Second-order climatic cycles in the Chinese Loess Plateau and their bearing on precession driving
-
摘要: 以黄土高原普遍存在的次级古土壤为基础,结合粒度资料和磁化率资料,对黄土高原的次级气候阶段进行了划分与对比,初步建立了黄土高原L21以来的次级气候旋回序列。以北半球夏至日在近日点和远日点为界,将岁差旋回转变为北半球"理想岁差气候旋回",并与黄土高原次级气候旋回逐一对比,发现L21以来的72个岁差旋回中,共发育了122个次级气候阶段,合61个次级气候旋回。除去岁差变化微弱的时段,黄土高原次级气候旋回与理想岁差旋回间几乎是一一对应的关系。从而认为,黄土高原的次级气候旋回主要由岁差旋回驱动。与反映全球变化的一级气候旋回相比,黄土高原的次级气候旋回凸显了具有半球效应的岁差旋回在黄土高原气候变化中的作用。黄土高原的次级气候旋回一定程度上受到冰期旋回的遮掩,需要在高原各地往复追索才能清楚揭示。黄土高原的次级气候旋回不仅可以作为地层划分与对比的基本单元,也由于岁差的约束而在一定程度上具有了绝对年代的意义,在地层划分和古气候研究中应引起足够的重视。Abstract: Sub-palaeosols are commonly observed in the Chinese Loess Plateau (CLP). Based on the grain size and magnetic susceptibility data, second-order climatic stages (SOCC) of the CLP are further divided and correlated, and the sequence of SOCC after L21 is preliminarily established in this paper. Taking the Northern Hemisphere summer solstice at perihelion and apohelion as boundaries, precession cycles are transformed into the “Ideal precession climatic cycle” (IPCC) for the Northern Hemisphere. Correlated with the SOCC established in the Loess Plateau, it is found that there are 122 second order climatic stages, corresponding to 61 secondary climatic cycles, could be identified in the 72 precession cycles since L21. Except for the stages which are too weak in precession variation, there is almost a one-to-one correspondent relationship between the SOCC and the IPCC. It is, therefore, concluded that the SOCC in the CLP are mainly driven by precession cycles. Compared with the first-order climatic cycle which reflect global climatic change, the SOCC of the CLP highlights the role of the precession cycle with hemispheric effect in the climatic change of the Loess Plateau. The SOCC have been partly obscured by the glacial-interglacial cycles. It is needed to trace back and forth across the plateau to reveal the pattern clearly. SOCC in the CLP not only serves as the basic unit for stratigraphic classification, but also has some absolute chronological significance to some extent due to the constraints of precession. Enough attention should be paid to its paleoclimatic implication in addition to stratigraphic significance.
-
Keywords:
- Chinese Loess Plateau /
- second-order climatic cycles /
- precession /
- subpaleosol
-
海洋与陆地交互的近岸海域,其地形、地貌的形态结构和演化过程同时受构造沉降、海平面变化、海洋水动力、气候、生物及人类活动的影响。查明海底地形地貌特征,掌握其形成与演化机制,不但为海洋经济开发、海洋科学研究和数字海洋等方面提供重要基础数据,而且可为近海资源勘探开发、海岸工程建设、海上交通运输和国防安全提供精细的基础资料[1-2]。由于常规大船吃水深不能进入浅水区,小船又过于简陋而不具备多源声学综合测量条件,造成近岸浅水区(特别是5 m水深内)一直是海底地形地貌及浅层结构等声学调查的难点[3]。水面无人艇具有吃水浅、功能多样、小巧灵活、隐蔽性好、快速机动、经济成本低的特点,利用水面无人艇进行军事、海洋测绘、环境监测、水质取样、港口监控、海事搜救等方面的应用,已成为近年来发展的趋势[4-10]。受水面无人艇平台空间小及多源声学系统同步测量互相干扰的制约,目前海洋测绘无人艇多为搭载单声源系统,多声源综合型无人艇应用较少,因此,发展针对地质调查的多源声学无人艇测量技术显得尤为急迫。
近年来广州海洋地质调查局开展了一系列近岸综合调查研究,依托这些项目形成了一系列浅水地形地貌探测技术方法,其中水面无人艇测量技术由于集成的测量手段多、技术复杂、应用前景广阔而成为最重要的技术之一。2019年,广州海洋地质调查局使用C-Worker 4声学水面无人艇在海南岛澄迈湾进行多波束测深、侧扫声呐、浅层剖面数据同步采集,旨在验证和评价方法的可行性和数据的可用性,揭示浅水海底地貌类型及声学特征,以期为未来使用水面无人艇进行地貌调查提供参考。
1. 调查背景
调查区位于海南岛北部澄迈湾近岸,水深范围约1.2~22 m,为典型火山熔岩海岸,地质构造上属雷琼坳陷的南缘,在晚更新世低海面时形成下切谷地,随着冰后期海面上升,河流的侵蚀作用和搬移泥沙的能力减弱,河谷被充填并覆盖,成为埋藏谷地。在湾口中部和西部存在水下沉积沙体,为东西向,长度约为6 km,由东往西被淹没在海面下2~5 m的不同深度,被认为是在海面上升过程中,在波浪作用下一些粗颗粒泥沙沿水下岸坡逐渐地向岸推移,在波能辐散的湾口区形成[11]。调查区周边存在较大规模的人工建筑,如港口、航道、渔码头、电厂等,水上工业、渔业活动频繁。
