南海典型断面表层沉积物中氧化还原敏感元素的分布特征及其控制因素

程俊, 黄怡, 王淑红, 苗莉, 颜文

程俊, 黄怡, 王淑红, 苗莉, 颜文. 南海典型断面表层沉积物中氧化还原敏感元素的分布特征及其控制因素[J]. 海洋地质与第四纪地质, 2019, 39(2): 90-103. DOI: 10.16562/j.cnki.0256-1492.2018102601
引用本文: 程俊, 黄怡, 王淑红, 苗莉, 颜文. 南海典型断面表层沉积物中氧化还原敏感元素的分布特征及其控制因素[J]. 海洋地质与第四纪地质, 2019, 39(2): 90-103. DOI: 10.16562/j.cnki.0256-1492.2018102601
CHENG Jun, HUANG Yi, WANG Shuhong, MIAO Li, YAN Wen. Distribution pattern and controlling factors of redox sensitive elements in the surface sediments from four typical transects in the South China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 90-103. DOI: 10.16562/j.cnki.0256-1492.2018102601
Citation: CHENG Jun, HUANG Yi, WANG Shuhong, MIAO Li, YAN Wen. Distribution pattern and controlling factors of redox sensitive elements in the surface sediments from four typical transects in the South China Sea[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 90-103. DOI: 10.16562/j.cnki.0256-1492.2018102601

南海典型断面表层沉积物中氧化还原敏感元素的分布特征及其控制因素

基金项目: 

国家自然科学基金项目“南海北部东沙西南海域泥火山的流体特征及其活动历史” 41576035

国家科技基础性工作专项“南海海洋地质基础数据采集及其环境响应调查” 2008FY110100

国家科技基础资源调查专项“南海海洋化学科学考察历史资料整编” 2017FY201403

中国科学院战略性先导科技专项(A)“南海环境变化” XDA13010102

详细信息
    作者简介:

    程俊(1993—),男,硕士生,主要从事海洋地质与沉积地球化学研究,E-mail:juncheng@scsio.ac.cn

    通讯作者:

    王淑红(1977—),女,博士,研究员,主要从事海底冷泉与沉积环境研究,E-mail:wshds@scsio.ac.cn

  • 中图分类号: P736.4

Distribution pattern and controlling factors of redox sensitive elements in the surface sediments from four typical transects in the South China Sea

