敏(1994—),女,硕士研究生,沉积学及古地理学方向,E-mail:liminupcqd@163.com

  • 中图分类号: TE122

Spatial distribution patterns of single framework sand bodies of a shallow-water delta in the Cretaceous Quantou Formation of Xinmin Oilfield, Songliao Basin

  • 摘要: 以高分辨率层序地层学和储层构型理论为指导,利用岩芯、测井曲线和生产动态等资料,在沉积相分析的基础上,对松辽盆地新民油田白垩系泉四段浅水三角洲骨架单砂体空间发育特征进行系统研究并建立相关模式。研究表明,研究区泉四段主要发育浅水三角洲平原亚相和前缘亚相,分别以分支河道和水下分支河道为骨架砂体。泉四段整体处于湖平面上升的沉积背景,浅水三角洲不断向陆退积,骨架单砂体的空间发育特征表现出一定的规律性。可容空间与沉积物供应量的比值(A/S)是控制骨架单砂体空间发育特征的主要因素。A/S< <1时, 发育浅水三角洲平原沉积环境,分支河道单砂体垂向叠置样式主要为侧向切叠式和垂向切叠式,平面呈连片状展布;单砂体发育规模大,平均宽度为396~463m,平均厚度为5.2~5.8m。A/S≤1时,发育浅水三角洲平原沉积环境,分支河道单砂体垂向叠置样式主要为侧向叠加式和垂向叠加式,平面呈网状展布;单砂体发育规模较大,平均宽度为308~412m,平均厚度为4.2~5.2m。A/S>>1时,发育浅水三角洲前缘沉积环境,水下分支河道单砂体垂向叠置样式主要为孤立式,平面呈枝状展布;单砂体发育规模较小,平均宽度为165~325m,平均厚度为2.4~4.0m。
    Abstract: Guided by the principles of high-resolution sequence stratigraphy and reservoir architecture, the spatial distribution pattern of single framework sand bodies of the 4th Member of the Cretaceous Quantou Formation(K1q4) in the Min 36 block of Xinmin Oilfield of the Songliao Basin is studied. Some models have been established on the basis of depositional features acquired from cores, logging and production performance data. Shallow-water deltaic plain and front are well developed in the K1 q4 of the study area and their framework sand bodies are mainly the deposits of distributary channels and subaqueous distributary channels respectively. Research results suggest that during the deposition of K1q4, the lake level was rising. As the results, the shallow-water delta gradually retrograded toward the land. The A/S value is the main factor controlling the spatial distribution pattern of single sand bodies. When A/S value is far less than 1, there developed shallow water deltaic plain and the vertical stacking of single sand bodies are dominated by lateral and vertical tangency, and in view of plane distribution, sandbodies are contiguous. Individual sand bodies may reach 396 to 463 meters in length and 5.2 to 5.8 meters in width on average. However, when A/S value is less than or equal to 1, the vertical stacking patterns of single sand bodies are dominated by lateral and vertical superposition. In a plane view, sandbodies are distributed in a reticular pattern. Single sand bodies are 308 to 412 meters long and 4.2 to 5.2 meters wide on average. When A/S value is far more than 1, the sand bodies are dominated by a vertical stacking pattern by separated sandbodies, in the plane view, sandbodies are distributed in a dendritic pattern consisting of sand bodies 165 to 325 meters long and 2.4 to 4.0 meters wide on average.
  • 浅水三角洲是指发育在构造稳定、地形平缓、水体较浅、物源充足的盆地中,以分支河道和水下分支河道为骨架砂体,不具备吉尔伯特式三层结构的特殊类型三角洲。目前通常将浪基面作为浅水三角洲水体深度的下限[1]。浅水三角洲概念最早由Fisk[2]在1954年研究密西西比河三角洲时提出。自此国外学者纷纷开展大量研究工作,主要集中于浅水三角洲的发育背景[3-5]、沉积动力学[6, 7]、沉积特征[8, 9]、相构型[10, 11]等方面。国内浅水三角洲研究始于1986年,龚绍礼[12]首次在中国河南禹县早二叠世地层中发现浅水三角洲沉积。经过二十余年的油气地质勘探,在我国松辽盆地、鄂尔多斯盆地及渤海湾盆地等多个盆地中均发现有浅水三角洲发育。国内学者在浅水三角洲的砂体发育特征[13-15]、沉积模式[16-18]及单砂体刻画[19, 20]等方面取得了丰富的研究成果,为浅水三角洲相储层勘探开发提供了重要的理论指导。然而,目前浅水三角洲的单砂体刻画工作主要着眼于单砂体划分及单砂体叠置样式总结等方面,缺乏对单砂体空间发育特征及其变化规律的总结以及成因分析的系统研究。因此,笔者以松辽盆地新民油田民36区块下白垩统泉四段为研究对象,利用全区9口取心井资料、145口密井网测井资料等,开展分支河道及水下分支河道等骨架单砂体的精细刻画工作,分析骨架单砂体的空间发育特征及其变化规律,探讨其成因机制,为老油田精细调整挖潜提供理论依据。

    松辽盆地是中国东北部的一个大型中新生代陆相含油气盆地,面积约26万km2,以嫩江—第二松花江为界划分为南北两部分。其中松辽盆地南部可划分为西部斜坡区、中央坳陷区、东南隆起区和西南隆起区等4个一级构造单元。新民油田构造上位于松辽盆地南部中央坳陷区扶新隆起带向三肇凹陷倾没的斜坡上,研究区民36区块地处新民油田西南部(图 1)。