海底地貌分类方法较多,本文根据地貌成因将浅水海底地貌类型分为自然地貌和人工地貌两类。自然地貌指由自然因素,如气候、海平面、生物、古人类和新构造运动等引起并形成的地貌,包括沙脊、沙带、沙波、波纹、沙席等水下沉积沙体以及阶地、滑坡、断层、沟槽、凹凸地、麻坑、岩石、陡坎、埋藏河道等[12]。人工地貌是指因人类作用(直接或间接影响地表过程)形成的地球表面的起伏形态、物质结构[13]。人类活动对地貌形态和过程影响非常广泛,海底人工地貌包括航道、港池、挖掘坑槽、海底拖痕、海底管线、沉船、水下石堤、人工鱼礁、人工堆积物等。多波束测深、侧扫声呐、浅层剖面等是海底地形地貌调查研究常用声学方法,具有较高的解译精度[14]。
2. 调查设备
本次浅水海底地貌调查以“粤霞渔90215”船作为无人艇支撑母船,使用英国ASV C-Worker 4声学水面无人艇系统,该系统主要由无人艇平台和任务载荷两大部分组成。无人艇平台搭载了Teledyne T20P多波束、Klein UUV3500侧扫声呐、SES2000 Smart参量阵浅剖、POS MV WaveMaster惯导等任务载荷。惯导系统通过接收MarineStar GPS XP信号为任务设备提供稳定精确的定位、航向、姿态、速度、时钟等数据,其水平定位和高程精度达分米级,横摇、纵摇和艏摇精度达到0.01°[15]。无人艇控制端与远程基站控制端通过IP MESH无线电、Wi-Fi以及特高频(UHF,Ultrahigh Frequency)3种通讯方式收发指令和交换数据,主要组成见图1。无人艇吃水0.6 m,配备测深仪、前视声呐、高清摄像头、高分辨率4G宽带雷达和AIS系统,可实现对水下、水面及周边环境的感知和预警,保障调查过程中水面无人艇的安全[16]。
3. 数据与方法
无人艇下水调查前,根据前期搜集资料选定诸如沉积沙体、港口码头、岸边浅滩等重点区,结合调查区锚泊和进出港船只、障碍物分布等复杂作业条件设计测线。测线大致平行于等深线布设,测线间距根据调查区水深变化灵活调整(一般为水深的3~4倍),确保多波束实现全覆盖测量,并同步进行高密度、高精度的侧扫声呐及浅层剖面测量。水面无人艇通信基站架设在支撑母船上,全向天线距海面约6 m,定位误差小于0.5 m,无人艇速保持约4.5 kn。按布设测线自动巡线,紧急情况下切换至人工操控,分别对无人艇运行状态、声学资料质量进行监控。
为避免无人艇多源声学系统互相干扰,使用了基于同步控制器的脉冲同步控制和发射频率差异化配置的方法。声学同步控制器通过对不同声学仪器、装备启动时刻及运行时序的同步控制,使各设备分时发射信号以避免相互干扰,从而保证各设备的正常运行[17]。本文以侧扫声呐输出脉冲作为主动源信号,为多波束和浅剖设备提供5 V触发信号。侧扫声呐中心频率为455和900 kHz,浅剖中心频率为100和10 kHz,为使各设备工作频率错开,多波束中心频率设置为260 kHz。经海上对比试验后确定的主要参数见表1。
表 1 水面无人艇任务载荷主要调查参数Table 1. Main parameters of surveying system of USV参数 多波束 侧扫声呐 浅地层剖面 设备型号 T20P UUV3500 SES2000 Smart 中心频率 260 kHz单频 455/900 kHz双频 100/10 kHz双频 量程 据水深变化,一般为水深的3~4倍 单侧50 m 30 m 同步模式 被动 主动(触发信号源) 被动 脉冲类型 CW Chirp 参量 多波束测深、侧扫声呐和浅剖数据处理分别使用Caris 11.2、SonarWiz 5.0及ISE 2.9.5等商业软件,最后图表制作使用CorelDRAW X7软件完成。
4. 结果
采集获得836 km声学资料,其中多波束测深和侧扫声呐全覆盖面积超过12.5 km2,通过分析数据声学特征,识别出不同的地貌类型。
4.1 多波束测深
根据多波束测深数据揭示的地形变化及目标体形态参数特征,在研究区湾口外识别出海底沙波、沙纹等自然地貌单元,湾内近岸识别出较多海底拖痕、坑槽、航道、港池等人工地貌单元。图2为多波束测深数据揭示的典型地貌,其中图2a为叠置于水下沙体(海底沙脊)上的沙波,其脊部水深为2 m,波高为5 m,NE-SW走向,呈韵律新月形条带排列。图2b显示海底地形复杂,物体凸出海底约0.3~1 m不等,呈不规则的杂乱分布,据其形态特征推断为海底礁石。图2c所示海底坑槽表现为下凹的负地形,长350 m,均宽约150 m,坑深约6 m,边界形态规则。图2d显示下凹地形,其平均深度约13 m,边界形态规则,为典型的码头港池特征。
4.2 侧扫声呐
通过分析侧扫声呐背散射回波强度变化特征并计算目标体形态参数,识别出海底沙波、波纹、海底礁石、海底拖痕等多种海底地貌单元。图3为侧扫声呐揭示的典型地貌,图3a所示海底波纹的回波强度呈强弱相间的韵律条带状分布,波高小;水面无人艇受涌浪影响,海底线表现为锯齿状特征。图3b揭示海底沙波脊线两侧回波强度呈明显的条带状强弱变化,海底线变化特征指示其波高约为2 m(图3c),同时可见叠置在沙波上的波纹。图3d可见叠瓦状目标体,其具有强背散射回波特征(亮色指示强回波信号,暗色指示弱回波强度),结合水深地形环境,推断为海底礁石;图3e可见明显链状目标体,宽0.3~1 m,呈弧形展布,链状处背散射强度比两侧弱,指示其为下凹形态,推断为海底拖痕。
4.3 浅地层剖面
对浅地层剖面的海底地形变化及浅部地层反射特征进行分析,识别出海底沙波、埋藏河道、航道及航槽回淤物等地貌。调查区大部分浅水区海底声学穿透浅,伴有明显多次反射,图4为浅剖揭示的典型地貌单元,其中图4a揭示海底沙波地貌发育,双峰和单峰沙波叠置于沙体之上,沙波波高约2 m,两翼不对称形态特征明显,具有明显指向性。沙波内部浅层结构为模糊反射,沙波迁移底界面(红色虚线)在12.5~13 m水深之间。图4b为湾内浅水区埋藏河道,上覆层状充填物,穿透深度可达5 m,河道两侧反射终止界面明显,河道外为模糊反射。图4c所示为航道,地形呈U形下凹,平均水深约10 m;航道外可见厚约1.5 m层状反射层,其下部为模糊反射和二次反射;航槽内可见厚约2 m的层状反射,为受海岸动力影响下淤积于航槽的沉积物。
4.4 多源声学数据综合对比
通过多源声学数据的综合对比,对浅水海底微地貌进行精细分析,可减少解释误判。以海底沙波和海底礁石两种典型微地貌单元为例,图5为位于测线A-A’的同一处海底沙波地貌综合探测结果,图5a多波束测深显示沙波地形呈明显波状起伏,呈韵律新月形条带展布。图5b侧扫声呐则进一步揭示了沙波之上发育的波纹特征,波脊线(绿色虚线)两侧背散射回波强度有明显强弱变化。图5c浅剖揭示海底沙波地形上波状起伏明显,海底为明显强反射,下部二次反射明显,波脊下部为模糊反射,平缓的翼部和谷部出现层状反射。图6为位于测线B-B’的同一处海底礁石综合探测结果,图6a多波束测深揭示海底礁石呈边界不规则的凸起,图6b侧扫声呐揭示海底礁石背散射回波较强而周围回波相对较弱(浅色代表回波强度强),图6c浅剖揭示海底强振幅反射,礁石处呈丘状凸起,其下部难穿透,表现为模糊反射。
5. 讨论
5.1 特点和优势