  • 摘要: 氧化还原敏感元素在环境研究中发挥着日益重要的作用,然而对于海底表层沉积物中氧化还原敏感元素的分布规律与特征的研究鲜有涉及。本文以采集自南海4条典型断面(18°N、10°N、6°N、113°E)的75个表层沉积物样品为研究对象,通过主量元素和微量元素(含氧化还原敏感元素Mo、V、U)分析,并结合沉积物粒度、元素富集系数等数据,探讨了表层沉积物中氧化还原敏感元素的分布特征及其控制因素。结果表明,研究区每个断面中的V、U含量变化趋势十分相似,Mo含量变化与V、U的总体变化趋势相近,但Mo在断面上的变化波动比V、U更强烈。4条断面中Mo平均含量表现出明显富集,除了V在断面Ⅰ中表现为轻度富集外,V和U平均含量都表现为亏损。影响沉积物中Mo、V、U含量分布的因素主要包括陆源碎屑含量、生物碳酸盐含量、细粒沉积物的吸附作用和氧化还原环境等。所有断面中V和U的含量分布主要受控于陆源碎屑组分,同时也受到生物碳酸盐含量和细粒沉积物的吸附作用的影响,氧化还原环境对其含量影响较小,受环境影响的自生组分含量较低。Mo的含量分布主要受控于海底氧化还原环境,陆源碎屑组分的贡献和细粒沉积物吸附作用的影响较小,受环境影响的自生组分含量较高。西南次海盆的Mo含量及其富集系数都较低,可能是由于西南次海盆的底流活动使其海底存在氧化环境所致。
    Abstract: Redox sensitive elements play an increasingly important role in environmental analysis. However, few studies have been devoted so far to the distribution pattern of the redox sensitive elements in the seafloor surface sediments. In this paper, seventy-five surface sediment samples were collected and analyzed from the four representative transects in the South China Sea along 18°N, 10°N, 6°N, and 113°E respectively. The contents of main elements and trace elements (including Mo, V, and U) are measured in addition to grain sizes of sediments and enrichment factors of redox sensitive elements. The distribution pattern and controlling factors of redox sensitive elements are then discussed in the paper. Results show that the variations in V and U contents in each transect are in fact very similar. The content variation of Mo is similar to the overall trends of V and U, but more intense than V and U changes. Obviously, the average content of Mo is enriched while V and U depleted in the transects except slightly enriched V in the transect Ⅰ. The contents of V and U in all transects are mainly controlled by the contents of terrigenous debris and biological carbonate as well as the adsorption of fine-grained sediments, whereas the influence of redox environment is low. In contrast, the distribution of Mo mainly depends on the seabed redox environment, but not the contribution of terrigenous debris content and the adsorption of fine-grained sediments. The lower content and enrichment factor of Mo in the Southwestern Sub-basin of the South China Sea may probably attribute to oxidized environment caused by the underflow activity.
  • 构造变换带是一种在区域上为保持缩短或伸展量守恒而产生的调节构造[1],它既可以是一条调节断层,也可能是具有一定宽度的调节构造带[2]。近年来,国内许多学者[3-6]发现构造变换带在我国东部断陷盆地内广泛发育,类型多样,在渤海湾盆地内研究成果尤为显著。相关研究表明,断陷盆地内构造变换带对优质储集层的发育、构造圈闭的形成以及油气的运移过程均具有重要积极意义[7]

    东海陆架盆地位于中国东部沿海大陆架上,与渤海湾盆地同处于NE向构造域,在盆地形成时代、成盆动力学背景上大体相当[8-9]。目前针对东海陆架盆地内区域构造变换带研究较为薄弱,前人研究虽已认识到东海陆架盆地西湖凹陷内NWW向隐伏基底断裂带附近存在构造变换[10-11],但这一认识大多以模式化推断为主,缺乏针对性、系统性分析。总之,西湖凹陷内现有针对构造变换带的研究尚处于早期探索阶段,其对油气成藏的影响作用更无从谈起。

    本文在近年来新三维地震资料构造解释分析基础上,研究发现西湖凹陷天台斜坡带北部与平湖斜坡带过渡部位NWW向构造变换特征最为显著,变换带具有一定延伸宽度,内部构造形迹与西部斜坡带整体存在明显差异;早期三维地震资料覆盖有限,前人[12-14]针对平湖斜坡带断裂特征的研究均忽视了这一构造变换带。由于天台斜坡带北部紧邻平湖斜坡带平湖油气田,同时两区均东临主力供烃洼陷,因此,天台斜坡带北部是西湖凹陷油气勘探重要的接替区,关于构造变换带特征及其对成藏影响的研究认识显得尤为重要。在此,本文通过对天台斜坡带北部构造特征的系统梳理,分析变换带的形成演化过程及其油气地质意义,以为该区勘探评价提供地质依据。

    西湖凹陷位于东海陆架盆地东部坳陷带中段,北依福江凹陷,南接钓北凹陷,东靠钓鱼岛隆褶带,西部由北至南依次与虎皮礁隆起、长江坳陷、海礁隆起、钱塘凹陷和渔山东低隆起相邻(图1)。

    图  1  东海西湖凹陷中南部构造变换带发育区带背景
    a. 东海陆架盆地构造格架(据文献[16]修改),b. 西湖凹陷中南部断裂体系图;I号断裂:渔山-久米断裂带,II号断裂:舟山-国头断裂带。
    Figure  1.  Geological background of the structural transfer zone in south-central Xihu Sag,the East China Sea
    a. Tectonic framework of the East China Sea Shelf Basin(revised from reference [16]),b. Fracture system of south- central Xihu Sag. Fault I:Yushan-Jiumi fault zone,Fault II:Zhoushan-Guotou fault zone.