    图  1  松辽盆地新民油田民36区块位置
    Figure  1.  Location of Min 36 block in Xinmin Oilfield, Songliao Basin

    松辽盆地南部白垩系分为上白垩统和下白垩统,下白垩统自下而上包括沙河子组、营城组、登娄库组和泉头组,泉头组自下而上又划分为泉一段、泉二段、泉三段和泉四段。泉四段沉积时期,松辽盆地已具备大型坳陷湖盆特征,构造沉降稳定,地形平缓,盆广水浅,水体深度小于10m;古气候干旱,母源区风化作用强烈,物源供给充足[1]。研究区接受西南方向保康—通榆水系的物源供应,沉积了一套浅水三角洲相地层,厚度达100~130m,岩性主要为灰绿色泥岩与灰白色粉—细砂岩互层。泉四段为研究区主力含油层系,根据沉积韵律等特征自上而下划分为Ⅰ、Ⅱ、Ⅲ、Ⅳ共4个砂组,第Ⅰ砂组包括1—4小层,第Ⅱ砂组包括5—7小层,第Ⅲ砂组包括8—10小层,第Ⅳ砂组包括11—12小层(图 2)。

    图  2  松辽盆地地层综合柱状图
    Figure  2.  Integrated stratigraphic columns of Songliao Basin

    前人研究表明松辽盆地南部泉四段发育浅水三角洲沉积[21-23]。笔者结合岩心观察、薄片鉴定和测井相分析等手段,进一步对研究区泉四段的泥岩颜色、岩石类型、岩石结构、沉积构造、古生物化石及原生矿物等相标志(图 3)进行分析:(1)泥岩颜色可见灰绿色、杂色和紫红色,泉四段下部以灰绿色泥岩和紫红色泥岩间互发育为主,泉四段上部主要发育灰绿色泥岩,表明泉四段自下而上还原性逐渐增强,反映了湖平面波动上升;(2)岩石类型主要为长石质岩屑砂岩,偶见岩屑质长石砂岩和岩屑砂岩;(3)粒度分析表明砂岩颗粒直径平均为0.12~0.3mm,对应细—中粒,颗粒分选、磨圆较差,泉四段粒度概率图呈两段式特征,包括跳跃组分和悬浮组分,指示牵引流沉积;(4)沉积构造类型多样,发育冲刷—充填构造、泥裂及多种层理构造,其中槽状交错层理、楔状交错层理和平行层理多见于分支河道和水下分支河道等高能环境,波状层理多见于天然堤和决口扇等较低能环境,水平层理主要发育于分支河道间和水下分支河道间等低能环境;(5)古生物化石多见植物炭屑和介形虫,通常代表陆上河流沉积环境。此外,自生矿物可见草莓状黄铁矿,通常指示水下还原沉积环境。综上所述,研究区泉四段发育浅水三角洲沉积,进一步包括三角洲平原亚相和三角洲前缘亚相。其中三角洲平原亚相包括分支河道、支流间湾、天然堤、决口扇和漫滩砂等微相类型,三角洲前缘亚相包括水下分支河道、水下支流间湾和席状砂等微相类型,河口坝和远沙坝因波浪的破坏作用不甚发育。

    图  3  松辽盆地新民油田泉四段浅水三角洲相标志
    a.灰绿色泥岩,民31-3井,1125.6m;b.紫红色泥岩,民36井,1231.8m;c.草莓状黄铁矿,民106井,1190.6m;d.小型槽状交错层理,民106井,1293.5m;e.底部滞留沉积,民36井,1266.2m;f.河道冲刷面,民106井,1292.9m
    Figure  3.  Depositional features of shallow-water delta of K1 q4 of Xinmin Oilfield, Songliao Basin
    a. grayish-green mudstone, well 31-3, 1125.6m; b. purplish red mudstone, well 36, 1231.8m; c. strawberry pyrite, well 106, 1190.6m; d. small-scale trough cross bedding, well 106, 1293.5m; e. bottom lag deposits, well 36, 1266.2m; f. channel scouring surface, well 106, 1292.9m

    研究区泉四段整体处于湖平面不断上升的沉积背景,泉四段沉积初期,湖盆水体深度较浅,研究区主要发育浅水三角洲平原亚相,包括分支河道、天然堤、决口扇、漫滩砂和支流间湾等微相。分支河道平面上呈条带状展布,河道较稳定,毗邻分支河道发育天然堤和决口扇,分支河道之间广布泥质沉积,零星分布着漫滩砂。由于距离母源区较近,物源供应充足,形成以分支河道为骨架砂体的厚层连片砂体。由于浅水三角洲沉积地形平缓,湖平面变化能够引起沉积相带的快速迁移。伴随湖平面上升,浅水三角洲快速向陆退积,至泉四段沉积末期,研究区被浅水三角洲前缘亚相覆盖,发育水下分支河道、席状砂和水下支流间湾等微相。由于距离母源区较远,物源供应较不充足,水下分支河道受到湖水顶托作用大量分叉,河道宽度减小,厚度减薄,呈枝状形态展布,向湖盆延伸过程中受到波浪的改造作用越来越强烈,末端发生严重席状砂化(图 4)。

    图  4  松辽盆地新民油田泉四段浅水三角洲沉积模式
    Figure  4.  Depositional model of shallow-water delta in K1q4 of Xinmin Oilfield, Songliao Basin