本次使用水面无人艇对水深1.2~22 m的浅水海岸进行多波束测深、侧扫声呐、浅层剖面同步测量。无人艇自动巡线、人工监控的调查方法,相比使用常规载人大船调查节省了人力物力,特别是对常规载人大船不能进入调查的部分浅水区(水深小于5 m)进行了全覆盖测量,突破了大船不能进入浅水区调查的限制,保证采集数据的完整性,浅水区海底地貌测量“人下不来,船上不去”的现状逐步得到改变。脉冲同步控制及频率差异化配置方法的运用,避免了多源声学系统互扰,有利于提高调查效率和基于多源声学数据的综合研究。总体而言,应用水面无人艇进行海底地貌调查较为稳定可靠,经济高效。通过完善作业方法,水面无人艇的调查效率还有提升空间,如改进测线布设系统、提高船速和通信距离等。
5.2 海底地貌声学识别
应用水面无人艇进行海岸地貌调查的关键和核心是调查资料的可靠性和可用性。整合浅水区多源地貌声学数据,对海底微地貌的水深、尺寸大小、形态结构、回波强度、浅层结构等特征进行精细分析,同时结合其分布位置及环境特征进行地貌类型判读和解译(图2—图6)。调查区识别的海底自然或人工微地貌单元主要类型及声学特征见表2。
表 2 调查区识别的地貌类型及其声学特征Table 2. Geomorphologic types and acoustic characteristics identified in the survey area地貌类型 微地貌单元 声学特征 多波束测深 侧扫声呐 浅层剖面 自然地貌 海底沙波 波状起伏,韵律新月形条带状 海底线起伏,脊线两侧背散射呈条带状强弱变化 波状起伏,通常波形不对称 海底波纹 难以观测 背散射强弱相间,呈韵律条带状 波状起伏 海底礁石 不规则凸起 背散射强,周围较弱,与礁石展布形态有关 不规则凸起,下部地层为模糊反射 埋藏河道 无法观测 无法观测 U或V形下凹,上覆层状充填物 人工地貌 海底麻坑/坑槽 U或V形下凹,边界不规则 坑槽背散射弱,四周相对较强 海底线呈U或V形下凹,通常下部存在层状反射 航道/港池 下凹负地形,边界规则 边界处背散射明显强或弱 海底线下凹,边界规则 海底拖痕 难以观测 明显链状,拖痕处背散射弱,两侧相对较强 小型V形下凹状 5.3 实效及前景
对常规船只和考察人员不能到达的浅水环境的测量和调查,无人艇具有填补甚至替代的价值和意义,浅水区获取的多源地貌声学结果有利于对调查区的科学研究和工程建设,揭示诸如地质灾害、海底地貌演变规律、人类活动对环境影响等。以海底沙波、航道港池、坑槽、拖痕等地貌单元为例,图2a和图4a所示沙波呈新月形展布,波形不对称,其叠置于沙脊之上则表明该沙脊可能处于活动期[18-19],研究其迁移方向和速率对海底管线等工程建设至关重要。图2d和图4c所示码头港池和航道,通过定期重复测量并分析其深度、坡度、淤积厚度的变化特征,可为疏浚工程、海上交通安全等提供重要参考信息[20]。图2c所示具有规则边界坑槽和图3e所示海底拖痕等,反映该区存在较大规模的人工活动痕迹。
值得一提的是,水面无人艇在浅水海底流体渗漏、海底微地貌的精细、立体探测方面具有良好的应用前景。其垂向上可实现多波束水体、侧扫声呐背散射回波强度、多波束水深点云和浅地层结构的综合探测。不同声源优势互补地对目标体进行探测与解译,可提高探测的正确性和准确性,减少解释误判,如图5和图6利用不同声学数据进行综合对比,揭示出海底沙波、海底礁石地貌单元精细和立体的声学形态结构特征。
6. 结论
(1)多源声学水面无人艇测量技术在浅水海底地貌调查中可行可靠,较为经济高效。运用脉冲同步控制和发射频率差异化配置的方法避免多源声学设备互相干扰,实现多波束、侧扫声呐、浅地层剖面等多源声学的同步测量。通过合理布设测线,无人艇自动巡线,紧急情况下切换至人工操控的调查方式,实现安全高效地对复杂浅水区数据的获取。
(2)水面无人艇声学数据结果可用可靠。获取的数据经处理后,可识别出海底沙波、波纹、礁石、埋藏河道、港池、航道、拖痕等自然或人工微地貌单元。通过多源声学数据的综合对比,分析其声学特征,可减少解释误判,实现浅水海底微地貌精细、立体、可靠的探测。
致谢:广州海洋地质调查局为该无人艇的业主单位,本次成功应用是整个无人艇团队拼搏奉献的结果,感谢领导、同事、技术专家在无人艇地貌调查过程中给予的支持和帮助。
-
图 1 黄土高原不同区域L1-S1内次级气候阶段的划分与对比
石卯、李家塬、渭南、九州台、蔡家沟、洛川和靖远剖面分别引自文献[5,13,19-21,29,31,44-45]。
Figure 1. The second-order wet and dry substages and their ages of L1-S1 in different regions of the CLP since the last interglacial period
Sections of Shimao, Lijiayuan, Weinan, Jiuzhoutai, Caijiagou, Luochuan and Jingyuan are respectively quoted from references [5, 13, 19-21, 29,31,44-45].
图 2 黄土高原L2-S2内的次级干、湿气候阶段的划分与对比
图中地层单元命名主要依照原文给出,本文命名的地层单元用括号标示。李家塬和辛庄塬剖面引自文献[13];九州台、靖远、灵台、洛川和渭南剖面分别引自文献[18], [7], [51], [17, 52], [8,11]。
Figure 2. The second-order wet and dry substages of L2-S2 in different regions of the CLP
The stratigraphic units in the figure are named mainly according to the original references. The stratigraphic units named in this paper are marked with brackets. Lijiayuan and Xinzhuangyuan sections are quoted from reference [13]; Sections of Jiuzhoutai, Jingyuan, Lingtai, Luochuan and Weinan are respectively quoted from references [18], [7], [51], [17, 52], [8,11].
图 3 黄土高原L3-S3次级干、湿气候阶段的划分与对比
图中地层单元命名主要依照原文给出,本文命名的地层单元用括号标示。石卯、九州台、靖远、西峰、洛川和渭南剖面分别引自文献[5],[18, 32],[7],[55],[17, 52],[8,11]。
Figure 3. The second-order wet and dry substages of L3-S3 in different regions of the CLP
The stratigraphic units in the figure are named mainly according to the original references. The stratigraphic units named in this paper are marked with brackets. Sections of Shimao, Jiuzhoutai, Jingyuan, Xifeng, Luochuan and Weinan are respectively quoted from references [5], [18, 32], [7], [55], [17, 52], [8,11].
