南海典型断面表层沉积物中氧化还原敏感元素的分布特征及其控制因素

程俊, 黄怡, 王淑红, 苗莉, 颜文

程俊, 黄怡, 王淑红, 苗莉, 颜文. 南海典型断面表层沉积物中氧化还原敏感元素的分布特征及其控制因素[J]. 海洋地质与第四纪地质, 2019, 39(2): 90-103. DOI: 10.16562/j.cnki.0256-1492.2018102601
引用本文: 程俊, 黄怡, 王淑红, 苗莉, 颜文. 南海典型断面表层沉积物中氧化还原敏感元素的分布特征及其控制因素[J]. 海洋地质与第四纪地质, 2019, 39(2): 90-103. DOI: 10.16562/j.cnki.0256-1492.2018102601
CHENG Jun, HUANG Yi, WANG Shuhong, MIAO Li, YAN Wen. Distribution pattern and controlling factors of redox sensitive elements in the surface sediments from four typical transects in the South China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 90-103. DOI: 10.16562/j.cnki.0256-1492.2018102601
Citation: CHENG Jun, HUANG Yi, WANG Shuhong, MIAO Li, YAN Wen. Distribution pattern and controlling factors of redox sensitive elements in the surface sediments from four typical transects in the South China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 90-103. DOI: 10.16562/j.cnki.0256-1492.2018102601

南海典型断面表层沉积物中氧化还原敏感元素的分布特征及其控制因素

基金项目: 

国家自然科学基金项目“南海北部东沙西南海域泥火山的流体特征及其活动历史” 41576035

国家科技基础性工作专项“南海海洋地质基础数据采集及其环境响应调查” 2008FY110100

国家科技基础资源调查专项“南海海洋化学科学考察历史资料整编” 2017FY201403

中国科学院战略性先导科技专项(A)“南海环境变化” XDA13010102

详细信息
    作者简介:

    程俊(1993—),男,硕士生,主要从事海洋地质与沉积地球化学研究,E-mail:juncheng@scsio.ac.cn

    通讯作者:

    王淑红(1977—),女,博士,研究员,主要从事海底冷泉与沉积环境研究,E-mail:wshds@scsio.ac.cn

  • 中图分类号: P736.4

Distribution pattern and controlling factors of redox sensitive elements in the surface sediments from four typical transects in the South China Sea

  • 摘要: 氧化还原敏感元素在环境研究中发挥着日益重要的作用,然而对于海底表层沉积物中氧化还原敏感元素的分布规律与特征的研究鲜有涉及。本文以采集自南海4条典型断面(18°N、10°N、6°N、113°E)的75个表层沉积物样品为研究对象,通过主量元素和微量元素(含氧化还原敏感元素Mo、V、U)分析,并结合沉积物粒度、元素富集系数等数据,探讨了表层沉积物中氧化还原敏感元素的分布特征及其控制因素。结果表明,研究区每个断面中的V、U含量变化趋势十分相似,Mo含量变化与V、U的总体变化趋势相近,但Mo在断面上的变化波动比V、U更强烈。4条断面中Mo平均含量表现出明显富集,除了V在断面Ⅰ中表现为轻度富集外,V和U平均含量都表现为亏损。影响沉积物中Mo、V、U含量分布的因素主要包括陆源碎屑含量、生物碳酸盐含量、细粒沉积物的吸附作用和氧化还原环境等。所有断面中V和U的含量分布主要受控于陆源碎屑组分,同时也受到生物碳酸盐含量和细粒沉积物的吸附作用的影响,氧化还原环境对其含量影响较小,受环境影响的自生组分含量较低。Mo的含量分布主要受控于海底氧化还原环境,陆源碎屑组分的贡献和细粒沉积物吸附作用的影响较小,受环境影响的自生组分含量较高。西南次海盆的Mo含量及其富集系数都较低,可能是由于西南次海盆的底流活动使其海底存在氧化环境所致。
    Abstract: Redox sensitive elements play an increasingly important role in environmental analysis. However, few studies have been devoted so far to the distribution pattern of the redox sensitive elements in the seafloor surface sediments. In this paper, seventy-five surface sediment samples were collected and analyzed from the four representative transects in the South China Sea along 18°N, 10°N, 6°N, and 113°E respectively. The contents of main elements and trace elements (including Mo, V, and U) are measured in addition to grain sizes of sediments and enrichment factors of redox sensitive elements. The distribution pattern and controlling factors of redox sensitive elements are then discussed in the paper. Results show that the variations in V and U contents in each transect are in fact very similar. The content variation of Mo is similar to the overall trends of V and U, but more intense than V and U changes. Obviously, the average content of Mo is enriched while V and U depleted in the transects except slightly enriched V in the transect Ⅰ. The contents of V and U in all transects are mainly controlled by the contents of terrigenous debris and biological carbonate as well as the adsorption of fine-grained sediments, whereas the influence of redox environment is low. In contrast, the distribution of Mo mainly depends on the seabed redox environment, but not the contribution of terrigenous debris content and the adsorption of fine-grained sediments. The lower content and enrichment factor of Mo in the Southwestern Sub-basin of the South China Sea may probably attribute to oxidized environment caused by the underflow activity.
  • 连云港市位于江苏省东北部,是一个常住人口400余万人的滨海城市。在其西侧约60 km处发育NNE走向的郯庐断裂带,该断裂带构成了活动地块边界[],其中的安丘-莒县断裂是全新世活动断裂[-],在安丘-莒县断裂莒县-郯城段曾发生1668年郯城8½级地震[-]。在连云港市东南和东北方向分别是苏北-南黄海南部坳陷和南黄海北部坳陷,坳陷内已发现多条晚更新世以来活动断裂[-],历史上曾发生多次6级、7级地震,现代小震活动亦较为密集(图1)。

    图 1 研究区大地构造位置及区域地震构造略图
    图  1  研究区大地构造位置及区域地震构造略图
    a:研究区与大别造山带的位置关系, 修自参考文献[];b:区域地震构造略图,图中断裂依据参考文献[-,-]及最新探测成果,地震震级及震中依据参考文献[-]及中国地震台网正式目录(至2023年12月),盆地边界修自参考文献[];断裂名称:①郯庐断裂带,②渤海-威海断裂带,③淮阴-响水断裂,④邵店-桑墟断裂(烧香河断裂),⑤海泗断裂带,⑥牟平-即墨断裂带,⑦北沟-玲珑断裂,⑧沧口断裂,⑨海阳断裂,⑩千里岩断裂。
    Figure  1.  Sketch map of tectonic setting and regional seismotectonics of the study area
    a: The relationship between the study area and the Dabie Orogenic Belt, modified after []; b: Regional seismotectonic map. The faults in the figure are based on references [-,-] and the latest detection results. The earthquake magnitude and epicenter are based on references [-] and the official catalogue of China Seismic Network (As of 2023 December). The basin boundary is compiled after []. Faults numbers: ① Tanlu Fault Zone, ② Bohai Sea-Weihai Fault Zone, ③ Huaiin-Xiangshui Fault, ④ Shaodian-Sangxu fault (Shaoxiang River Fault), ⑤ Hesi Fault Zone, ⑥ Mouping-Jimo Fault Zone, ⑦ Beigou-Linglong Fault, ⑧ Cangkou Fault, ⑨ Haiyang Fault, ⑩ Qianliyan Fault.