    沉积微相研究表明,研究区泉四段浅水三角洲发育的骨架砂体类型主要为分支河道和水下分支河道。由于分支河道和水下分支河道的形成环境明显不同,其沉积特征也往往表现出差异性。

    分支河道发育在浅水三角洲平原亚相,平面上呈低弯度曲流型河道形态,河道内部以侧积和垂向加积作用为主。河流水动力强,洪水期河道两岸尤其是凹岸易发育天然堤、决口扇和漫滩砂等溢岸沉积。岩心观察及测井分析表明,分支河道主要发育灰白色细砂岩和粉砂岩,垂向序列表现为明显的正韵律,自下而上依次是:底部冲刷面、灰白色含泥砾细砂岩、交错层理灰白色细砂岩、波状层理灰白色粉砂岩或泥质粉砂岩、灰绿色或杂色泥岩。在自然伽马、电阻率等测井曲线上,分支河道表现为中高幅微齿化或光滑的钟形或箱形特征(图 5a)。

    图  5  松辽盆地新民油田民36区块邻区M1井泉四段骨架砂体测井响应特征
    a.分支河道测井响应特征;b.水下分支河道测井响应特征
    Figure  5.  Logging characteristics of framework sand bodies in Q4 Member of well M1 adjacent to Min 36 block, Xinmin Oilfield, Songliao Basin
    a. logging response of distributary channel; b. logging response of underwater distributary channel

    水下分支河道发育在浅水三角洲前缘亚相,是平原分支河道在水下的继承性发育。但由于水下分支河道易受到波浪作用,河道分支、改道频繁,平面上表现为顺直型河道形态,河道内部以垂向加积作用为主。水下分支河道两侧甚少发育溢岸沉积,河道间多分布席状砂体,是由沿岸湖流对水下分支河道砂体侧向搬运形成。伴随短期湖平面上升,受到湖水的顶托作用,河流水动力减弱,河道纵向延伸受到限制,河道内部泥质夹层十分发育。

    岩心观察及测井分析表明,水下分支河道的岩性主要为灰色粉砂岩和细砂岩,含有灰绿色泥质夹层,垂向上表现为间断性正韵律。与分支河道相比,水下分支河道砂体厚度较薄,碎屑粒度较细,分选磨圆较好。沉积构造主要发育块状层理和冲刷构造,冲刷面的规模较小,其上几乎不分布滞留沉积。在自然伽马、电阻率等测井曲线上,水下分支河道表现为中低幅锯齿化钟形或箱形特征(图 5b)。

    在对分支河道和水下分支河道骨架砂体类型识别的基础上,从定性和定量两个方面分别对骨架单砂体的空间发育特征进行表征:总结超短期基准面旋回控制下骨架单砂体的垂向叠置样式和平面展布特征;利用密井网资料对骨架单砂体的宽度和厚度进行统计,建立单砂体宽度与厚度的相关关系。

    根据“废弃河道”、“河道间泥质沉积”、“河道砂体厚度差异”及“河道顶面高程差异”等边界识别标志划分出单一分支河道及单一水下分支河道[24-26],在此基础上对单砂体叠置样式进行分析。结果表明,新民油田民36区块泉四段分支河道及水下分支河道单砂体叠置样式主要有以下5种(图 6):

    图  6  松辽盆地新民油田民36区块泉四段骨架单砂体连井剖面图
    Figure  6.  A profile of framework single sand bodies of Q4 Member in Min 36 block, Xinmin Oilfield, Songliao Basin

    (1) 侧向切叠式:两期河道单砂体侧向上大面积叠置,后一期河道单砂体对前一期河道单砂体造成较明显的侵蚀、切割。两期单砂体切叠处视电阻率曲线有较明显的回返,整体上表现为复合箱型或复合钟型;两期单砂体未切叠处视电阻率曲线为单一的箱型或钟型。侧向切叠式主要分布于泉四段第Ⅳ砂组。

    (2) 垂向切叠式:两期河道单砂体垂向上大面积叠置,后一期河道单砂体对前一期河道单砂体造成明显的侵蚀、切割。两期单砂体向中间方向厚度变化不明显,且两期单砂体叠置处视电阻率曲线有较明显的回返,整体上表现为复合箱型或复合钟型。垂向切叠式主要分布于泉四段第Ⅲ砂组。

    (3) 侧向叠加式:两期河道单砂体侧向上较大面积接触,后一期河道单砂体对前一期河道单砂体未造成明显的冲刷侵蚀,两期河道之间残存有细粒沉积。两期单砂体向中间方向厚度逐渐减薄,且两期单砂体拼接处视电阻率曲线有明显的回返,整体上表现为阶梯状箱型或钟型组合形态。侧向叠置式主要分布于第Ⅱ砂组。

    (4) 垂向叠加式:两期河道单砂体垂向上较大面积接触,后一期河道单砂体对前一期河道单砂体未造成明显的冲刷侵蚀,两期河道之间残存有细粒沉积。两期单砂体叠置处视电阻率曲线有明显的回返,整体上表现为阶梯状箱型或钟型组合形态。垂向叠加式主要分布于第Ⅱ、Ⅲ砂组。