    根据钻井及地震资料揭示,西湖凹陷以新生代地层为主,自下而上依次发育上白垩统、古新统、始新统八角亭组、宝石组、平湖组、渐新统花港组、中新统龙井组、玉泉组、柳浪组、上新统三潭组和第四系东海群;按盆地发育的构造层系,这些地层可分为下部断陷构造层(上白垩统、古新统、八角亭组、宝石组)、中下部断-拗转换构造层(平湖组)、中上部拗陷-反转构造层(花港组、龙井组、玉泉组和柳浪组)和上部区域沉降构造层(三潭组、东海群)四个构造层系,分别对应于西湖凹陷所经历的四个主要构造演化阶段,即晚白垩世—早始新世断陷、中晚始新世断-拗转换、渐新世—中新世拗陷-反转期、上新世至今区域沉降阶段(表1)。在西湖凹陷西部斜坡带范围内,宝石组及以上的新生代地层发育齐全,反映斜坡带整体经历了凹陷主要的构造演化阶段。

    西湖凹陷具有明显的东西分带、南北分块特征[15],自西向东可分为西部斜坡带、中央洼陷-反转带以及东部断阶带。其中,西部斜坡带自北向南可进一步分为杭州斜坡、平湖斜坡和天台斜坡带;中央洼陷-反转带自北向南可划分为嘉兴构造带、宁波构造带、黄岩构造带、天台构造带;东部断阶带可划分为宁波-玉泉边缘断裂带、黄岩边缘断裂带和天台边缘断裂带。西湖凹陷中南部构造变换带主要位于西部斜坡带的平湖斜坡带和天台斜坡带之间,中央-洼陷反转带的黄岩构造带与天台构造带之间,以及东部断阶带的黄岩边缘断裂带与天台边缘断裂带之间。变换带附近是晚期近E-W向断裂的集中发育区,且多数NE、NNE向断层在其南北两侧尖灭,或被近E-W向晚期断裂横向错断(图1b)。

    西湖凹陷天台斜坡带北部处于中国东部沿海陆架区NWW向深大断裂形成的横向调节带上。受基底深大断裂活动影响,天台斜坡带北部南、北两侧的斜坡结构呈现出显著差异;同时,在天台斜坡带北部,深部岩浆作用形成的火成岩体广泛发育。

    东海海域区域横向调节深大断裂主要为NWW向、下断至基底的岩石圈断裂,包括舟山-国头断裂带(I号)、渔山-久米断裂带(II号)及其分支断裂等(图1a)。其中,舟山-国头断裂带发育于杭州湾外舟山群岛至琉球群岛中冲永良部岛上的国头一线地带,全长约700 km。该断裂带首次由焦荣昌[17]于1988年提出,认为断裂带两侧不仅重磁异常走向、形态存在明显的区别,莫霍面起伏、深浅也有很大不同。该巨型断裂带总体呈现出断续分布特征,由陆向海可分为3段,西段位于浙闽隆起区,中段位于东海陆架盆地内,东段位于冲绳海槽盆地内。其中,中段在西湖凹陷内横穿凹陷中南部,在西部斜坡带则位于中段平湖斜坡和南段天台斜坡的过渡部位。杨文达[16]认为舟山-国头断裂带在西湖凹陷内的延伸段主要以平移性质为主,是发育在凹陷新生代地层之下的基底深大断裂,向东南方向逐步变新。本文认为,正是由于这条NWW向深大断裂以水平方向的构造调节作用为主,同时受到中深层资料品质制约,导致在现有地震剖面上难以有效识别。目前,随着西湖凹陷地震资料覆盖范围的不断拓展,本文认识到舟山-国头断裂带不仅仅是盆地基底先存的破裂带,其在西湖凹陷盆地发育期仍存在持续的构造调节作用,并对凹陷南北构造格局产生显著影响。