图 4 黄土高原S4-L5-L6内的次级干、湿气候阶段的划分与对比
图中地层单元命名主要依照原文给出,本文命名的地层单元用括号标示。泾川、灵台和蒲县剖面据文献[51],石卯、九州台、靖远和洛川剖面分别引自文献[5],[18, 32],[7]和[17, 52]。
Figure 4. The second-order wet and dry substages of S4-L5-L6 in different regions of the CLP
The stratigraphic units in the figure are named mainly according to the original references. The stratigraphic units named in this paper are marked with brackets. Jingchuan, Lingtai and Puxian sections are quoted from reference [51]; Sections of Shimao, Jiuzhoutai, Jingyuan and Luochuan are respectively quoted from references [5], [18, 32], [7], [17, 52].
图 5 黄土高原L5以来次级气候单元的划分与对比
图中地层单元命名主要依照原引用文献给出,本文命名的地层单元用括号标示。石卯、靖远、渭南、洛川、九州台、西津村 2钻井、泾川、西津村1钻井和曹岘剖面分别引自文献[5],[7],[11],[17],[18,44],[49],[51],[58],[59]。
Figure 5. Selected typical sections of the CLP and their stratigraphic correlation since L5
The stratigraphic units in the figure are named mainly according to the original references. The stratigraphic units named in this paper are marked with brackets. Jingchuan, Lingtai and Puxian sections are quoted from reference [51]; Sections of Shimao, Jiuzhoutai, Jingyuan and Luochuan are respectively quoted from references [5],[7],[11],[17],[18,44],[49],[51],[58],[59].
图 6 北半球理想岁差气候旋回的划分及其与黄土高原次级气候阶段的对应关系
A. 一个理想岁差周期内基本成壤期与基本黄土期的划分方案,a:北半球夏至日位于近日点,b和d:北半球夏至日分别位于相当于今日春分点和秋分点的位置,c:北半球夏至日位于远日点;B. 末次间冰期以来岁差、65°N 7月太阳辐射与黄土高原次级气候阶段的对应关系。65°N太阳辐射据文献[60]。
Figure 6. The division scheme of the ideal precession climatic cycle in the Northern Hemisphere and their corresponding relationship with the secondary climatic stages of the CLP
Figure A: A division scheme of basic soil forming period and basic loess period in an ideal precession period. a,b,c,d are the cases of summer solstice in different positions of sun earth orbit in a precession period. Figure B: The corresponding relationship between precession, 65°N solar radiation of July and secondary climate stage of the Loess Plateau since the last interglacial. 65°N solar radiation of July according to reference [60].
图 7 黄土高原L5以来次级气候阶段与岁差、65°N7月份太阳辐射及深海氧同位素曲线的对应关系
65°N 7月份太阳辐射及深海氧同位素曲线分别引自文献[60]和[61]。
Figure 7. Correlations between second-order climatic substages, ideal precession climatic cycles, 65°N solar radiation of July and marine oxygen isotope curve since L5
The 65°N solar radiation of July and marine oxygen isotope curve are according to references [60],[61].
图 8 一个岁差周期内北半球夏季接收太阳辐射量的变化(以夏至日在日地轨道上绕行一周计)
大椭圆为北半球夏至日在日地轨道上的进动轨迹,箭头所指为夏至日进动方向,从近日点开始,经远日点再返回近日点完成一个岁差周期。以橙色和蓝色分别代表该岁差周期内北半球夏季接收太阳辐射的相对高值区和低值区,它们将一个岁差周期等分为两半,橙色越深代表当夏至日位于该位置时当年的北半球夏季接收的太阳辐射量越高,而蓝色越深则代表当年的北半球夏季接收的太阳辐射量越低。季节的划分以两分(春分、秋分)和两至(冬至、夏至)为界。a—d:北半球夏至日在近日点、春分点、远日点和秋分点上的季节分配。
Figure 8. A sketch map of solar radiation variation of the Northern Hemisphere in summer during a complete precession period (Taking accumulation by the summer solstice make one circle around the solar terrestrial orbit)
The bigger ellipse is the precession track of the summer solstice of the northern hemisphere on the sun earth orbit. The arrow indicates the precession direction of the summer solstice. From perihelion, it returns to perihelion through the apogee to complete a precession cycle. Orange and blue respectively represent the relatively high and low value stages of solar radiation received in summer of the northern hemisphere during the precession period. They divide a precession period into two equal parts. The deeper orange represents the higher summer radiation received in the northern hemisphere when the summer solstice is at this position, while the deeper blue represents the lower summer radiation received in the northern hemisphere. Seasons are divided by two equinox (spring equinox, autumn equinox) and two solstices (winter solstice, summer solstice). a−d respectively represent the seasonal distribution of the northern hemisphere.
图 9 冰期旋回对理想岁差气候旋回的调节
A. 同一地区间冰期背景下基本成壤期延长而基本黄土期缩短乃至消失,最终可以在高原中南部成壤条件较优的地区发育复合古土壤;B. 同一地区冰期背景下基本成壤期缩短而基本黄土期延长,在高原北部发育厚层黄土。
Figure 9. The adjustment of the glacial-interglacial cycle to the ideal precession climatic cycle
A. Under the background of interglacial period, the basic soil stage is extended, while the basic loess stage is shortened or even disappeared in a same area. Finally, complex paleosols can be developed in the middle and southern part of the CLP;B. Under the background of glaciation, the basic pedogenesis stage is shortened, while the basic loess stage is prolonged, and complex loess layers can be developed in the north part of CLP.
图 10 黄土高原不同地区L6-S14内的次级干、湿气候阶段的划分与对比
图中地层单元的命名沿用原文献中的命名,本文中的命名用括号标出。渭南、洛川、九州台、西津村2钻孔、泾川和曹岘剖面分别引自文献[11],[17],[46],[49],[51],[59]。
Figure 10. The second-order wet and dry substages of L6-S14 in different regions of the CLP
The stratigraphic units in the figure are named according to the original references. The stratigraphic units named in this paper are marked with brackets. Weinan, Luochuan, Jiuzhoutai, Xijincun 2 drill hole, Jingchuan and Caoxian are respectively quoted from references [11],[17],[46],[49],[51],[59].
图 11 黄土高原L15-S20内的次级干、湿气候阶段的划分与对比
图中的地层单元沿用原文献中的命名,本文对地层单元的命名加括号标示。渭南、洛川、九州台、西津村、泾川和曹岘2剖面分别引自文献[8,11],[17,52],[18],[49],[51]和[59]。
Figure 11. The second-order wet and dry substages of L15-S20 in different regions of the CLP
The stratigraphic units in the figure are named according to the original references. The stratigraphic units named in this paper are marked with brackets. Weinan, Luochuan, Jiuzhoutai, Xijincun drill hole, Jingchuan and Caoxian 2 sections are respectively quoted from references [8,11], [17,52], [18], [49], [51] and [59].