    连云港市地处千里岩-海州湾隆起区,属于第四纪构造弱活动区。周边发育海州-韩山断裂(F1)、猴嘴-南城断裂(F2)、烧香河断裂(F3)、伊芦山北断裂(F4)、排淡河断裂(F5)、猴嘴-一沟断裂(F6)、玉带河断裂(F7)、南城-新浦断裂(F8)和海州-韩山支断裂(F9)等9条断裂,它们分属NNE、NE、NW向3组脆性断裂构造(图2),隐伏于第四系之下。以往1∶5万、1∶25万地质调查填图[-]以及地震安全性评价工作,对于上述断裂活动性方面的研究仍十分薄弱,认识上存在混乱,普遍缺乏可靠的活动证据。

    图 2 研究区主要断层分布图
    图  2  研究区主要断层分布图
    F1:海州-韩山断裂, F2:猴嘴-南城断裂, F3:烧香河断裂, F4:伊芦山北断裂, F5:排淡河断裂, F6:猴嘴-一沟断裂, F7:玉带河断裂, F8:南城-新浦断裂, F9:海州-韩山支断裂。
    Figure  2.  Distribution of main faults of the study area
    F1: Haizhou-Hanshan Fault, F2: Houzui-Nancheng Fault, F3: Shaoxiang River Fault, F4: North Yilu Mountain Fault, F5: Paidan River Fault, F6: Houzui-Yigou Fault, F7: Yudai River Fault, F8: Nancheng-Xinpu Fault, F9: Haizhou-Hanshan Branch Fault.

    连云港市及附近有没有活动断裂?在郯庐断裂带、黄南海盆地中、强地震构造区(带)所围绕的背景下,连云港市是否具备发生中、强地震的构造条件?地震危险程度如何?这些都是连云港市防震减灾工作迫切需要解决的问题。为此,在2014—2019年开展了连云港市活动断层探测与地震危险性评价项目,对9条断裂开展了详细探测研究。根据探测成果[],除区域上规模较大的NNE向海州-韩山断裂(区域上为海泗断裂)和NE向烧香河断裂(区域上为邵店-桑墟断裂)外,其他断裂规模较小,且为前第四纪断裂。由于篇幅所限,本文主要介绍NNE向海州-韩山断裂、NE向烧香河断裂,以及NW向代表断裂南城-新浦断裂的探测和活动性鉴定成果,希望为中国东部第四纪构造弱活动区的活动断裂探测以及连云港市地震灾害风险调查、评估和预防等工作提供参考依据。

    研究区在地质构造上位于中生代苏鲁造山带东南缘,为秦岭-大别造山带东延部分,形成于三叠纪晚期的印支运动,是华北板块和扬子板块发生汇聚、碰撞造山活动的产物[-]。苏鲁造山带位于郯庐断裂带、五莲-荣成断裂与淮阴-响水断裂带之间(图1),发育高压、超高压变质带[,]。太古代—元古代发育东海杂岩、锦屏岩群和云台岩群(图2),在锦屏山、云台山等地出露。研究区缺失古生界和大部分中生界,仅在小型断陷盆地内发育白垩系,早期为青山群陆相火山岩和火山碎屑岩沉积,晚期为王氏组紫红色砾岩、砂岩、泥岩河湖相沉积[-]

    中国东部地区新生代发生伸展裂陷活动,形成了一系列隆起和坳陷[-],位于研究区东南侧的苏北-南黄海南部坳陷在古近纪发生了强烈裂陷活动,在凹陷或次级凹陷中沉积了厚度达6000余米的河湖相地层;新近纪以来苏北-南黄海南部坳陷以整体拗陷活动为主,沉积厚度达2 000余米[,]。而北邻的连云港市研究区为新生代隆起区,缺失古近系和中新统。上新世新构造运动以向东南掀斜运动为特征,产生不均匀升降,云台山以北平原遭受剥蚀,沿北北东向海州-韩山断裂局部地带发生玄武岩喷发,云台山以南平原发育上新统宿迁组,为灰白色粉质黏土和灰白色-灰黄色中细砂、含砾中粗砂,沉积厚度10~60 m,在灌南县GK8孔中发现泗洪真星介(Eucypris xiacaowanensis)为主的介形虫以及轮藻和鱼骨碎片,属于淡水河湖相沉积[-]。第四纪早—中更新世继承了上新世构造运动格局,云台山以北平原继续遭受剥蚀,而云台山以南平原堆积了中—下更新统五队镇组和小腰庄组;晚更新世—全新世,云台山南北平原区整体产生沉降,沉积了灌南组和连云港组。

    根据研究区断裂和地层分布特点,在吸收方盛明等[]、曹筠等[]、徐锡伟等[]城市活动断层探测经验的基础上,按照GB/T 36072-2018《活动断层探测》国家标准,有针对性地制定了多学科、多方法综合探测策略。

    首先,在云台山南北两侧分别布设了第四系标准钻孔BK1、BK2(图2),在综合岩石学、年代测试、古地磁、孢粉及菌藻类化石等研究基础上,并与研究区其他钻孔进行对比分析(图3),建立了第四系标准剖面,为断裂活动性鉴定提供了时间框架。其次,实施高精度(1 m和3 m道间距、可控震源)浅层地震反射勘探、地震折射和横波勘探综合探测工作。以往城市活动断层探测经验表明,浅层地震反射法是活动断层探测中应用最广泛、最有效的首选方法[-],但连云港市云台山以北地区基岩埋深较浅,断裂第四纪活动弱,浅层地震反射法往往只能获取基岩顶面反射波,难以精确判断隐伏断裂的位置及埋深。顾勤平等[]、夏暖等[]在浅覆盖区联合应用地震反射法、横波反射法与高分辨率折射法探测研究认为:折射层析成像法和横波探测对于横向速度差异更为敏感,可以弥补浅覆盖区浅层地震反射勘探的不足,联合探测要比单独采用其中任何一种手段更加可靠,并能从不同角度查明断层的位置、性质及其特征,从而提高断层探测精度。本文的探测实例也表明采用综合探测效果较好。第三,在类似研究区这种覆盖层超过10 m且断裂第四纪活动又较弱的地区,在浅层地震探测基础上,采用跨断层钻孔联合剖面探测是不可缺少且极其有效的工作,不仅能够验证浅震探测结果,确定断裂准确位置,而且可为断裂活动判定提供依据,同时对照联合剖面结果可以提高地震剖面解释质量。

    图 3 连云港地区云台山南北两侧钻孔第四系地层对比剖面图
    图  3  连云港地区云台山南北两侧钻孔第四系地层对比剖面图
    Figure  3.  Inter-well litho-stratigraphic correlation among boreholes in north and south foothill sides of Yuntai Mountain in Liangyugang City

    连云港市及周边平原区第四系自上而下发育了全新统连云港组、上更新统灌南组、中更新统小腰庄组、下更新统五队镇组[,-]。从研究区第四系对比剖面(图3)来看,以锦屏山-云台山一线为界,第四系北薄南厚,南侧平原厚度大,最厚可达100 m左右,发育了全新统—下更新统;北侧平原厚度小,缺失了中更新统下部—下更新统,沉积厚度一般为10~30 m,局部可达50 m左右。根据第四系标准剖面及地层对比,研究区第四系特征如下:

    (1)全新统连云港组(Qhl):上部以黄褐-灰褐色冲海积黏土、粉质黏土为主,中下部为黄灰-深灰色海相-海陆交互相淤泥质黏土、淤泥、砂质淤泥等组成。全新统厚度大致为5~16 m,在云台山以南平原区厚度约15 m,在云台山以北平原区厚度一般为5~13 m。

    (2)上更新统灌南组(Qp3g):以灰黄色-褐黄色粉质黏土、粉土、粉细砂、灰褐-灰黑色粉质黏土为主。在云台山南北两侧平原区灌南组在沉积厚度、沉积环境和沉积旋回等方面存在差异,在云台山南侧平原,灌南组厚度一般为30.0 m左右,以冲积相夹两层海相地层为主;北侧平原厚度较薄,一般为13.4~24.9 m,以冲积相夹一层海相地层为主。