    (5) 孤立式:两期河道单砂体被厚层细粒沉积分隔开,彼此孤立分布。两期单砂体视电阻率曲线均表现为独立的箱型或钟型。孤立式主要分布于第Ⅰ砂组。

    以超短期基准面旋回为作图单元,编制了分支河道及水下分支河道单砂体平面分布图,并总结出连片状、网状和枝状3种主要的单砂体平面展布形态。

    (1) 连片状分支河道:平面上分支河道发育,河道宽度大且分叉数量多,河道间大面积侧向切叠,连接成片,从而构成连片状展布形态。连片状分支河道多发育于物源供应充足的浅水三角洲平原亚相,主要分布在研究区泉四段第Ⅳ砂组。

    (2) 网状分支河道:平面上分支河道较发育,河道宽度较大且分叉数量较多,河道间局部侧向拼接,从而构成网状展布形态。网状分支河道多发育于物源供应充足的浅水三角洲平原亚相,主要分布在研究区泉四段第Ⅱ、Ⅲ砂组。

    (3) 枝状水下分支河道:平面上水下分支河道较不发育,河道宽度较窄且分叉数量较少,河道间多被水下支流间湾分隔,互相孤立分布,从而构成枝状展布形态。枝状水下分支河道主要发育于物源供应较为充足的浅水三角洲前缘亚相沉积,主要分布在研究区泉四段第Ⅰ砂组。

    古代三角洲露头解剖及现代三角洲沉积研究表明,河道的宽度和深度存在定量关系[27-29]。利用密井网资料,对研究区泉四段各超短期旋回内部发育的分支河道及水下分支河道单砂体的宽度和厚度进行统计,并建立单砂体的宽厚比定量预测模型。

    (1) 分支河道单砂体定量表征

    研究区泉四段第Ⅱ—Ⅳ砂组为浅水三角洲平原亚相沉积,其骨架砂体为分支河道砂体。自下而上依次对第12~5小层分支河道单砂体的宽度和厚度进行统计,并建立了分支河道单砂体宽度和厚度的相关关系(图 7)。结果表明,分支河道单砂体的平均宽度为308~463m,平均厚度为4.2~5.8m,平均宽厚比为68~86。自下而上,分支河道单砂体的宽度和厚度都呈减小趋势,且宽度的减小趋势略快于厚度的减小趋势,宽厚比略有下降。

    图  7  松辽盆地新民油田民36区块泉四段单砂体宽度和厚度的相关关系
    Figure  7.  Correlation between width and thickness of single sand bodies of Q4 Member in Min 36 Block, Xinmin Oilfield, Songliao Basin

    (2) 水下分支河道单砂体定量表征

    研究区泉四段第Ⅰ砂组为浅水三角洲前缘亚相沉积,其骨架砂体为水下分支河道砂体。自下而上依次对第4、3小层内水下分支河道单砂体的宽度和厚度进行统计,并建立了水下分支河道单砂体宽度和厚度的相关关系(图 7)。结果表明,水下分支河道单砂体不甚发育,规模较小,平均宽度为165~325m,平均厚度为2.4~4.0m,平均宽厚比为60~73。自下而上,水下分支河道单砂体的宽度和厚度都呈减小趋势。

    A/S比值受构造运动、气候和湖平面升降等因素的共同影响[30],然而,对于新民油田泉四段浅水三角洲而言,由于构造相对稳定、地形坡度平缓,湖平面升降成为影响A/S比值的关键因素。而A/S比值进一步控制了单砂体的空间发育特征。湖平面较低时,可容空间较小,沉积物源供给相对充足,A/S比值较小,形成以分支河道为骨架的浅水三角洲平原沉积环境,分支河道砂体在空间上切割叠置现象严重,砂体连片程度很高。随着湖平面上升,湖盆面积不断扩大,可容空间不断增大,沉积物源供给相对减少,A/S比值逐渐增大,水上平原沉积环境逐渐被水下前缘沉积环境所替代,此时分支河道砂体在空间上的下切侵蚀程度大大减弱,多为叠置接触,砂体连片程度降低。当湖平面上升达到最高时,湖盆分布范围最广,可容空间达到最大,沉积物源供给相对不足,A/S比值接近∞,形成以水下分支河道为骨架的浅水三角洲前缘沉积环境,水下分支河道砂体几乎呈孤立式发育。

    受A/S比值变化的影响,研究区泉四段的骨架单砂体的空间发育特征呈现规律性变化。研究区泉四段整体表现为一个长期基准面上升半旋回,在基准面上升的早期,A/S< <1,水体深度较浅,可容纳空间较小,物源供应相对充足,旋回内部发育浅水三角洲平原亚相沉积,骨架砂体为分支河道。该时期分支河道单砂体彼此切割叠置,垂向上呈侧向切叠式和垂向切叠式分布,平面上呈连片状或网状—连片状展布。分支河道单砂体规模大,平均宽度为396~463m,平均厚度为5.2~5.8m(图 8a)。

    图  8  松辽盆地新民油田民36区块泉四段骨架单砂体空间发育模式图
    a.分支河道单砂体发育模式(A/S< <1);b.分支河道单砂体发育模式(A/S≤1);c.水下分支河道单砂体发育模式(A/S≥1)
    Figure  8.  Spatial development pattern of framework single sand bodies of Q4 Member in Min 36 block, Xinmin Oilfield, Songliao Basin
    a. the development pattern of distributary channel single sand bodies(A/S< <1); b. the development pattern of distributary channel single sand bodies(A/S≤1); c. the development pattern of underwater distributary channel single sand bodies(A/S≥1)