    天台斜坡带北部处于西湖凹陷平湖斜坡带与天台斜坡带整体变换过渡部位,受基底舟山-国头断裂带平移作用影响,斜坡结构复杂,表现为天台斜坡带北部与其南北两侧的斜坡结构明显不同。

    (1)北侧平湖斜坡带(图2a):该区西邻海礁隆起南部,构造走向总体呈近SN向。断陷及断-拗转换构造层受平湖主断裂控制,表现为“窄陡型”斜坡结构,以同向断阶样式为主,断裂规模和密度较大,控沉积作用显著,向东与凹陷中段深洼带相连;拗陷-反转构造层同样受控于平湖主断裂,受后期挤压反转控制,发育巨型反转背斜。

    图  2  西湖凹陷中南部结构剖面(剖面位置见图1
    Figure  2.  Seismic profiles across south-central Xihu Sag (see Fig.1 for profile location)

    (2)南侧天台斜坡带南部(图2c):该区西邻渔山东低隆起,构造走向NNE。断陷及断-拗转换构造层受宝石主断裂控制,同样表现为“窄陡型”斜坡结构,以同向断阶样式为主,断裂发育规模和分布密度弱于平湖斜坡带,断裂控沉积作用亦明显减弱,特别是断-拗转换构造层宝石主断裂生长指数已接近1。拗陷-反转构造层宝石主断裂控制作用持续减弱,在后期挤压反转背景下,仅发育中等规模的反转背斜形态。

    (3)天台斜坡带北部转换斜坡带(图2b):该区西侧邻近海礁隆起与渔山东低隆起的过渡部位。平面上构造形迹总体NNW-NW向,自北向南呈现出由近SN、NNW向NW向转变的特征;剖面上表现为宽缓型斜坡结构,以反向断阶样式为主,断陷及断-拗转换构造层向东稳定增厚,反向断层规模普遍较小,平湖组沉积时期断裂生长指数总体接近1,控沉积作用不明显。拗陷-反转构造层部分反向断层仍见明显向上错断至花港组上段,同时后期挤压反转对该区影响微弱,仅见局部地层牵引现象。

    此外,天台斜坡带北部还受到显著的NWW向构造形迹影响,最典型的即为NWW向天台西断裂,该断裂在地震剖面上向下错断至基底,向上最浅错断至中新统柳浪组,构成了天台斜坡带北部和南部的分界(图3)。天台斜坡带北部北段也存在一条隐伏的NWW向基底断裂,该断裂限制了平湖主断裂向南延伸,同时控制了孤山构造向东南方向的弧状弯折,本文称之为孤山断裂,由于天台斜坡带北部北段这种顺NWW向弧状弯折特征向其东侧中央洼陷-反转带呈现出愈发显著的特征(图1b),反映NWW孤山断裂在整个西湖凹陷均有影响作用。本文认为上述两条NWW向基底断裂均为舟山-国头断裂带在西湖凹陷的一部分,舟山-国头断裂带在西湖凹陷内具有一定的宽度,类似于郯城-庐江断裂带在渤海湾盆地辽东湾地区表现为多条平行断裂组合控制的形式。舟山-国头断裂带在西湖凹陷斜坡区范围内的扭动作用所影响的区域主要为天台西断裂及孤山断裂所限定并显著控制的区域—天台斜坡带北部构造变换带。

    图  3  西湖凹陷天台斜坡带北部近南北向剖面(剖面位置见图1
    Figure  3.  North-south seismic profiles across northern Tiantai slope of Xihu Sag (see Fig.1 for profile location)

    在西部斜坡带范围内,天台斜坡带北部相对于天台斜坡带南部和平湖斜坡带火成岩发育明显增多。拗陷-反转构造层内,地震剖面上可见地震强反射体,反射同相轴连续性差,频率较低,顶部存在明显较强的反射界面,在方差体属性上为黑色团块状和连续(或不连续)的带状异常(图4a)。前人认为该区地震异常体为岩浆喷发、侵入后的反映[18-19],在地震剖面上呈现出明显的丘状、蘑菇状、“U”字形、“V”字形、杂乱状等地震响应特征(图3图4cd)。