    (3)中更新统小腰庄组(Qp2x):以灰黄-棕黄色冲积相粉质黏土、中粗砂、中细砂为主,局部夹灰绿色粉质黏土。以冲积类型为主,局部夹河湖相堆积,但云台山南北两侧平原在沉积厚度和岩性组合上差别较大,在云台山南侧平原小腰庄组发育2个沉积旋回,沉积厚度约21.1~30.1 m;北侧平原发育1个沉积旋回,沉积厚度约0~18.8 m,下部地层存在缺失。

    ⑷下更新统五队镇组(Qp1w):仅分布在云台山南侧平原,北侧平原一带缺失。根据灌南县五队公社中学附近GK8孔揭露,该组主要岩性为黄、褐黄夹灰白或灰绿色中粗砂、粉细砂夹黏土、粉质黏土,自下而上具5个韵律旋回,以河湖相为主,厚度可达50 m。研究区云台山南部平原区以黄-灰白色河湖相粉细砂、棕黄-兰灰色粉质黏土为主,沉积厚度约13.4~19.5 m。

    根据标准孔BK1孔菌藻类化石分布,识别出了4次海侵事件(图3),分别为全新世早中期(Ⅳ)、晚更新世中晚期(Ⅲ)、晚更新世早期(Ⅱ)、早更新世早期(Ⅰ)。上述海侵地层,特别是晚更新世以来的三次海侵地层成为研究区地层对比划分的可靠标志。上述海侵事件与王绍鸿等[]依据海州湾南岸L-2孔有孔虫化石分布推断的海侵事件可以较好地比对。

    海州-韩山断裂(F1)是区域上NNE走向的海泗断裂带西边界断裂,北起赣榆县海边,经连云港市区往南延至泗阳蚕桑场,长度约150 km,倾向东,倾角50°~70°。它切穿了中生代高压超高压变质带,构成了白垩纪小型盆地的边界断裂,上新世在研究区南侧张湾村一带沿该断裂发生玄武岩喷发[],在重力和航磁异常图中有明显的异常显示[]。该断裂隐伏于平原之下,在地貌上没有活动显示。

    在刘滩村北沿新沭河的南岸大堤跨海州-韩山断裂布设了浅层纵波地震反射测线LBK2a(图2)。在测线LBK2a时间剖面约60 ms处发育一组特征明显的反射波组TQ,该波组在整条测线上清晰可见,深度大约为28~35 m,推测为基岩顶面的反射,其下无明显的反射信息。该波组能量较强、连续性较好,未发现明显的断裂反应(图4)。

    图 4 测线LBK2a浅层地震反射剖面
    图  4  测线LBK2a浅层地震反射剖面
    Figure  4.  Time profile of the shallow seismic reflection along line LBK2a

    由于海州-韩山断裂所在区域基岩埋深较浅,两盘断距不明显,在浅层地震反射剖面上仅表现为连续的同相轴,无法识别断裂位置。基于海州-韩山断裂两盘岩性存在差异,折射层析成像法对横向速度差异较为敏感,因此在浅层地震反射法的基础上联合开展了折射层析成像探测,布设了与地震反射测线LBK2a重合的折射测线LBK2b(图2)。在测线LBK2b折射剖面上发现了该断裂,在该剖面上第四系与基岩界面大致位于29~35 m,界面以上速度小于1600 m/s,界面以下速度基本为2300 m/s;断点位于测线桩号280 m处,上部对应第四系的速度层未受影响,下部基岩速度存在明显突变,西侧速度为38005000 m/s,东侧为25003200 m/s(图5)。本次工作通过浅层地震反射和折射层析成像联合探测,两种方法互补,实现了对断裂的可靠定位。

    图 5 测线LBK2b折射层析成像速度剖面
    图  5  测线LBK2b折射层析成像速度剖面
    Figure  5.  Velocity profile of the refraction tomography along line LBK2b

    采用“对折法”[],跨断层布设了7个钻孔,剖面编号为PZ10(图6)。在该钻孔联合地质剖面中,揭露了第四系全新统连云港组(①—③层)和上更新统灌南组(④—⑥层)、上白垩统王氏组(⑦层)、中太古界东海杂岩(⑧层)。断裂上断点埋深约34.0 m,断层倾向南东,倾角约为50°。上盘为上白垩统砂岩,下盘为中太古界黑云斜长片麻岩。破碎带宽度约12 m,中部的F1为主断层滑动面,发育未固结的厚度约5~10 cm、灰白色-兰灰色-紫红色断层泥,显示为最新活动面(图6中照片)。断裂带及两侧基岩之上覆盖有上更新统(Qp3)和全新统(Qh),第四系厚度为32~34 m,横向分布连续稳定,上盘基岩面高出下盘约2 m,但上更新统第⑥层中细砂内部的⑥-1层粉质黏土及其中的铁锰氧化物富集层层位基本对应,AC15孔30~33.85 m的砂层粒序层理水平,未见变形、扰动及错动现象,说明该断裂未进入上覆第四系。

    图 6 刘滩村北跨海州-韩山断裂新沭河大堤 PZ10 钻孔联合地质剖面图
    图  6  刘滩村北跨海州-韩山断裂新沭河大堤 PZ10 钻孔联合地质剖面图
    Figure  6.  PZ10 comprehensive borehole geological sections across the Haizhou-hanshan Fault along the New Shuhe River dam to the north of Liutan Village

    由于没有错断上覆上更新统和全新统,所以海州-韩山断裂不是活动断裂。基于该断裂带内的断层泥未固结、存在的约2 m基岩高差地形有可能属于断层坎以及在第四系等厚线图上沿断裂西侧沉积厚度明显变大等现象,认为该断裂为第四纪早期(Qp1-2)弱活动断裂。当然断层泥的物理性状有多种影响因素,基岩坎的形成也可能因断层两侧岩石抗风化能力不同,与第四纪早期遭受差异风化及剥蚀形成的陡坎微地貌有关。

    烧香河断裂(F3)在区域上又称邵店-桑墟断裂,陆地长度约120 km,西段构成了白垩纪—古近纪沭阳盆地、板浦盆地的边界断裂。断裂走向NE45°~55°,倾向南东,倾角60°左右,在研究区经刘杨庄北、板浦北、板桥南等地入海,全段隐伏于冲积、海积平原之下。

    在板桥南沿省道S242跨烧香河断裂布设了浅震纵波反射测线10-1。在该测线时间剖面上,烧香河断裂F3-1断点位于桩号4420 m处,此处新近系和第四系底界T1反射波组有明显转折现象,以桩号4420 m为界地层呈现从北向南变深的形态,推测为断层反应,表现为上盘下降的正断层,断面倾向南(图7)。

    图 7 测线10-1断点F3-1局部时间剖面(a)及其地质解释剖面(b)
    图  7  测线10-1断点F3-1局部时间剖面(a)及其地质解释剖面(b)
    Figure  7.  Time section across fault point F3-1 (a) and its geologic interpretation (b) along line 10-1