    在长期基准面上升的中期,A/S≤1,水体深度快速增加,可容空间相对增大,物源供应相对充足,旋回内部仍发育浅水三角洲平原亚相沉积,骨架砂体为分支河道。该时期分支河道单砂体彼此接触,垂向上呈侧向叠加式和垂向叠加式分布,平面上呈网状或枝状—网状展布。分支河道单砂体规模较大,平均宽度为308~412m,平均厚度为4.2~5.2m(图 8b)。

    在长期基准面上升的晚期,A/S>>1,水体深度达到最大,可容纳空间接近最大,物源供应相对较少。由于湖平面上升幅度较大,研究区未出现浅水三角洲平原到前缘亚相的过渡,直接没于水下,发育以水下分支河道为骨架的浅水三角洲前缘沉积。该时期垂向上,水下分支河道单砂体彼此分离,呈孤立式分布,平面上呈枝状展布。水下分支河道单砂体规模较小,平均宽度为165~325m,平均厚度为2.4~4.0m(图 8c)。

    (1) 区域沉积构造背景和相标志分析表明,新民油田民36区块发育浅水三角洲沉积。三角洲平原物源供给较为充足,分支河道、天然堤和决口扇砂体广泛连片发育;三角洲前缘物源供给相对不充足,受波浪改造作用强烈,水下分支河道在平面上呈枝状展布,其末端席状砂化。泉四段整体处于湖平面上升的沉积背景,浅水三角洲不断向陆退积。

    (2) 新民油田民36区块泉四段浅水三角洲发育的骨架砂体类型主要是分支河道和水下分支河道。分支河道与水下分支河道相比,砂体厚度较大,砂体粒度较粗,泥质含量较低,且底部冲刷面上常常发育滞留沉积,电测曲线的锯齿化程度较低。

    (3) 在长期基准面上升背景下,受控于A/S比值,新民油田民36区块泉四段骨架单砂体的空间发育特征呈现规律性变化。自下而上,随着A/S比值不断增大,骨架单砂体垂向叠置样式由切叠式(侧向切叠式和垂向切叠式)逐渐向叠加式(侧向叠加式和垂向叠加式)和孤立式变化;平面连片复合程度逐渐变差,由连片状向网状和枝状变化;骨架单砂体的规模逐渐变小,宽厚比呈下降趋势。

    (4) 通过精细刻画浅水三角洲骨架单砂体的空间发育特征,不仅丰富了浅水三角洲储层构型理论研究,而且为松辽盆地新民油田高含水期剩余油调整挖潜工作奠定基础。

  • 图  1   松辽盆地新民油田民36区块位置

    Figure  1.   Location of Min 36 block in Xinmin Oilfield, Songliao Basin

    图  2   松辽盆地地层综合柱状图

    Figure  2.   Integrated stratigraphic columns of Songliao Basin

    图  3   松辽盆地新民油田泉四段浅水三角洲相标志

    a.灰绿色泥岩,民31-3井,1125.6m;b.紫红色泥岩,民36井,1231.8m;c.草莓状黄铁矿,民106井,1190.6m;d.小型槽状交错层理,民106井,1293.5m;e.底部滞留沉积,民36井,1266.2m;f.河道冲刷面,民106井,1292.9m

    Figure  3.   Depositional features of shallow-water delta of K1 q4 of Xinmin Oilfield, Songliao Basin

    a. grayish-green mudstone, well 31-3, 1125.6m; b. purplish red mudstone, well 36, 1231.8m; c. strawberry pyrite, well 106, 1190.6m; d. small-scale trough cross bedding, well 106, 1293.5m; e. bottom lag deposits, well 36, 1266.2m; f. channel scouring surface, well 106, 1292.9m

    图  4   松辽盆地新民油田泉四段浅水三角洲沉积模式

    Figure  4.   Depositional model of shallow-water delta in K1q4 of Xinmin Oilfield, Songliao Basin

    图  5   松辽盆地新民油田民36区块邻区M1井泉四段骨架砂体测井响应特征

    a.分支河道测井响应特征;b.水下分支河道测井响应特征

    Figure  5.   Logging characteristics of framework sand bodies in Q4 Member of well M1 adjacent to Min 36 block, Xinmin Oilfield, Songliao Basin

    a. logging response of distributary channel; b. logging response of underwater distributary channel

    图  6   松辽盆地新民油田民36区块泉四段骨架单砂体连井剖面图

    Figure  6.   A profile of framework single sand bodies of Q4 Member in Min 36 block, Xinmin Oilfield, Songliao Basin

    图  7   松辽盆地新民油田民36区块泉四段单砂体宽度和厚度的相关关系

    Figure  7.   Correlation between width and thickness of single sand bodies of Q4 Member in Min 36 Block, Xinmin Oilfield, Songliao Basin

    图  8   松辽盆地新民油田民36区块泉四段骨架单砂体空间发育模式图

    a.分支河道单砂体发育模式(A/S< <1);b.分支河道单砂体发育模式(A/S≤1);c.水下分支河道单砂体发育模式(A/S≥1)

    Figure  8.   Spatial development pattern of framework single sand bodies of Q4 Member in Min 36 block, Xinmin Oilfield, Songliao Basin

    a. the development pattern of distributary channel single sand bodies(A/S< <1); b. the development pattern of distributary channel single sand bodies(A/S≤1); c. the development pattern of underwater distributary channel single sand bodies(A/S≥1)

  • [1] 朱筱敏, 刘媛, 方庆, 等.大型坳陷湖盆浅水三角洲形成条件和沉积模式[J].地学前缘, 2012, 19 (1): 89-99. http://d.old.wanfangdata.com.cn/Periodical/dxqy201201013