图 12a 黄土高原次级气候阶段与岁差(理想岁差气候序列)、65°N太阳辐射、地轴斜率、深海氧同位素曲线及泾川年代地层剖面的对应关系(0~1 Ma)
65°N太阳辐射和地轴斜率引自文献[60],深海氧同位素曲线引自文献[61],泾川年代地层剖面引自文献[51]。
Figure 12a. Correlation among SOCC, FOCC, precession, obliquity, 65°N solar radiation, marine oxygen isotope curve, and Jingchuan chronostratigraphy (0~1 Ma)
65°N solar radiation and earth axis are from reference [60], marine oxygen isotope curve according to reference [61], and chronostratigraphy of Jingchuan section cite from [51].
图 12b 黄土高原次级气候阶段与岁差(理想岁差气候序列)、65°N太阳辐射、地轴斜率、深海氧同位素曲线及泾川年代地层的对应关系(1~2 Ma)
65°N太阳辐射和地轴斜率引自文献[60],深海氧同位素曲线引自文献[61],泾川年代地层剖面引自文献[51]。
Figure 12b. Correlation among SOCC, FOCC, precession, obliquity, 65°N solar radiation, marine oxygen isotope curve, and Jingchuan chronostratigraphy (1~2 Ma)
65°N solar radiation and earth axis are cited from reference [60], marine oxygen isotope curve according to reference [61], and chronostratigraphy of Jingchuan section is cited from [51].
-
[1] 刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985. LIU Tungsheng. The Loess and Environment[M]. Beijing: Science Press, 1985
[2] 郭正堂, Fedoroff N, 刘东生. 130ka来黄土-古土壤序列的典型微形态特征与古气候事件[J]. 中国科学: 地球科学, 1996, 26(5):392-398. [GUO Zhengtang, Fedoroff N, LIU Tungsheng. Typical micromorphological characteristics of loess -paleosol sequences and paleoclimatic events since 130 ka [J]. Science in China (Series D: Earth Sciences), 1996, 26(5): 392-398. [3] 孙继敏, 丁仲礼. 近13万年来黄土高原干湿气候的时空变迁[J]. 第四纪研究, 1997, 17(2):168-175. [SUN Jimin, DING Zhongli. Spatial and temporal changes of dry and wet climate during the last 130, 000 years in the Loess Plateau [J]. Quaternary Sciences, 1997, 17(2): 168-175. doi: 10.3321/j.issn:1001-7410.1997.02.009 [4] 葛俊逸, 郭正堂, 郝青振. 特征时期黄土高原风化成壤强度的空间特征与气候梯度[J]. 第四纪研究, 2006, 26(6):962-968. [GE Junyi, GUO Zhengtang, HAO Qingzhen. Spatial variations of weathering intensity of the Loess Plateau and the climate gradients within characteristic timeslices [J]. Quaternary Sciences, 2006, 26(6): 962-968. doi: 10.3321/j.issn:1001-7410.2006.06.011 [5] Sun J M, Ding Z L, Liu T S, et al. 580 000-year environmental reconstruction from aeolian deposits at the Mu Us Desert margin, China [J]. Quaternary Science Reviews, 1999, 18(12): 1351-1364. doi: 10.1016/S0277-3791(98)00086-9
[6] Ding Z L, Liu T S, Rutter N W, et al. Ice-volume forcing of East Asian winter monsoon variations in the past 800, 000 Years [J]. Quaternary Research, 1995, 44(2): 149-159. doi: 10.1006/qres.1995.1059
[7] Sun Y B, Chen J, Clemens S C, et al. East Asian monsoon variability over the last seven glacial cycles recorded by a loess sequence from the northwestern Chinese Loess Plateau [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(12): Q12Q02.
[8] 丁仲礼, 孙继敏, 余志伟, 等. 黄土高原过去130ka来古气候事件年表[J]. 科学通报, 1998, 43(6):567-574. [DING Zhongli, SUN Jimin, YU Zhiwei, et al. Chronology of past 130 ka climatic events over the Loess Plateau [J]. Chinese Science Bulletin, 1998, 43(6): 567-574. doi: 10.3321/j.issn:0023-074X.1998.06.002 [9] 吴乃琴, 裴云鹏, 吕厚远, 等. 黄土高原35万年来冬、夏季风变化周期的差异——陆生蜗牛化石的证据[J]. 第四纪研究, 2001, 21(6):540-550. [WU Naiqin, PEI Yunpeng, LÜ Houyuan, et al. Orbital forcing of East Asian summer and winter monsoon variations in the past 35 000 years [J]. Quaternary Sciences, 2001, 21(6): 540-550. doi: 10.3321/j.issn:1001-7410.2001.06.010 [10] 刘东生, 丁仲礼. 中国黄土研究新进展(二)古气候与全球变化[J]. 第四纪研究, 1990, 10(1):1-9. [LIU Tungsheng, DING Zhongli. Progresses of loess research in China (Part 2): Paleoclimatology and global change [J]. Quaternary Sciences, 1990, 10(1): 1-9. doi: 10.3321/j.issn:1001-7410.1990.01.001 [11] 郭正堂, 丁仲礼, 刘东生. 黄土中的沉积-成壤事件与第四纪气候旋回[J]. 科学通报, 1996, 41(1):56-59. [GUO Zhengtang, DING Zhongli, LIU Tungsheng. The depositional-pedogenic events in the loess deposit and the Quaternary climatic cycles [J]. Chinese Science Bulletin, 1996, 41(1): 56-59. doi: 10.3321/j.issn:0023-074X.1996.01.017 [12] Ding Z L, Sun J M, Yu Z W, et al. Chronology of environmental events over East Asia during the past 130 ka [J]. Chinese Science Bulletin, 1998, 43(21): 1761-1769. doi: 10.1007/BF02883368
[13] Ding Z L, Ren J Z, Yang S L, et al. Climate instability during the penultimate glaciation: Evidence from two high-resolution loess records, China [J]. Journal of Geophysical Research, 1999, 104(B9): 20123-20132. doi: 10.1029/1999JB900183