    图  4  天台斜坡带北部火成岩发育特征平面图
    a. 1 400 ms地震方差体属性,b. 拗陷-反转构造层火成岩体平面分布,c. NW-SE向火成岩地震剖面,d. SW-NE向火成岩地震剖面,e. 火成岩剖面发育模式。
    Figure  4.  Distribution map of igneous rocks in northern Tiantai slope zone
    a. Variance slice in 1 400 ms,b. Horizontal distribution of igneous rocks in depression-inversion structural layer,c. NW-SE seismic profile of igneous rocks,d. SW-NE seismic profile of igneous rocks,e. Development model of igneous rocks.

    天台斜坡带北部火成岩体在分布特征上具有明显的规律性。在区带上,火成岩体主要分布在孤山断裂及天台西断裂延伸区所限定的舟山-国头断裂带范围内,且愈向南邻近天台西断裂,火成岩发育规模更大、平面分布更密集、垂向分布层系更多(图4ab);在剖面上,根据地震剖面异常强反射特征,火成岩体主要分布在中上部拗陷-反转构造层花港组、龙井组、玉泉组、柳浪组和三潭组地层中;此外,在下部断-拗转换及断陷构造层中多见近直立丘状反射,为火成岩通道相岩体,与上部强反射喷发-溢流相岩体相连通。在平面上,单个火成岩通道多见于NWW向基底断裂和NE(或NW)向断裂交汇部位,且多个通道顺NWW向呈串珠状分布,在多条NWW向基底断裂发育背景下,总体呈现出“网点状”分布特征,在方差体属性上表现尤为显著(图4ab)。根据邻区G1井在玉泉组地层中所揭示的凝灰岩年龄(14.7 Ma)推断,该区大规模岩浆作用发生在中新世龙井运动时期;结合岩体的展布形态,本文认为该区大规模火成岩活动与舟山-国头断裂带的晚期活化有关,这些火成岩体是在中新世NWW向基底深断裂活动背景下,从岩石圈深部顺NWW断裂上涌,并在盆地斜坡带内向上顺NWW和NE(或NW)向两组断裂交汇部位进一步分配、调整,在盆地中浅层形成“网点状”、“多中心点”的火成岩体(图4be)。在龙井运动时期,由于天台西断裂活动更为强烈,扭动背景下明显向上错断,因此,区内南段伴生的岩浆作用更为显著,表现在火成岩发育规模及分布密度上明显高于北段区域。

    根据西湖凹陷中南部范围内横向调节深大断裂分布、斜坡结构特征以及火成岩分布规律,本文认为凹陷范围内存在NWW向延伸的构造变换带,主要受到NWW向舟山-国头基底深大断裂带活化作用影响。由于西部斜坡带基底面埋藏相对较浅,天台斜坡带北段构造形迹在NWW向基底深大断裂带活化作用下构造变换带发育特征较为显著。

    天台斜坡带北部断裂分布受NWW向基底断裂平移影响,顺NW方向弧状弯折特征显著,反映平湖斜坡带NNE向断裂体系向南受到了明显的扭动改造,表现为断层走向自北向南由近SN、NNW向NW向转变特征。根据NWW向基底断裂平移扭动对两侧构造形迹的影响,结合漆家福[5]关于构造变换带分类,本文认为天台斜坡带北部断裂体系可分为天台斜坡北段缓冲式变换和南段传递式变换两个断裂组合区(图5)。

    图  5  天台斜坡带北部变换断裂组合发育模式
    F1:平湖主断裂,F2:宝石主断裂,F3:天台西断裂,F4:天台断裂,F5:孤山断裂。
    Figure  5.  Evolutionary model of the transfer fault combination in northern Tiantai slope zone
    F1:Pinghu major fault,F2:Baoshi major fault,F3:Tiantaixi fault,F4:Tiantai fault,F5:Gushan fault.