    ZHU Xiaomin, LIU Yuan, FANG Qing, et al. Formation and sedimentary model of shallow delta in large-scale lake. example from Cretaceous Quantou Formation in Sanzhao Sag, Songliao Basin[J]. Earth Science Frontiers, 2012, 19 (1): 89-99. http://d.old.wanfangdata.com.cn/Periodical/dxqy201201013

    [2]

    Fisk H N, Kolb C R, Mcfarlan E, et al. Sedimentary framework of the modern Mississippi Delta[J]. Journal of Sedimentary Petrology, 1954, 24 (2): 76-99. doi: 10.1306/D4269661-2B26-11D7-8648000102C1865D

    [3]

    Postma G. An analysis of the variation in delta architecture[J]. Terra Nova, 1990, 2 (2):124-130. doi: 10.1111/j.1365-3121.1990.tb00052.x

    [4]

    Olariu C, Bhattacharya J P. Terminal distributary channels and delta front architecture of river-dominated delta systems[J]. Journal of Sedimentary Research, 2006, 76 (76): 212-233. http://www.researchgate.net/publication/228344063_Terminal_distributary_channels_and_delta_front_architecture_of_river-dominated_delta_systems

    [5]

    Lee K, Mcmechan G A, Gani M R, et al. 3-D architecture and sequence stratigraphic evolution of a forced regressive top-truncated mixed-influenced delta, Cretaceous Wall Creek Sandstone, Wyoming, U.S.A.[J]. Journal of Sedimentary Research, 2007, 77 (4): 303-323. doi: 10.2110/jsr.2007.031

    [6]

    Edmonds D, Slingerland R, Best J, et al. Response of river-dominated delta channel networks to permanent changes in river discharge[J]. Geophysical Research Letters, 2010, 37 (12): 107-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9fc6173ca3c032f53d3e5a3cb9d93030

    [7]

    Geleynse N, Storms J E A, Walstra D J R, et al. Controls on river delta formation; insights from numerical modelling[J]. Earth and Planetary Science Letters, 2011, 302 (1-2): 217-226. doi: 10.1016/j.epsl.2010.12.013

    [8]

    Hoy R G, Ridgway K D. Sedimentology and sequence stratigraphy of fan-delta and river-delta deposystems, Pennsylvanian Minturn Formation, Colorado[J]. AAPG Bulletin, 2003, 87(7): 1169-1191. doi: 10.1306/03110300127

    [9]

    Leckie D A, Wallace-Dudley K E, Vanbeselaere N A, et al. Sedimentation in a low-accommodation setting: non-marine (Cretaceous) Mannville and marine (Jurassic) Ellis Groups, Manyberries Field, Southeastern Alberta[J]. AAPG Bulletin, 2004, 88 (10): 1391-1418. doi: 10.1306/05120403131

    [10]

    Lemons D R, Chan M A. Facies Architecture and sequence stratigraphy of fine-grained lacustrine deltas along the eastern margin of Late Pleistocene Lake Bonneville, Northern Utah and Southern Idaho[J]. AAPG Bulletin, 1999, 83 (4): 635-665. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6f83824b1ac3c41bc75199105177c9aa

    [11]

    Gani M R, Bhattacharya J P. Basic building blocks and process variability of a Cretaceous delta: internal facies architecture reveals a more dynamic interaction of river, wave, and tidal processes than is indicated by external ehape[J]. Journal of Sedimentary Research, 2007, 77 (4): 284-302. doi: 10.2110/jsr.2007.023

    [12] 龚绍礼.河南禹县早二叠世晚期浅水三角洲沉积和聚煤环境[J].煤田地质与勘探, 1986, 6: 4-11. http://www.cnki.com.cn/Article/CJFDTotal-MDKT198606000.htm

    GONG Shaoli. Deposit of shallow-water delta and coal gather environment in Early Permian late stage, Yu County, Henan Province[J]. Coal Geology and Exploration, 1986, 6: 4-11. http://www.cnki.com.cn/Article/CJFDTotal-MDKT198606000.htm

    [13] 施辉, 刘震, 连良达, 等.柴西南红柳泉地区古近系下干柴沟组下段浅水三角洲控砂特征[J].地球科学与环境学报, 2013, 35(3): 66-74. doi: 10.3969/j.issn.1672-6561.2013.03.006

    SHI Hui, LIU Zhen, LIANG Lianda, et al. Sandbody-control characteristics of shallow water delta from lower member of Xiaganchaigou Formation in Hongliuquan Area of Southwestern Qaidam Basin[J]. Journal of Earth Sciences and Environment, 2013, 35 (3): 66-74. doi: 10.3969/j.issn.1672-6561.2013.03.006

    [14] 蔡全升, 胡明毅, 胡忠贵, 等.退积型浅水三角洲沉积演化特征及砂体展布规律——以松辽盆地北部临江地区下白垩统泉头组四段为例[J].石油与天然气地质, 2016, 37 (6): 903-914. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201606012

    CAI Quansheng, HU Mingyi, HU Zhonggui, et al. Sedimentary evolution and distribution of sand bodies of retrogradational shallow-water delta: a case study from 4th member of the Cretaceous Quantou Formation in the Lingjiang Area, Songliao Basin[J]. Oil and Gas Geology, 2016, 37 (6): 903-914. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201606012