[14] 安芷生, 吴锡浩, 汪品先, 等. 最近130ka中国的古季风-Ⅰ. 古季风记录[J]. 中国科学B辑: 化学 生命科学 地学, 1991, 21(10):1076-1081. [AN Zhisheng, WU Xihao, WANG Pinxian, et al. The Paleomonsoon of China since 130 ka-I. Paleomonsoon records [J]. Science in China Series B: Chemistry, Life Sciences & Earth Sciences, 1991, 21(10): 1076-1081. [15] 安芷生, 吴锡浩, 汪品先, 等. 最近130ka中国的古季风-Ⅱ. 古季风变迁[J]. 中国科学B辑: 化学 生命科学 地学, 1991, 21(11):1209-1215. [AN Zhisheng, WU Xihao, WANG Pinxian, et al. The paleomonsoon of China since 130 ka-II. Paleomonsoon Variations [J]. Science in China Series B: Chemistry, Life Sciences & Earth Sciences, 1991, 21(11): 1209-1215. [16] 郭正堂, 刘东生, 安芷生. 渭南黄土沉积中十五万年来的古土壤及其形成时的古环境[J]. 第四纪研究, 1994, 14(3):256-269. [GUO Zhengtang, LIU Tungsheng, AN Zhisheng. Paleosols of the last 0.15 Ma in the Weinan loess section and their paleoclimatic significance [J]. Quaternary Sciences, 1994, 14(3): 256-269. doi: 10.3321/j.issn:1001-7410.1994.03.007 [17] 安芷生, Kukla G, 刘东生. 洛川黄土地层学[J]. 第四纪研究, 1989, 9(2):155-168. [AN Zhisheng, Kukla G, LIU Tungsheng. Loess stratigraphy in Luochuan of China [J]. Quaternary Sciences, 1989, 9(2): 155-168. doi: 10.3321/j.issn:1001-7410.1989.02.006 [18] 陈发虎, 张维信. 甘青地区的黄土地层学与第四纪冰川问题[M]. 北京: 科学出版社, 1993: 9-34. CHEN Fahu, ZHANG Weixin. The Loess Stratigraphy and Quaternary Glaciation Problems of Ganshu-Qinghai Areas[M]. Beijing: Science Press, 1993: 9-34
[19] 刘嘉麒, 陈铁梅, 聂高众, 等. 渭南黄土剖面的年龄测定及十五万年来高分辨时间序列的建立[J]. 第四纪研究, 1994, 14(3):193-202. [LIU Jiaqi, CHEN Tiemei, NIE Gaozhong, et al. Datings and reconstruction of the high resolution time series in the Weinan loess section in the last 150 000 years [J]. Quaternary Sciences, 1994, 14(3): 193-202. doi: 10.3321/j.issn:1001-7410.1994.03.001 [20] 聂高众, 刘嘉麒, 郭正堂. 渭南黄土剖面十五万年以来的主要地层界线和气候事件——年代学方面的证据[J]. 第四纪研究, 1996, 16(3):221-231. [NIE Gaozhong, LIU Jiaqi, GUO Zhengtang. The major stratigraphic boundaries and climatic events in Weinan loess section since 0.15 MaBP: Based on chronological evidences [J]. Quaternary Sciences, 1996, 16(3): 221-231. doi: 10.3321/j.issn:1001-7410.1996.03.004 [21] 王文远, 刘嘉麒, 潘懋, 等. 末次间冰期以来渭南黄土剖面高分辨率古气候时间标尺[J]. 地球科学-中国地质大学学报, 2000, 25(1):98-102. [WANG Wenyuan, LIU Jiaqi, PAN Mao, et al. Reconstruction of the high resolution timescale in the Weinan loess section of the late Quaternary [J]. Earth Science-Journal of China University of Geosciences, 2000, 25(1): 98-102. doi: 10.3321/j.issn:1000-2383.2000.01.018 [22] 孙湘君, 宋长青, 王琫瑜, 等. 黄土高原南缘最近10万年来的植被[J]. 植物学报, 1996, 38(12):982-988. [SUN Xiangjun, SONG Changqing, WANG Fengyu, et al. Vegetation history of the southern Loess Plateau of China during the last 100 000 years based on pollen data [J]. Acta Botanica Sinica, 1996, 38(12): 982-988. [23] Chen F H, Bloemendal J, Wang J M, et al. High-resolution multi-proxy climate records from Chinese loess: evidence for rapid climatic changes over the last 75 kyr [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 130(1-4): 323-335. doi: 10.1016/S0031-0182(96)00149-6
[24] Sun J M, Ding Z L. Deposits and soils of the past 130, 000 years at the desert-loess transition in northern China [J]. Quaternary Research, 1998, 50(2): 148-156. doi: 10.1006/qres.1998.1989
[25] Li B, Li S H, Sun J M. Isochron dating of sand-loess-soil deposits from the Mu Us Desert margin, central China [J]. Quaternary Geochronology, 2011, 6(6): 556-563. doi: 10.1016/j.quageo.2011.08.004
[26] Li S H, Chen Y Y, Li B, et al. OSL dating of sediments from deserts in northern China [J]. Quaternary Geochronology, 2007, 2(1-4): 23-28. doi: 10.1016/j.quageo.2006.05.034
[27] 唐克丽, 贺秀斌. 黄土高原全新世黄土-古土壤演替及气候演变的再研讨[J]. 第四纪研究, 2004, 24(2):129-139. [TANG Keli, HE Xiubin. Re-discussion on loess-paleosol evolution and climatic change on the Loess-Plateau during the Holocene [J]. Quaternary Sciences, 2004, 24(2): 129-139. doi: 10.3321/j.issn:1001-7410.2004.02.002 [28] Forman S L. Late Pleistocene chronology of loess deposition near Luochuan, China [J]. Quaternary Research, 1991, 36(1): 19-28. doi: 10.1016/0033-5894(91)90014-V
[29] Lu Y C, Wang X L, Wintle A G. A new OSL chronology for dust accumulation in the last 130, 000yr for the Chinese Loess Plateau [J]. Quaternary Research, 2007, 67(1): 152-160. doi: 10.1016/j.yqres.2006.08.003
[30] 岳乐平, 屈红军, 杨永利, 等. 兰州九洲台黄土剖面古地磁研究[J]. 西北大学学报, 1992, 22(1):87-94. [YUE Leping, QU Hongjun, YANG Yongli, et al. Paleomagnetic research of loess section from Jiuzhoutai, Lanzhou [J]. Journal of Northwest University, 1992, 22(1): 87-94. [31] Sun Y B, Wang X L, Liu Q S, et al. Impacts of post-depositional processes on rapid monsoon signals recorded by the last glacial loess deposits of northern China [J]. Earth & Planetary Science Letters, 2010, 289(1-2): 171-179.
[32] Chen F H, Li J J, Zhang W X. Loess stratigraphy of the Lanzhou profile and its comparison with deep-sea sediment and ice core record [J]. GeoJournal, 1991, 24(2): 201-209.