    (1)北段缓冲式变换区

    舟山-国头断裂带北缘主扭带位于西湖凹陷中央洼陷区,NWW向基底断裂向上曲折延伸,在凹陷中央断-拗转换构造层及拗陷-反转构造层内形成明显的扭动破碎带。天台斜坡北段变换区位于主扭带西缘扭动发散端,NWW向断裂活动特征不明显,表现为基底NWW向断裂发育不明显,而近SN向、NNW向断裂向下延伸至基底较显著,自北向南形成弧形构造形迹,反映该区在整体近东西向伸展背景下,受到较弱的NWW向扭动变换作用控制。由于天台斜坡北段NWW向扭动线迹南北两侧的正断层不连续,而是存在一定宽度的构造变形带来缓冲位移,因此,根据构造变换带分类[5]该区主要表现为缓冲式变换断裂组合。

    在断裂组合特征上,天台斜坡北段变换区以发育弧状分布的近SN向、NNW向断裂为主,这些断裂西侧斜坡高带以反向西倾,东侧斜坡低带以同向东倾为主,剖面上构成局部堑垒式断裂组合。舟山-国头断裂带北缘主扭带在天台斜坡北段延伸区表现出明显的断裂分段尖灭特征,同时主扭带延伸线北侧近SN、NNW向断裂具有明显顺NWW向弯折特征,与NWW向扭动线迹构成“马尾式”断裂组合(图5)。

    (2)南段传递式变换区

    舟山-国头断裂带南缘主扭动带恰位于西湖凹陷西部斜坡带,天台斜坡南段明显受到扭动作用影响,NWW向基底断裂向上断穿至拗陷-反转构造层,最明显即为NWW向天台西断裂及其次级断裂发育,断裂活动同时伴生较强的火山作用。天台西断裂两侧NNW-NW向断裂延伸长度较短,且临近天台西断裂平面走向弯折特征更明显。反映该区近东西向伸展作用较弱,NWW向扭动变换作用占主导。由于天台斜坡南段NWW向断裂显著活动,且与南北两侧NNW-NW向断裂明显交切变换,根据构造变换带分类[5]该区主要表现为传递式变换断裂组合。

    天台斜坡带南段传递式变换断裂组合区内,以NWW向扭动断裂显著发育为主要特征,且向南临近天台西断裂,斜坡反向断裂及伴生火成岩具有密集发育的趋势。在剖面形态上,NWW向断裂剖面上近直立,断面表现出上下一致的丘状反射特征,且断裂两侧地震反射波组特征明显不同,但由于两侧垂向断距不明显(图3),这些NWW向断裂主要以平移扭动为主。在平面形态上,受基底NWW向断裂平移扭动影响,在断陷至拗陷-反转构造层中形成彼此等间距分布的NWW向断裂,断裂以水平错动为主,与两侧的NW向断裂在平面上形成“网格式”断裂组合。

    在西湖凹陷整体“南北分块”的背景下,天台斜坡带北部所处位置是西湖凹陷中南部构造变换在斜坡带的主要发育区。西湖凹陷平衡剖面及断裂样式分析结果反映,天台斜坡带北部所分隔的西湖凹陷中部与南部在伸展-压缩率及伸展-挤压断裂样式上均呈现出明显的差异[11, 20]。在天台斜坡带北部范围内局部构造形态南北转换特征较显著,NNW-NW向断裂南北延伸短,多顺NWW向隐性或显性断裂两侧尖灭,甚至表现出被NWW向断裂切割错断特征。这种NWW向尖灭、扭动和错断构成的变换形迹从深部断陷构造层到浅部拗陷-反转构造层均具有明显反映。因此,综合凹陷结构及斜坡带局部变换特征,天台斜坡带北部NWW向基底断裂所诱发的构造变换在早期断陷及后期挤压反转中均有发育,自下而上具有持续递进的演变过程,从中生代盆地基底演变至新生代盆地发育期大致经历了以下几个演化过程(图6):