    [15] 邓庆杰, 刘新东, 康德江.松辽盆地双城区块扶余油层高分辨率层序格架下沉积相及砂体发育特征[J].古地理学报, 2018, 20 (2): 311-324. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201802011

    DENG Qingjie, LIU Xindong, KANG Dejiang. Development and characteristics of sedimentary facies and sand-bodies of the Cretaceous Fuyu oil layer within high-resolution sequence framework, Shuangcheng Block, Songliao Basin[J]. Journal of Palaeogeography, 2018, 20 (2): 311-324. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201802011

    [16] 张昌民, 尹太举, 朱永进, 等.浅水三角洲沉积模式[J].沉积学报, 2010, 28(5): 933-944. http://d.old.wanfangdata.com.cn/Periodical/yxyqc200702005

    ZHANG Changmin, YIN Taiju, ZHU Yongjin, et al. Shallow-water deltas and models[J]. Acta Sedimentologica Sinica, 2010, 28 (5): 933-944. http://d.old.wanfangdata.com.cn/Periodical/yxyqc200702005

    [17] 朱筱敏, 邓秀芹, 刘自亮, 等.大型坳陷湖盆浅水辫状河三角洲沉积特征及模式:以鄂尔多斯盆地陇东地区延长组为例[J].地学前缘, 2013, 20 (2): 19-28. http://d.old.wanfangdata.com.cn/Periodical/dxqy201302003

    ZHU Xiaomin, DENG Xiuqin, LIU Ziliang, et al. Sedimentary charaterisitics and model of shallow braided delta in large-scale lacustrine: an example from Triassic Yanchang Formation in Ordos Basin[J]. Earth Science Frontiers, 2013, 20 (2): 19-28. http://d.old.wanfangdata.com.cn/Periodical/dxqy201302003

    [18] 蔡佳, 祁鹏, 宋双.东海盆地西湖凹陷花港组下段沉积相分析[J].海洋地质与第四纪地质, 2017, 37 (2): 60-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201702007

    CAI Jia, QI Peng, SONG Shuang. Sedimentary facies of the lower Huagang Formation in Xihu Depression of Donghai Basin[J]. Marine Geology & Quaternary Geology, 2017, 37 (2): 60-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201702007

    [19] 孙雨, 董毅明, 王继平, 等.松辽盆地红岗北地区扶余油层储层单砂体分布模式[J].岩性油气藏, 2016, 28 (4): 9-15. doi: 10.3969/j.issn.1673-8926.2016.04.002

    SUN Yu, DONG Yiming, WANG Jiping, et al. Distribution patterns of single sand body in Fuyu Oil Layer in the northern Honggang Area, Songliao Basin[J]. Lithologic Reservoirs, 2016, 28 (4): 9-15. doi: 10.3969/j.issn.1673-8926.2016.04.002

    [20] 赵汉卿, 张建民, 李栓豹, 等.长周期基准面下降半旋回内浅水三角洲沉积演化规律及其在开发中的应用——以渤海A油田明下段为例[J].海洋地质与第四纪地质, 2018, 38 (5): 71-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201805007

    ZHAO Hanqing, ZHANG Jianmin, LI Shuanbao, et al. Sedimentary evolution of a shallow-water delta in a long-term semin-cycle of base-level falling and its application to oilfield development—taking Oilfield A of Bohai Basin as an example[J]. Marine Geology & Quaternary Geology, 2018, 38 (5): 71-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201805007

    [21] 孙雨, 马世忠, 丛琳, 等.松辽盆地扶新隆起带南部扶余油层沉积特征及沉积模式探讨[J].沉积学报, 2012, 30 (4): 706-715. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201204012

    SUN Yu, MA Shizhong, CONG Lin, et al. Study on depositional characteristics and model of Fuyu oil layer in the southern Fuxin Uplift of Songliao Basin[J]. Acta Sedimentology Sinica, 2012, 30 (4): 706-715. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201204012

    [22] 赖洪飞, 秦智, 王红军, 等.高频基准面旋回控制下浅水三角洲及其砂体发育模式:以松辽盆地扶余油田白垩系泉头组为例[J].古地理学报, 2017, 19 (4): 609-622. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201704004

    LAI Hongfei, QIN Zhi, WANG Hongjun, et al. Development pattern of shallow-water delta and sandbodies under control of high-frequency base-level cycles: A case study of the Cretaceous Quantou Formation in Fuyu Oilfield, Songliao Basin [J]. Journal of Palaeogeography, 2017, 19 (4): 609-622. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201704004

    [23] 王俊, 赵家宏, 滕军, 等.浅水三角洲前缘砂体地震沉积学研究——以松南乾安地区上白垩统青三段为例[J].沉积学报, 2018, 36 (3): 570-583. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201803012

    WANG Jun, ZHAO Jiahong, TENG Jun, et al. Seismic sedimentology research on shallow water delta front sandbodies: a case study on Member 3 of Upper Cretaceous Qingshankou Formation in Qian'an Area, South Songliao Basin, NE China [J]. Acta Sedimentology Sinica, 2018, 36 (3): 570-583. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201803012

    [24] 陈清华, 曾明, 章凤奇, 等.河流相储层单一河道的识别及其对油田开发的意义[J].油气地质与采收率, 2004, 11 (3): 13-15. doi: 10.3969/j.issn.1009-9603.2004.03.005

    CHEN Qinghua, ZENG Ming, ZHANG Fengqi, et al. Identification of single channel in fluvial reservoir and its significance to the oilfield development[J]. Petroleum Geology and Recovery Efficiency, 2004, 11 (3): 13-15. doi: 10.3969/j.issn.1009-9603.2004.03.005