    针对断点F3-1跨断层布设了7个钻孔,剖面编号为PZ4(图8)。在该钻孔联合地质剖面中,揭露了第四系、上新统宿迁组和元古代花果山组。第四系包括全新统连云港组、上更新统灌南组、中更新统小腰庄组和下更新统五队镇组,厚度大致为80~89 m,向东南方向略有增厚。其中①—②层为全新统连云港组,以海相-海陆交互相淤泥质粉质黏土为主,地层基本呈水平状分布;③—⑧层为上更新统灌南组,为冲积相和海相地层组合,岩性以粉质黏土和粉细砂为主,向东南方向埋深略微加大,层位稳定,总体呈水平状分布;⑨—⑬层、⑬-1层为中更新统小腰庄组,以冲积相黏土、粉质黏土为主,夹薄层粉细砂;⑭、⑮和⑮-1层为下更新统五队镇组,以河湖相黄色、灰白粉细砂夹棕黄-蓝灰色粉质黏土为主,下更新统厚度变化不大,向西北方向层底埋深有变浅的趋势;⑯—⑲层为上新统宿迁组地层,以河湖相灰白色粉质黏土夹粉细砂层为主,底部灰白色夹褐黄色含砾中粗砂,从东南向西北厚度有变薄趋势,底部埋深也逐渐变浅。

    图 8 山南管理区北跨烧香河断裂PZ4钻孔联合地质剖面图
    图  8  山南管理区北跨烧香河断裂PZ4钻孔联合地质剖面图
    Figure  8.  PZ4 comprehensive borehole geological section across the Shaoxianghe Fault to the north of the Shannan Management District

    剖面中全新统—中更新统中上部(①—⑬层),总体呈水平分布,未见错断现象;而下更新统五队镇组、上新统宿迁组、元古代花果山组(⑭—⑳层)均被断错,并向上影响到中更新统下部⑬-1层,垂直断距约为3.6~3.7 m,并造成C11孔宿迁组地层局部变形,C10孔花果山组破碎,具碎裂化现象(图8中照片)。综上所述,烧香河断裂为倾向东南的正断层,倾角约为50°~65°,最新活动时代为早更新世或中更新世早期。

    南城-新浦断裂(F8)穿过连云港市区,经南城镇至新浦镇一带,走向NW,倾向NE,倾角50~70°,长度约20 km。该断裂错断了元古界、白垩纪地层,对罗阳-浦南白垩纪盆地有一定的控制作用。

    在浦南镇西布设了地震纵波反射测线LBK8a,在该测线剖面上发现了南城-新浦断裂,断点F8-3位于桩号673 m处,此处第四系底界/基岩面反射波组TQ及以下的基岩反射波组存在轻微转折现象,推测为断裂影响(图9)。

    图 9 测线LBK8a时间剖面(a)及其地质解释剖面(b)
    图  9  测线LBK8a时间剖面(a)及其地质解释剖面(b)
    Figure  9.  Time section across fault point F8-3 (a) and its geologic interpretation (b) along line LBK8a

    针对断点F8-3跨断层布设了6个钻孔,剖面编号为PZ8(图10)。在该剖面中,揭露了第四系全新统连云港组(①—③层)和上更新统灌南组(④—⑧层)、上白垩统王氏组(⑩层)、中太古界东海杂岩(⑪层)。断裂上断点埋深约23.0 m,主断层滑动面(F8)倾向北东,倾角约为33°。上盘为上白垩统砂岩,下盘为中太古界黑云斜长片麻岩,破碎带宽度约8 m,发育碎裂岩带,已胶结坚固,局部沿破裂面有钙质充填胶结(图10中照片)。破碎带及两侧基岩之上覆盖全新统和上更新统(①—⑧层),厚度约23.0 m,分布连续,层位稳定,没有发现断错现象。根据断裂与地层、地貌关系以及断层物质固结状态分析认为南城-新浦断裂为前第四纪断裂。

    图 10 跨南城-新浦断裂PZ8钻孔联合地质剖面图
    图  10  跨南城-新浦断裂PZ8钻孔联合地质剖面图
    Figure  10.  PZ8 comprehensive borehole geological section across the Nancheng-Xinpu Fault near the Punan Town

    此外,在南城-新浦断裂东延方向的云台山西麓的九岭村北(图2中D13考察点)发现一个出露良好的北西向断裂剖面(图11)。在元古界云母片岩中见有多组断裂面(fa、fb、fc),发育碎裂岩和已固结的断层泥带。在fc断面处,已固结的浅灰绿色断层泥滑动面上见大致呈向东45°角侧伏的擦痕,具有左旋走滑及正断活动性质。在断裂通过处不存在明显的陡坎地貌,未发现第四纪构造新活动现象。以上现象表明该处出露的北西向断裂亦为前第四纪断裂。

    图 11 九岭村北基岩内北西向断裂剖面
    图  11  九岭村北基岩内北西向断裂剖面
    ①石英云母片岩;②云母片岩节理劈理带;③碎裂岩,含断层角砾;④片岩碎粉岩,宽约20 cm;⑤已固结浅灰绿色断层泥,厚3~5 cm。
    Figure  11.  Sketch section of an NW-trending fault to the north of the Jiuling Village
    ① Quartz-mica schist; ② Mica schist joint and cleavage belts; ③ Cataclasite, contains fault breccia; ④ Ultracataclasite of schist, about 20 centimeters wide; ⑤ Consolidated light gray-green fault gouge, 3-5 centimeters thick.

    研究区发育海州-韩山断裂(F1)等9条主要断裂,它们分属于NNE、NE、NW向3组断裂构造(图2)。其中的NNE向和NE向断裂组规模较大,在重力和航磁异常图中也有明显的异常显示[],其中部分断裂明显切穿了中生代高压超高压变质带,构成了小型白垩纪盆地的边界断裂;而NW向断裂也往往与NNE向断裂相互切割并错断白垩纪地层,表明它们具有长期构造活动史,在中生代晚期的苏鲁造山活动后期仍然具有明显活动[-]

    新生代以来,研究区新构造运动以向东南掀斜为特征,产生不均匀升降,NE向烧香河断裂就处在上新世—第四纪早期升降转折带上,控制了研究区上新世—中更新世早期地层分布。NNE向海州-韩山断裂没有断错晚第四纪地层,但上新世沿该断裂局部地带玄武岩喷发,并沿断裂在岗埠农场和前罗阳附近形成2个断续第四系沉降中心,沉降幅度10~20 m(图2),推测可能与该断裂第四纪早期活动有关。中更新世晚期以来研究区整体缓慢下降,差异升降不显著,断裂活动基本停止。

    本次断层探测研究表明研究区内9条主要断裂在第四纪时期活动较弱,除了NNE向海州-韩山断裂(F1)和NE向烧香河断裂(F3)具有早第四纪弱活动的可能性外,其他断裂均为第四纪不活动断裂。相应地连云港市地震活动也较弱,有历史地震记录以来仅发生过1次破坏性地震(图2),即1495年11月8日连云港海州4¾级地震,没有5级以上地震。

    研究区及所在的苏鲁造山带南部(潮连岛断裂以南),历史上地震活动总体水平较低,仅发生过一次5级以上的地震(1924年黄海5.0级地震),特别是陆域未发生过5级及以上中强地震,陆域发生的最大破坏性地震即前述的连云港海州4¾级地震。该区域小震活动也非常弱,空间分布非常分散,数量较稀少(图1)。在研究区北侧同样是位于苏鲁造山带上的山东半岛第四纪断裂与地震活动也表现出类似的特点。山东半岛多数主要断裂的最新活动时代集中在早、中更新世,仅有少数断裂(如海阳断裂、沧口断裂、东殿后断裂)或断裂的局部段落有晚更新世活动迹象[-]图1)。山东半岛历史地震记录仅有几次5级左右地震,如1046年的岠嵎山5级地震、1939年乳山5½级地震,无6级及以上地震发生。研究区及其北侧山东半岛第四纪断裂和地震活动均相对较弱的事实表明,苏鲁造山带在第四纪以来的构造活动较弱,不具备控制强地震活动的活动块体边界性质。