[33] Sun J M. Origin of eolian sand mobilization during the past 2300 years in the Mu Us Desert, China [J]. Quaternary Research, 2000, 53(1): 78-88. doi: 10.1006/qres.1999.2105
[34] 何忠, 周杰, 赖忠平, 等. 石英光释光测年揭示的晚第四纪毛乌素沙地演化[J]. 第四纪研究, 2009, 29(4):744-754. [HE Zhong, ZHOU Jie, LAI Zhongping, et al. Late Pleistocene sand dune development and climatic changes in the Mu Us Desert, China based on luminescence dating [J]. Quaternary Sciences, 2009, 29(4): 744-754. doi: 10.3969/j.issn.1001-7410.2009.04.10 [35] 王丰年, 李保生, 牛东风, 等. 萨拉乌苏河流域MGS1层段粒度与CaCO3记录的全新世千年尺度的气候变化[J]. 中国沙漠, 2012, 32(2):331-339. [Wang Fengnian, Li Baosheng, Niu Dongfeng, et al. Holocene millennial scale climate variations from records of grain size and CaCO3 in MGS1 segment of Milanggouwan section in the Salawusu River Valley, China [J]. Journal of Desert Research, 2012, 32(2): 331-339. [36] Niu D F, Li B S, Du S H, et al. Cold events of Holocene indicated by primary elements distribution of the high-resolution sand dunes in the Salawusu River Valley [J]. Journal of Geographical Sciences, 2008, 18(1): 26-36. doi: 10.1007/s11442-008-0026-4
[37] Li S H, Sun J M, Li B. Holocene environmental changes in central Inner Mongolia revealed by luminescence dating of sediments from the Sala Us River valley [J]. Holocene, 2012, 22(4): 397-404. doi: 10.1177/0959683611425543
[38] 庞奖励, 黄春长, 陈宝群. 黄土高原南部全新世土壤微结构形成机理探讨[J]. 地理研究, 2002, 21(4):487-494. [PANG Jiangli, HUANG Chunchang, CHEN Baoqun. Genetic and micromorphological studies of the Holocene soil complex on the southern Loess Plateau [J]. Geographical Research, 2002, 21(4): 487-494. doi: 10.3321/j.issn:1000-0585.2002.04.011 [39] 吴锡浩, 安芷生, 王苏民, 等. 中国全新世气候适宜期东亚夏季风时空变迁[J]. 第四纪研究, 1994, 14(1):24-37. [WU Xihao, AN Zhisheng, WANG Sumin, et al. The temporal and spatial variation of East-Asian summer monsoon in Holocene optimum in China [J]. Quaternary Sciences, 1994, 14(1): 24-37. doi: 10.3321/j.issn:1001-7410.1994.01.003 [40] 靳鹤龄, 董光荣, 苏志珠, 等. 全新世沙漠-黄土边界带空间格局的重建[J]. 科学通报, 2001, 46(12):969-974. [JIN Heling, DONG Guangrong, SU Zhizhu, et al. Reconstruction of the spatial patterns of desert/loess boundary belt in North China during the Holocene [J]. Chinese Science Bulletin, 2001, 46(12): 969-974. doi: 10.3321/j.issn:0023-074X.2001.12.001 [41] Ding Z L, Derbyshire E, Yang S L, et al. Stepwise expansion of desert environment across northern China in the past 3. 5 Ma and implications for monsoon evolution [J]. Earth & Planetary Science Letters, 2005, 237(1-2): 45-55.
[42] Lü H Y, Wu N Q, Liu T S, et al. Seasonal climatic variation recorded by phytolith assemblages from the Baoji loess sequence in central China over the last 150000 a [J]. Science in China (Series D), 1996, 39(6): 629-639.
[43] 董光荣, 李保生, 高尚玉, 等. 鄂尔多斯高原的第四纪古风成沙[J]. 地理学报, 1983, 38(4):341-347. [DONG Guangrong, LI Baosheng, GAO Shangyu, et al. The Quaternary ancient eolian sands in the Ordos Plateau [J]. Acta Geographica Sinica, 1983, 38(4): 341-347. doi: 10.3321/j.issn:0375-5444.1983.04.002 [44] Fang X M, Li J J, van der Voo R, et al. A record of the Blake Event during the last interglacial paleosol in the western Loess Plateau of China [J]. Earth & Planetary Science Letters, 1997, 146(1-2): 73-82.
[45] Ding Z L, Rutter N W, Liu T S, et al. Correlation of Dansgaard-Oeschger cycles between Greenland ice and Chinese loess [J]. Paleoclimates, 1998, 2(4): 281-291.
[46] 陈发虎, 张宇田, 张维信, 等. 兰州九洲台黄土沉积年代的综合研究[J]. 沉积学报, 1989, 7(3):105-111. [CHEN Fahu, ZHANG Yutian, ZHANG Weixin, et al. The comprehensive study on depositional age of Jiuzhoutai loess, Lanzhou [J]. Acta Sedimentologica Sinica, 1989, 7(3): 105-111. [47] Chen F H, Feng Z D, Zhang J W. Loess particle size data indicative of stable winter monsoons during the last interglacial in the western part of the Chinese Loess Plateau [J]. Catena, 2000, 39(4): 233-244. doi: 10.1016/S0341-8162(00)00083-7
[48] Chen F H, Qiang M R, Feng Z D, et al. Stable East Asian monsoon climate during the Last Interglacial (Eemian) indicated by paleosol S1 in the western part of the Chinese Loess Plateau [J]. Global & Planetary Change, 2003, 36(3): 171-179.