    [25] 赵小庆, 鲍志东, 刘宗飞, 等.河控三角洲水下分流河道砂体储集层构型精细分析——以扶余油田探51区块为例[J].石油勘探与开发, 2013, 40 (2): 181-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201302008

    ZHAO Xiaoqing, BAO Zhidong, LIU Zongfei, et al. An in-depth analysis of reservoir architecture of underwater distributary channel sand bodies in a river dominated delta: a case study of T51 Block, Fuyu Oilfield[J]. Petroleum Exploration and Development, 2013, 40 (2): 181-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201302008

    [26] 肖佃师, 张飞飞, 卢双舫, 等.井震联合识别复合砂体中单一河道——以朝44区块扶余油层为例[J].石油地球物理勘探, 2016, 51 (1): 148-157. http://d.wanfangdata.com.cn/Periodical/sydqwlkt201601019

    XIAO Dianshi, ZHANG Feifei, LU Shuangfang, et al. Single channel identification in compound sand bodies by well and seismic data integration: an example in area of Chao 44 Region, Fuyu Oilfield[J]. Oil Geophysical Prospecting, 2016, 51 (1): 148-157. http://d.wanfangdata.com.cn/Periodical/sydqwlkt201601019

    [27]

    Leeder M R. Fluviatile fining-upward cycles and the magnitude of paleochannels[J]. Geological Magazine, 1973, 110 (3): 265-276. doi: 10.1017/S0016756800036098

    [28] 邱隆伟, 杨保良, 张阳, 等.湖泊水位对三角洲前缘主要砂体类型的影响:以鄂尔多斯盆地神木地区侏罗系延安组剖面为例[J].古地理学报, 2016, 18 (6): 939-950. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201606004

    QIU Longwei, YANG Baoliang, ZHANG Yang, et al. Lake level effect on main sandbodies of delta front: a case study from outcrops of the Jurassic Yan'an Formation in Shenmu Area, Ordos Basin[J]. Journal of Palaeogeography, 2016, 18 (6): 939-950. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201606004

    [29] 张云峰, 刘宗堡, 赵容生, 等.三角洲平原亚相储层砂体静态连通性定量表征——以松辽盆地肇州油田扶余油层为例[J].中国矿业大学学报, 2017, 46 (6): 1314-1322. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201706015

    ZHANG Yunfeng, LIU Zongbao, ZHAO Rongsheng, et al. Quantitative characterization of delta plainsubfacies reservoir sandbody static connectivity: taking Fuyu Oil Layer of Zhaozhou Oil Field in Songliao Basin as an example[J]. Journal of China University of Mining and Technology, 2017, 46 (6): 1314-1322. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201706015

    [30] 郑荣才, 文华国, 李凤杰.高分辨率层序地层学[M].北京:地质出版社, 2010: 30-31.

    ZHENG Rongcai, WEN Huaguo, LI Fengjie. High-resolution Sequence Stratigraphy[M]. Beijing: Geological Publishing House, 2010: 30-31.

  • 期刊类型引用(8)

    1. 武芳芳,瞿璇,周宁杰,朱薇,李彦兵,周小平,张东阁,张庆军,郭岭. 鄂尔多斯盆地五蛟西地区长6段单砂体叠置特征研究. 地质科学. 2024(04): 1034-1047 . 百度学术
    2. 曹洪. 大庆长垣外围葡萄花油层河道砂储层单砂体精细刻画新方法. 中外能源. 2023(07): 33-41 . 百度学术
    3. 刘庆海,王博涛,阮金凤,阎娜,朱玉双. 环江油田L158区块长8_1~2段水下分流河道单砂体空间组合样式及其对剩余油分布的影响. 油气地质与采收率. 2022(02): 23-33 . 百度学术
    4. 任奕霖,赵俊峰,陈佳宇,关新,宋璟淦. 鄂尔多斯盆地浅水三角洲前缘沉积特征与砂体构型——以宜川仕望河剖面长9油层组为例. 新疆石油地质. 2022(03): 310-319 . 百度学术
    5. 鲍志东,李忠诚,陈栗,吴凡,牛博,魏兆胜,王振军,封从军,周新茂,张莉,臧东升,李泉泉,刘锐,万谱,李磊. 成熟探区相控油藏储集体精细表征与产能劈分. 中国石油勘探. 2022(03): 61-77 . 百度学术
    6. 武田田,商斐,陈睿倩,钟志. 松辽盆地青山口组页岩有机碳含量分布特征. 地球科学. 2022(11): 4309-4318 . 百度学术
    7. 王夏斌,姜在兴,胡光义,范廷恩,范洪军,何明薇,陈飞. 浅水三角洲分流河道沉积模式分类. 地球科学与环境学报. 2020(05): 654-667 . 百度学术
    8. 王新宇,王德海,王思琳,王金娜,刘奇,贾雨东. 松辽盆地南部永平油田泉四段油气成藏条件分析. 世界地质. 2020(02): 388-397 . 百度学术

    其他类型引用(10)

图(8)
计量
  • 文章访问数:  3433
  • HTML全文浏览量:  757
  • PDF下载量:  68
  • 被引次数: 18
出版历程
  • 收稿日期:  2019-01-05
  • 修回日期:  2019-04-10
  • 刊出日期:  2019-08-27

目录

/

返回文章
返回