    综合断裂最新活动特征和地震活动等资料,分析认为连云港市研究区内具有发生5级左右地震的可能,不具备6级及以上地震的构造条件,因此连云港市未来所面临的“直下型”地震危险相对较小。但是,在研究区外围的NNE向郯庐断裂带以及东南侧的南黄海北部坳陷和南部坳陷是现今的中、强地震活动区(图1),曾发生多次的6级、7级及以上地震,特别是历史上1668年郯城8½级强震对研究区的地震烈度影响达到Ⅷ度,因此不但要注意本地5级左右地震而且还要重视外围强震对研究区的地震破坏影响。

    本文通过浅层地震勘探、钻孔联合剖面探测、年代测试、地质地貌考察等手段,结合连云港市研究区第四系分布及新构造特征,并进行地震构造环境类比分析,得到以下结论:

    (1)连云港市研究区第四纪断裂活动较弱,NNE向海州-韩山断裂(F1)和NE向烧香河断裂(F3)为早第四纪弱活动断裂,NW向南城-新浦断裂(F8)及其他断裂为前第四纪断裂。

    (2)连云港市研究区上新世—早第四纪新构造运动活跃,控制了第四纪早期地层分布或局部沉积厚度变化,与烧香河断裂和海州-韩山断裂第四纪早期活动特征相吻合。中更新世晚期以来研究区呈现整体缓慢下降,差异升降不显著,研究区断裂活动基本停止。

    (3)连云港市研究区具有发生5级左右地震的可能,同时还受到外围的郯庐断裂带以及东侧的南黄海内强震的影响,因此,在重大建设工程抗震设防、地震应急、宣传等工作中不但要考虑本地5级左右地震的作用,而且还要重视外围强震对研究区的破坏影响。

    (4)本文采用地质地貌调查、高精度浅层地震反射波法和折射波法、跨断层钻孔联合地质剖面等多手段综合探测方法可为浅覆盖、构造弱活动区的断裂探测工作提供借鉴和参考。

    致谢:在项目实施过程中得到了向宏发研究员、方盛明研究员以及中国活动断层探测专家组、中国地震局震害防御中心、江苏省地震局和连云港市地震局多位专家和领导的指导和帮助,在此表示衷心感谢!

    致谢: 图件绘制过程中得到了中国科学院南海海洋研究所硕士生刘奎的热心帮助,在此表示衷心的感谢。
  • 图  1   南海4个典型断面表层沉积物取样站位图

    Figure  1.   Sampling sites of surface sediments from four typical transects in the South China Sea

    图  2   南海4条典型断面表层沉积物类型三角图解

    Figure  2.   Classification of surface sediments from four typical transects in the South China Sea

    图  3   断面Ⅰ表层沉积物氧化还原敏感元素、主量元素和平均粒径变化

    Figure  3.   Variations in redox sensitive elements, main elements and mean grain size of surface sediments in Transect Ⅰ

    图  4   断面Ⅱ表层沉积物氧化还原敏感元素、主量元素和平均粒径变化

    Figure  4.   Variations in redox sensitive elements, main elements and mean grain size of surface sediments in Transect Ⅱ

    图  5   断面Ⅲ表层沉积物氧化还原敏感元素、主量元素和平均粒径变化

    Figure  5.   Variations in redox sensitive elements, main elements and mean grain size of surface sediments in Transect Ⅲ

    图  6   断面Ⅳ表层沉积物氧化还原敏感元素、主量元素和平均粒径变化

    Figure  6.   Variations in redox sensitive elements, main elements and mean grain size of surface sediments in Transect Ⅳ

    图  7   南海典型断面沉积物中氧化还原敏感元素与Al2O3和CaO的相关关系

    Figure  7.   Correlations between Al2O3, CaO and redox sensitive elements of the surface sediments from four typical transects in the South China Sea

    图  8   南海典型断面表层沉积物中氧化还原敏感元素含量与平均粒径之间的关系

    Figure  8.   Correlation between the content of redox sensitive elements and mean grain size of the surface sediments from four typical transects in the South China Sea

    图  9   氧化还原敏感元素的富集系数与含量之间的关系

    Figure  9.   Correlations between enrichment factor and content of redox sensitive elements of the surface sediments from four typical transects in the South China Sea

    表  1   南海典型断面表层沉积物粒级组成、平均粒径、微量元素(含氧化还原敏感元素)、主量元素分析结果和氧化还原敏感元素富集系数

    Table  1   Grain size composition, mean grain size, contents of trace elements (including redox sensitive elements) and main elements, and the enrichment factors of redox sensitive elements of the surface sediments from four typical transects in the South China Sea