[49] Zhang J, Li J J, Guo B H, et al. Magnetostratigraphic age and monsoonal evolution recorded by the thickest Quaternary loess deposit of the Lanzhou region, western Chinese Loess Plateau [J]. Quaternary Science Reviews, 2016, 139: 17-29. doi: 10.1016/j.quascirev.2016.02.025
[50] 岳乐平, 雷祥义, 屈红军. 靖远黄土剖面磁性地层的初步研究[J]. 第四纪研究, 1991, 11(4):349-353. [YUE Leping, LEI Xiangyi, QU Hongjun. A magnetostratigraphic study on the Jingyuan loess section, Gansu, China [J]. Quaternary Sciences, 1991, 11(4): 349-353. doi: 10.3321/j.issn:1001-7410.1991.04.006 [51] Ding Z L, Derbyshire E, Yang S L, et al. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record [J]. Paleoceanography, 2002, 17(3): 5-1-5-21. doi: 10.1029/2001PA000725
[52] Kukla G, An Z S. Loess stratigraphy in Central China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1989, 72: 203-225. doi: 10.1016/0031-0182(89)90143-0
[53] Kalm V E, Rutter N W, Rokosh C D. Clay minerals and their paleoenvironmental interpretation in the Baoji loess section, southern Loess Plateau, China [J]. Catena, 1996, 27(1): 49-61. doi: 10.1016/0341-8162(96)00008-2
[54] Rutter N, Ding Z L, Evans M E, et al. Baoji-type pedostratigraphic section, Loess Plateau, north-central China [J]. Quaternary Science Reviews, 1991, 10(1): 1-22. doi: 10.1016/0277-3791(91)90028-S
[55] Guo Z T, Biscaye P, Wei L Y, et al. Summer monsoon variations over the last 1.2 Ma from the weathering of loess-soil sequences in China [J]. Geophysical Research Letters, 2000, 27(12): 1751-1754. doi: 10.1029/1999GL008419
[56] Stevens T, Buylaert J P, Thiel C, et al. Ice-volume-forced erosion of the Chinese Loess Plateau global Quaternary stratotype site [J]. Nature Communications, 2018, 9(1): 983. doi: 10.1038/s41467-018-03329-2
[57] 鹿化煜, Stevens T, 弋双文, 等. 高密度光释光测年揭示的距今约15~10 ka黄土高原侵蚀事件[J]. 科学通报, 2006, 51(23):2767-2772. [LU Huayu, Thomas Stevens, Ge Shuangwen, et al. Erosion events in the Loess Plateau revealed by high density OSL dating in about 15~10 ka [J]. Science Bulletin, 2006, 51(23): 2767-2772. doi: 10.3321/j.issn:0023-074X.2006.23.011 [58] 白凤龙, 朱文中. 兰州西津村黄土剖面及磁性年代的确定[J]. 长安大学学报: 地球科学版, 1986, 8(2):71-75. [BAI Fenglong, ZHU Wenzhong. The loess section and magnetic ages of Xijin Village, Lanzhou [J]. Journal of Chang'an University: Earth Science Edition, 1986, 8(2): 71-75. [59] 雷祥义. 靖远曹岘黄土的形成时代及显微结构特征[J]. 地理学报, 1995, 50(6):521-533. [LEI Xiangyi. Formation age and microfabric characteristics of loess in Chaoxian, Jingyuan, Gansu, China [J]. Acta Geographica Sinica, 1995, 50(6): 521-533. doi: 10.3321/j.issn:0375-5444.1995.06.008 [60] Berger A, Loutre M F. Insolation values for the climate of the last 10 million years [J]. Quaternary Science Reviews, 1991, 10(4): 297-317. doi: 10.1016/0277-3791(91)90033-Q
[61] Grossman E L. Oxygen isotope stratigraphy[M]//The Geologic Time Scale. Amsterdam: Elsevier, 2012: 181-206.
[62] 丁仲礼, 余志伟. 第四纪时期东亚季风变化的动力机制[J]. 第四纪研究, 1995, 15(1):63-74. [DING Zhongli, YU Zhiwei. Forcing mechanisms of paleomonsoons over East Asia [J]. Quaternary Sciences, 1995, 15(1): 63-74. doi: 10.3321/j.issn:1001-7410.1995.01.007 [63] Kukla G. Loess stratigraphy in central China [J]. Quaternary Science Reviews, 1987, 6(3-4): 191-219. doi: 10.1016/0277-3791(87)90004-7
[64] Cheng H, Sinha A, Wang X F, et al. The Global Paleomonsoon as seen through speleothem records from Asia and the Americas [J]. Climate Dynamics, 2012, 39(5): 1045-1062. doi: 10.1007/s00382-012-1363-7
[65] An Z S, Liu T S, Zhou Y Z, et al. The paleosol complex S5 in the China Loess Plateau-A record of climatic optimum during the last 1.2 Ma [J]. GeoJournal, 1987, 15(2): 141-143.
[66] 李珍, 李玲琴, 曾永年, 等. 西宁的黄土研究[J]. 青海地质, 1996(2):1-10. [LI Zhen, LI Lingqin, ZENG Yongnian, et al. The studies of Xining loess [J]. Geology of Qinghai, 1996(2): 1-10. [67] Liu L W, Chen J, Ji J F, et al. Variation of Zr/Rb ratios in the Chinese loess deposits during the past 1.8 Myr and its implication for the change of East Asian monsoon intensity [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(10): Q10006.
[68] Lu H Y, Liu X D, Zhang F Q, et al. Astronomical calibration of loess-paleosol deposits at Luochuan, central Chinese Loess Plateau [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 154(3): 237-246. doi: 10.1016/S0031-0182(99)00113-3
-
期刊类型引用(13)
1. 李式洋. 无人艇在海上勘探地震采集中的应用. 中国石油和化工标准与质量. 2025(06): 151-153 . 百度学术
2. 李天光,郑江龙,李林伟,江彪,谢晋兴,黄晓鑫,孟凡盛,惠格格,黄逸凡. 无人艇载单道地震系统集成与海试验证. 地球物理学进展. 2024(02): 878-884 . 百度学术
3. 陈超,张洪星,张海涛,钱建华. 多方法协同的水下排污口排查技术体系应用. 环境工程. 2024(05): 139-146 . 百度学术
4. 陈志坚,万芃,李勇航,李斌,李瑞铿,潘宝华. 水面无人艇侧扫声纳技术在人工鱼礁调查中的应用. 珠江水运. 2024(12): 17-20 . 百度学术
5. 邹烨杰,李大军. 基于无人艇多波束测深系统的浅海水下地形自动化全覆盖测量. 江西测绘. 2023(02): 8-11+36 . 百度学术
6. 刘玉斌,张建兴,宋永东,张毅涵,栾振东. 基于相位差测深声呐(PDBS)技术的莱州湾人工鱼礁探测. 海洋科学. 2023(10): 76-86 . 百度学术
7. 夏雨,刘凯. 无人艇在海底电缆声学二次定位中的应用技术与前景分析. 中国石油和化工标准与质量. 2022(07): 188-190 . 百度学术
8. 汪连贺. 无人艇组网测量应用场景研究及精度分析. 海洋测绘. 2022(03): 48-51+65 . 百度学术
9. 徐杰. 虚拟现实技术在航海模拟器海底视景中的应用. 舰船科学技术. 2021(12): 49-51 . 百度学术
10. 王伟平,何西,董超,郑兵,李雪. 海洋探测无人艇:平台设计及应用. 电信科学. 2021(07): 40-47 . 百度学术
11. 李勇航,韦成府,李瑞铿,傅晓洲,杨江平,利明泽. 无人机与无人艇在海南东锣岛水上水下地貌联合调查中的应用. 海洋地质前沿. 2021(08): 80-88 . 百度学术
12. 李勇航,牟泽霖,刘文涛,温明明,倪玉根,单晨晨,潘冬阳. 海南海棠湾海底微地貌多源声学特征、成因及其指示意义. 地球物理学进展. 2021(04): 1694-1701 . 百度学术
13. 李勇航,贾磊,倪玉根,何健,牟泽霖,温明明,单晨晨. 中国台湾浅滩海砂砂体的地球物理特征及有利赋存标志. 热带海洋学报. 2021(05): 101-110 . 百度学术
其他类型引用(3)