    样品号粉砂黏土平均
    粒径/Φ
    MoVUSrAl2O3TiO2CaOFe2O3MnOMoEFVEFUEF
    /%/(μg/g)/%
    KJ010.0010.5560.4728.996.9812.096.01.665899.410.579.193.560.0612.151.100.68
    KJ020.000.3868.2231.407.390.2963.32.2733516.70.790.986.680.600.210.530.68
    KJ030.000.0079.0220.986.694.421432.3013415.90.871.436.380.652.961.090.63
    KJ040.000.8164.1735.017.485.161332.4613717.10.840.696.991.673.571.040.69
    KJ050.001.7662.3935.857.5213.41522.5012917.60.830.747.140.899.391.200.71
    KJ060.005.1254.3340.557.535.731572.5813615.50.732.366.501.014.561.420.84
    KJ070.001.6152.9845.427.894.351412.2317613.30.6010.85.231.494.191.540.88
    KJ080.003.2264.3832.407.234.261221.9641314.90.734.085.810.233.411.110.64
    KJ090.008.9354.8136.267.170.741302.4022112.30.5613.54.731.100.771.521.01
    KJ100.0013.4563.7922.776.325.381121.8751613.70.708.345.230.574.451.050.63
    KJ110.004.5858.9236.507.352.671202.6934315.40.723.125.931.602.161.100.89
    KJ120.004.4658.8436.707.339.011352.3120512.30.6110.64.740.748.541.450.89
    KJ130.008.9955.3035.717.073.1797.52.0140110.20.4416.03.661.864.141.451.07
    KJ140.009.9560.2329.836.869.5896.31.5461110.50.4618.13.761.0512.071.380.79
    KJ150.003.1861.1835.647.331.0289.71.8852211.80.5614.14.290.341.061.060.80
    KJ160.005.3867.8226.806.963.5995.41.6944910.30.4911.13.720.314.221.270.81
    KJ170.004.3159.9535.747.370.9197.32.0452811.70.6013.64.150.230.891.080.81
    KJ180.000.5770.5028.947.091.6385.72.2646211.70.6512.34.310.331.470.870.83
    KJ190.004.1769.3926.446.840.4899.02.9823314.40.835.285.420.090.340.780.85
    KJ200.0058.3226.0115.674.550.2848.32.553147.070.607.043.600.070.270.531.01
    KJ210.0030.0042.4727.545.542.1881.41.338908.780.3930.73.160.393.271.390.82
    KJ220.0027.1044.3928.515.891.2856.31.139206.790.3032.42.570.232.531.260.91
    KJ230.0032.8741.1425.995.721.0746.21.2914505.740.2433.12.110.202.541.251.25
    KJ240.0011.3051.8036.907.135.5968.91.388028.580.3624.83.140.899.021.260.91
    KJ250.004.2652.5343.217.642.5278.11.576819.980.4322.03.780.723.401.200.86
    KJ260.007.0352.5740.407.3910.81252.4719215.00.633.035.532.6010.091.320.94
    KJ270.0011.7649.5138.737.113.8179.31.6957910.90.4216.93.720.575.241.230.95
    KJ280.0011.8654.5333.616.907.1098.41.7860111.70.4616.93.950.808.931.400.92
    KJ290.0011.2064.1524.666.498.681042.1034513.20.537.844.711.479.551.290.94
    KJ300.000.3760.8938.747.653.501272.6413917.00.781.846.550.532.611.070.80
    KJ310.000.6158.2441.157.757.221372.7312017.40.770.756.690.935.451.170.84
    KJ320.000.2060.2939.517.702.391432.9414418.00.791.806.860.411.751.190.88
    KJ330.000.1163.0636.837.560.831303.3518316.10.773.196.100.110.631.121.03
    KJ340.0017.7653.0229.226.414.1446.01.1610635.940.2129.72.021.0611.581.461.33
    KJ350.006.3649.1444.517.626.9982.61.8166011.00.4320.83.961.269.511.271.00
    KJ360.0046.3732.1521.494.852.5649.41.1310066.450.2435.52.350.416.191.351.11
    KJ370.0018.9647.4833.566.555.5268.51.339158.180.2924.72.680.7111.061.561.09
    KJ380.0013.4344.6741.907.156.7777.21.375718.790.3215.32.930.7712.431.611.02
    KJ390.008.4451.4240.147.2411.082.81.7071010.70.4021.33.701.5416.001.371.01
    KJ400.0020.6642.8136.536.544.9972.71.617249.570.3722.63.360.807.941.311.04
    KJ410.006.8948.1444.987.588.0389.31.8958711.60.4616.84.141.0810.191.290.98
    KJ420.007.5448.7143.757.5624.11052.1949712.00.4611.73.943.0030.261.491.12
    KJ430.004.1247.2248.667.907.171022.5543413.70.5610.64.831.967.461.201.08
    KJ440.007.7151.1441.157.400.821172.2734214.60.537.184.930.210.891.451.01
    KJ450.007.5157.6134.887.241.711292.6233115.50.596.795.130.361.691.441.06
    KJ460.001.9550.4847.577.9218.51313.0842513.60.598.634.713.7718.291.471.24
    KJ470.0021.6846.1632.176.390.8168.42.1710029.580.4620.93.650.121.030.991.13
    KJ480.002.5756.0441.397.613.471112.7438415.10.688.885.481.252.981.080.96
    KJ490.001.6354.3744.017.8210.51142.7638514.90.668.895.311.579.191.140.99
    KJ500.003.6862.9133.417.209.811512.6942514.80.629.544.912.499.141.601.02
    KJ510.0010.1750.5039.347.274.1592.62.3043713.00.5612.24.860.824.301.090.97
    KJ520.0098.110.691.201.692.4647.12.084293.670.3211.23.850.334.410.961.52
    KJ530.0093.033.633.342.350.4152.41.973755.640.369.743.850.080.660.961.29
    KJ540.00100.000.000.002.190.6248.61.856104.290.2916.84.700.471.261.111.52
    KJ550.0098.040.601.361.970.2747.11.685095.520.3110.33.210.060.511.011.29
    KJ560.0093.513.383.112.360.3143.41.491234.570.242.473.150.050.731.171.45
    KJ570.0051.1443.405.464.301.471711.0220016.00.742.967.820.311.161.530.33
    KJ5836.6555.157.151.060.200.2929.71.259632.850.1622.02.530.171.041.221.84
    KJ590.000.6462.1737.207.530.411113.5228515.60.756.315.950.080.320.981.11
    KJ600.002.4961.2836.237.430.541224.1634215.70.737.725.340.060.431.101.35
    KJ610.002.7756.0841.157.624.151002.1639912.60.528.964.241.254.601.260.98
    KJ620.002.1955.1242.697.7516.21152.5737914.00.588.484.661.7916.121.301.04
    KJ630.001.1058.5540.357.660.491102.8433015.00.717.825.740.100.411.030.95
    KJ640.002.5552.0945.367.8415.51282.7812916.50.700.696.212.1912.861.210.94
    KJ650.002.1151.2846.617.8911.31142.4937914.20.578.745.232.3511.481.321.03
    KJ660.009.4254.1036.497.058.1076.41.617399.850.3724.33.260.5812.841.371.04
    KJ670.0010.5855.6633.766.942.5850.81.069076.280.2331.32.280.366.561.471.10
    KJ680.0028.4643.7127.845.911.7245.51.1311815.720.1932.51.850.525.261.581.41
    KJ690.0020.8850.5128.616.251.9826.81.5746902.990.1036.00.940.3312.061.853.91
    KJ700.0023.7446.9429.336.162.5445.40.9411155.530.1935.51.950.487.821.591.18
    KJ710.0041.3734.3224.315.150.9429.21.1431693.460.1137.41.190.184.901.732.42
    KJ720.0035.6238.1826.205.537.5735.90.7010483.400.1129.21.091.1140.012.151.51
    KJ730.0017.9961.1020.915.962.3831.01.6023913.220.1138.71.200.4512.221.803.36
    KJ740.009.3452.3338.337.041.5669.43.2112947.380.2926.72.780.403.071.552.58
    KJ750.0023.8545.4130.746.251.1348.81.0510835.920.2131.22.160.573.081.511.16
    下载: 导出CSV

    表  2   南海典型断面表层沉积物粒度、主量元素和氧化还原敏感元素含量及其特征参数

    Table  2   Character parameters of grain sizes, contents of main elements and redox sensitive elements of the surface sediments from four typical transects in the South China Sea

    断面特征参数粒级组分含量/%氧化还原敏感元素/(μg/g)主量元素/%
    粉砂黏土MoVUAl2O3TiO2CaOFe2O3MnO
    断面Ⅰ最小值0.000.0026.0115.670.2848.31.547.070.440.693.560.06
    最大值0.0058.3279.0245.4213.41572.9817.60.8718.17.141.86
    平均值0.007.4960.6431.884.401112.2113.10.668.175.090.75
    标准偏差0.0012.2310.076.833.8028.10.362.770.135.421.180.56
    断面Ⅱ最小值0.000.1132.1521.490.8346.01.135.740.210.752.020.11
    最大值0.0046.3764.1548.6624.11433.3518.00.7935.56.863.00
    平均值0.0013.0150.4536.546.0189.11.8811.20.4617.64.030.98
    标准偏差0.0011.597.507.134.8228.20.623.610.1810.81.430.72
    断面Ⅲ最小值0.000.647.151.060.2926.80.702.850.100.690.940.06
    最大值36.6555.1562.1746.6116.21714.1616.50.7538.77.822.35
    平均值1.9317.9748.9131.194.2576.81.949.270.3920.93.500.70
    标准偏差8.1817.0512.3711.864.9141.90.985.160.2513.02.030.69
    断面Ⅳ最小值0.001.630.000.000.2743.41.493.670.242.473.150.05
    最大值0.00100.0062.9147.5718.51513.0815.50.6820.95.483.77
    平均值0.0041.5133.6524.844.1488.72.2910.40.4810.34.440.89
    标准偏差0.0043.8225.6018.665.3037.30.454.690.154.370.761.09
    全海区最小值0.000.000.000.000.2726.80.702.850.100.690.940.05
    最大值36.65100.0079.0248.6624.11714.1618.00.8738.77.823.77
    平均值0.4917.7349.8731.914.8191.72.0511.10.5014.64.250.83
    标准偏差4.2024.9116.5411.804.7636.00.684.310.2110.81.580.76
    下载: 导出CSV

    表  3   南海典型断面表层沉积物中主量和微量元素相关系数

    Table  3   Correlation coefficients of main and trace elements of the surface sediments from four typical transects in the South China Sea

    MoVUSrAl2O3TiO2CaOFe2O3MnO
    Mo1.00
    V0.361.00
    U0.130.631.00
    Sr-0.18-0.62-0.431.00
    Al2O30.290.910.71-0.631.00
    TiO20.170.860.74-0.670.941.00
    CaO-0.20-0.75-0.690.74-0.79-0.871.00
    Fe2O30.160.860.68-0.700.910.94-0.891.00
    MnO0.780.390.23-0.210.330.18-0.210.211.00
    下载: 导出CSV
  • [1]

    Morford J L, Russell A D, Emerson S. Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC[J]. Marine Geology, 2001, 174(1-4): 355-369. doi: 10.1016/S0025-3227(00)00160-2

    [2] 常华进, 储雪蕾, 冯连君, 等.氧化还原敏感微量元素对古海洋沉积环境的指示意义[J].地质论评, 2009, 55(1): 91-99. doi: 10.3321/j.issn:0371-5736.2009.01.011

    CHANG Huajin, CHU Xuelei, FENG Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91-99. doi: 10.3321/j.issn:0371-5736.2009.01.011

    [3]

    Rimmer S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, central Appalachian basin (USA)[J]. Chemical Geology, 2004, 206(3-4): 373-391. doi: 10.1016/j.chemgeo.2003.12.029

    [4] 许淑梅, 翟世奎, 张爱滨, 等.长江口及其邻近海域表层沉积物中氧化还原敏感性微量元素的环境指示意义[J].沉积学报, 2007, 25(5): 759-766. doi: 10.3969/j.issn.1000-0550.2007.05.015

    XU Shumei, ZHAI Shikui, ZHANG Aibin, et al. Distribution and environment significance of redox sensitive trace elements of the Changjiang Estuary Hypoxia Zone and its contiguous sea area[J]. Acta Sedimentologica Sinica, 2007, 25(5): 759-766. doi: 10.3969/j.issn.1000-0550.2007.05.015

    [5] 孟楚洁, 胡文瑄, 贾东, 等.宁镇地区上奥陶统五峰组——下志留统高家边组底部黑色岩系地球化学特征与沉积环境分析[J].地学前缘, 2017, 24(6): 300-311. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201706023

    MENG Chujie, HU Wenxuan, JIA Dong, et al. Analyses of geochemistry features and sedimentary environment in the Upper Ordovician Wufeng-Lower Silurian Gaojiabian Formations in Nanjing-Zhenjiang area[J]. Earth Science Frontiers, 2017, 24(6): 300-311. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201706023

    [6] 王双, 杨瑞东.贵阳花溪燕楼剖面下三叠统大冶组地球化学特征与沉积环境分析[J].古地理学报, 2018, 20(2): 285-298. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201802009

    WANG Shuang, YANG Ruidong. Analysis of geochemistry features and sedimentary environment of the Lower Triassic Daye Formation in Yanlou section of Huaxi, Guiyang[J]. Journal of Palaeogeography, 2018, 20(2): 285-298. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201802009

    [7]

    Algeo T J, Maynard J B. Trace-metal covariation as a guide to water-mass conditions in ancient anoxic marine environments[J]. Geosphere, 2008, 4(5): 872-887. doi: 10.1130/GES00174.1

    [8]

    Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3-4): 211-225. doi: 10.1016/j.chemgeo.2009.09.001

    [9]

    Tribovillard N, Algeo T J, Baudin F, et al. Analysis of marine environmental conditions based on molybdenum-uranium covariation-Applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324: 46-58.

    [10]

    Algeo T J, Morford J, Cruse A. Reprint of: New applications of trace metals as proxies in marine paleoenvironments[J]. Chemical Geology, 2012, 324: 1-5.

    [11] 汤冬杰, 史晓颖, 赵相宽, 等. Mo-U共变作为古沉积环境氧化还原条件分析的重要指标——进展、问题与展望[J].现代地质, 2015, 29(1): 1-13. doi: 10.3969/j.issn.1000-8527.2015.01.001

    TANG Dongjie, SHI Xiaoying, ZHAO Xiangkuan, et al. Mo-U Covariation as an important proxy for sedimentary environment redox conditions-progress, problems and prospects[J]. Geoscience, 2015, 29(1): 1-13. doi: 10.3969/j.issn.1000-8527.2015.01.001

    [12]

    Dahl T W, Anbar A D, Gordon G W, et al. The behavior of molybdenum and its isotopes across the chemocline and in the sediments of sulfidic Lake Cadagno, Switzerland[J]. Geochimica et Cosmochimica Acta, 2010, 74(1): 144-163. doi: 10.1016/j.gca.2009.09.018

    [13] 温汉捷, 张羽旭, 樊海峰, 等.华南下寒武统地层的Mo同位素组成特征及其古海洋环境意义[J].科学通报, 2010, 55(2): 176-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201002009

    WEN Hanjie, ZHANG Yuxu, FAN Haifeng, et al. Mo isotopes in the Lower Cambrian formation of southern China and its implications on paleo-ocean environment[J]. Chinese Science Bulletin, 2010, 55(2): 176-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201002009

    [14] 周炼, 苏洁, 黄俊华, 等.判识缺氧事件的地球化学新标志——钼同位素[J].中国科学:地球科学, 2011, 41(3): 309-319. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201103004

    ZHOU Lian, SU Jie, HUANG Junhua, et al. A new paleoenvironmental index for anoxic events-Mo isotopes in black shales from Upper Yangtze marine sediments[J]. Science China Earth Science, 2011, 41(3): 309-319. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201103004

    [15]

    Andersen M B, Romaniello S, Vance D, et al. A modern framework for the interpretation of U-238/U-235 in studies of ancient ocean redox[J]. Earth and Planetary Science Letters, 2014, 400: 184-194. doi: 10.1016/j.epsl.2014.05.051

    [16]

    Dickson A J, Cohen A S, Coe A L. Continental margin molybdenum isotope signatures from the early Eocene[J]. Earth and Planetary Science Letters, 2014, 404: 389-395. doi: 10.1016/j.epsl.2014.08.004

    [17]

    Wen H J, Fan H F, Zhang Y X, et al. Reconstruction of early Cambrian ocean chemistry from Mo isotopes[J]. Geochimica et Cosmochimica Acta, 2015, 164: 1-16. doi: 10.1016/j.gca.2015.05.008

    [18]

    Kurzweil F, Wille M, Schoenberg R, et al. Continuously increasing delta Mo-98 values in Neoarchean black shales and iron formations from the Hamersley Basin[J]. Geochimica et Cosmochimica Acta, 2015, 164: 523-542. doi: 10.1016/j.gca.2015.05.009

    [19]

    Goto K T, Anbar A D, Gordon G W, et al. Uranium isotope systematics of ferromanganese crusts in the Pacific Ocean: Implications for the marine U-238/U-235 isotope system[J]. Geochimica et Cosmochimica Acta, 2014, 146: 43-58. doi: 10.1016/j.gca.2014.10.003

    [20]

    Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3-4): 289-318. doi: 10.1016/j.chemgeo.2003.12.009

    [21]

    Asael D, Rouxel O, Poulton S W, et al. Molybdenum record from black shales indicates oscillating atmospheric oxygen levels in the Early Paleoproterozoic[J]. American Journal of Science, 2018, 318(3): 275-299. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=44fc2fdab875978dffa324b6e29f5cf5

    [22]

    Palomares R M, Hernandez R L, Frias J M. Mechanisms of trace metal enrichment in submarine, methane-derived carbonate chimneys from the Gulf of Cadiz[J]. Journal of Geochemical Exploration, 2012, 112: 297-305. doi: 10.1016/j.gexplo.2011.09.011

    [23]

    Sato H, Hayashi K, Ogawa Y, et al. Geochemistry of deep sea sediments at cold seep sites in the Nankai Trough: Insights into the effect of anaerobic oxidation of methane[J]. Marine Geology, 2012, 323: 47-55. https://www.sciencedirect.com/science/article/abs/pii/S0025322712001648

    [24]

    Hu Y, Feng D, Peckmann J, et al. New insights into cerium anomalies and mechanisms of trace metal enrichment in authigenic carbonate from hydrocarbon seeps[J]. Chemical Geology, 2014, 381: 55-66. doi: 10.1016/j.chemgeo.2014.05.014

    [25]

    Adelson J M, Helz G R, Miller C V. Reconstructing the rise of recent coastal anoxia; molybdenum in Chesapeake Bay sediments[J]. Geochimica et Cosmochimica Acta, 2001, 65(2): 237-252. doi: 10.1016/S0016-7037(00)00539-1

    [26]

    Chaillou G, Anschutz P, Lavaux G, et al. The distribution of Mo, U, and Cd in relation to major redox species in muddy sediments of the Bay of Biscay[J]. Marine Chemistry, 2002, 80(1): 41-59. doi: 10.1016-S0304-4203(02)00097-X/

    [27]

    Ge L, Jiang S Y, Swennen R, et al. Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: Evidence from trace and rare earth element geochemistry[J]. Marine Geology, 2010, 277(1-4): 21-30. doi: 10.1016/j.margeo.2010.08.008

    [28]

    Wang S H, Yan W, Chen Z, et al. Rare earth elements in cold seep carbonates from the southwestern Dongsha area, northern South China Sea[J]. Marine and Petroleum Geology, 2014, 57: 482-493. doi: 10.1016/j.marpetgeo.2014.06.017

    [29]

    Wang S H, Zhang N, Chen H, et al. The surface sediment types and their rare earth element characteristics from the continental shelf of the northern south China sea[J]. Continental Shelf Research, 2014, 88: 185-202. doi: 10.1016/j.csr.2014.08.005

    [30]

    Wang S H, Wu S Z, Yan W, et al. Rare metal elements in surface sediment from five bays on the northeastern coast of the South China Sea[J]. Environmental Earth Sciences, 2015, 74(6): 4961-4971. doi: 10.1007/s12665-015-4504-6

    [31]

    Liu F W, Miao L, Cai G Q, et al. The rare earth element geochemistry of surface sediments in four transects in the South China Sea and its geological significance[J]. Environmental Earth Sciences, 2015, 74(3): 2511-2522. doi: 10.1007/s12665-015-4265-2

    [32]

    McManus J. Grain size determination and interpretation[C]//In: Tucker M, ed. Techniques in sedimentology. Blackwell, Oxford, 1988: 63-85.

    [33]

    Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3869-3878. doi: 10.1016/0016-7037(96)00236-0

    [34]

    Li G, Rashid H, Zhong L F, et al. Changes in deep water oxygenation of the South China Sea since the Last Glacial Period[J]. Geophysical Research Letters, 2018, 45. https://doi.org/10.1029/2018GL078568.

    [35]

    Rudnick R L, Gao S. Composition of the Continental Crust[M]. Oxford: Elsevier, 2014: 1-51.

    [36] 赵一阳.中国海大陆架沉积物地球化学的若干模式[J].地质科学, 1983, 18(4): 307-314. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198304000.htm

    ZHAO Yiyang. Some geochemical patterns of shelf sediments of the China Sea[J]. Scientia Geologica Sinica, 1983, 18(4): 307-314. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198304000.htm

    [37] 许淑梅, 翟世奎, 张爱滨, 等.长江口外缺氧区沉积物中元素分布的氧化还原环境效应[J].海洋地质与第四纪地质, 2007, 27(3): 1-8. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=30eba64c-f181-4278-8516-cf40ad4a4e87

    XU Shumei, ZHAI Shikui, ZHANG Aibin, et al. Redox environment effect on the redox sensitive elements in surface sediments from the Yangtze Estuary Hypoxia Zone[J]. Marine Geology & Quaternary Geology, 2007, 27(3): 1-8. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=30eba64c-f181-4278-8516-cf40ad4a4e87

    [38]

    Boning P, Brumsack H J, Bottcher M E, et al. Geochemistry of Peruvian near-surface sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(21): 4429-4451. doi: 10.1016/j.gca.2004.04.027

    [39] 李泽文, 栾振东, 阎军, 等.南海北部外陆架表层沉积物粒度参数特征及物源分析[J].海洋科学, 2011, 35(12): 92-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykx201112015

    LI Zewen, LUAN Zhendong, YAN Jun, et al. Characterization of grain size parameters and the provenance analysis of the surface sediment in the outer shelf of the northern South China Sea[J]. Marine Sciences, 2011, 35(12): 92-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykx201112015

    [40] 张晋. 南海南部表层沉积物粒度和粘土矿物组成与分布特征及其物源指示[D]. 中国石油大学(华东)硕士学位论文, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10425-1016711605.htm

    ZHANG Jin. Composition and distribution characteristics of grain-size and clay minerals in surface sediments of the southern South China Sea and their indication to provenance[D]. Master's Thesis of China University of Petroleum(East China), 2014. http://cdmd.cnki.com.cn/Article/CDMD-10425-1016711605.htm

    [41] 李学杰, 汪品先, 廖志良, 等.南海西部表层沉积物碎屑矿物分布特征及其物源[J].中国地质, 2008, (1): 123-130. doi: 10.3969/j.issn.1000-3657.2008.01.013

    LI Xuejie, WANG Pinxian, LIAO Zhiliang, et al. Distribution of clastic minerals of surface sediments in the western China Sea and their provenance[J]. Geology in China, 2008, (1): 123-130. doi: 10.3969/j.issn.1000-3657.2008.01.013

    [42]

    Zhang C S, Wang L J, Li G S, et al. Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay, China[J]. Applied Geochemistry, 2002, 17(1): 59-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=12899223c2a9304dd695642efb7bad9c

    [43] 张晓东, 翟世奎, 许淑梅, 等.长江口外缺氧区沉积物中氧化还原敏感性元素的"粒控效应"[J].中国海洋大学学报:自然科学版, 2005, 35(5): 868-874. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdhydxxb200505034

    ZHANG Xiaodong, ZHAI Shikui, XU Shumei, et al. The "Grain Size Effect" of redox sensitive elements in the sediments in the hypoxia zone of the Changjiang Estuary[J]. Periodical of Ocean University of China (Natural Science Edition), 2005, 35(5): 868-874. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdhydxxb200505034

    [44]

    Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012

    [45]

    Erickson B E, Helz G R. Molybdenum (Ⅵ) speciation in sulfidic waters: Stability and lability of thiomolybdates[J]. Geochimica et Cosmochimica Acta, 2000, 64(7): 1149-1158. doi: 10.1016/S0016-7037(99)00423-8

    [46]

    Wehrli B, Stumm W. Vanadyl in natural waters: Adsorption and hydrolysis promote oxygenation[J]. Geochimica et Cosmochimica Acta, 1989, 53(1): 69-77. doi: 10.1016/0016-7037(89)90273-1

    [47]

    Breit G N, Wanty R B. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis[J]. Chemical Geology, 1991, 91(2): 83-97. https://www.sciencedirect.com/science/article/abs/pii/0009254191900834

  • 期刊类型引用(0)

    其他类型引用(1)

图(9)  /  表(3)
计量
  • 文章访问数:  2773
  • HTML全文浏览量:  522
  • PDF下载量:  19
  • 被引次数: 1
出版历程
  • 收稿日期:  2018-10-25
  • 修回日期:  2018-11-11
  • 刊出日期:  2019-04-27

目录

YAN Wen

  1. On this Site
  2. On Google Scholar
  3. On PubMed

/

返回文章
返回