    图  6  天台斜坡带北部构造变换带各阶段演变模式图
    a. 晚侏罗世—早白垩世盆地基底演变阶段,b. 晚白垩世—早始新世伸展断陷阶段,c. 中晚始新世断-拗转换阶段,d. 渐新世—中新世挤压反转阶段。
    Figure  6.  Evolution of the transfer zone in northern Tiantai slope
    a. Evolution stage of basement from late Jurassic to Early Cretaceous,b. Rift stage from Late Cretaceous to Early Eocene,c. Rift-depression transition stage in Middle-late Eocene,d. Compression reversal stage from Oligocene to Miocene.

    (1)晚侏罗世—早白垩世盆地基底演变阶段

    燕山早期包括东海陆架盆地在内的中国东部陆缘受古太平洋板块快速俯冲作用影响,普遍发育NE-NNE向压性断裂系,并伴生了NW-NWW向断裂活动,关于燕山期NW向断裂活动在华南地区多有报道[21-24],主流观点认为这些NW向断裂在燕山期发育具有普遍性,与NE-NNE向压性断裂系共生[24-25],形成配套的断裂体系。考虑到东海陆架盆地所处海区范围NWW向基底深断裂多位于华南陆区NW向断裂延伸线上,陆区对应断裂为浙江省境内以长兴—奉化断裂为代表的一系列NW向断裂[26],海-陆区构造背景相似,均属于新华夏系构造域[27],在更靠近古太平洋板块俯冲带的东海陆架盆地区内,板块俯冲引起的NE-NNE向压性断裂与NWW向断裂共生,断裂活动强度应比陆区更为显著。因此,本文结合陆区已有认识认为舟山-国头、渔山-久米等NWW向断裂带至少在燕山期已形成,具有张扭性质,调节断裂带南北NE-NNE向压性构造带挤压强度差异,同时对沉积具有一定的控制作用。在天台斜坡带北部所处的陆缘位置,该时期表现为NWW向舟山-国头断裂带的显性活动,限定了南北两侧NE-NNE向断裂发育的连续性(图6a)。

    (2)早白垩世末—早始新世盆地伸展断陷阶段

    早白垩世末期,由于印度洋板块的逐步向北漂移并俯冲,给欧亚板块一个向北的挤压推挤力;同时,中国东部陆缘由古太平洋板块快速NWW向俯冲转变为中速俯冲,俯冲松弛产生总体NW-SE向的张应力分量,NE-NNE向压性构造向张扭性构造转换[28],在这一背景下,东海陆架区开始进入初始盆地发育阶段,局部小范围发育NE-NNE断裂控制的伸展断陷盆地。在此过程中沿NWW向舟山-国头断裂带张性作用已不明显,以扭动调节作用为主,在其影响下断裂带以南的盆地区伸展作用显著,发育有较厚的晚白垩世地层,如丽水凹陷的石门潭组等,而断裂带以北的盆地区未见广泛揭示晚白垩世地层的报道。

    晚白垩世末期,随着古太平洋板块逐步向北挤出,中国东部陆缘转而受到新生太平洋板块俯冲作用,同时受深部岩浆作用影响,东海陆架盆地所处的区域进入稳定伸展环境[29]。大量的NE-NNE向断裂表现出张性特征,并在NWW向舟山-国头断裂带两侧广泛控制断陷的发育。受伸展强度的南北差异,以及基底NWW向断裂平移扭动影响,当时统一的西湖凹陷还未形成,主要表现为南北多中心,分割型断陷群发育。进入中晚始新世,随着太平洋板块俯冲转向,东海西湖凹陷由强伸展、分割型断陷向弱伸展、统一型断-拗转换盆地转变,至此,西湖凹陷进入整体发展演变阶段,基底NWW向断裂平移扭动作用才逐步停止。

    在天台斜坡带北部,古新世—早始新世时期表现为NE-NNE向断裂开始逐步发育,同向、反向断裂南北断续分布,同时控制沉积。古落差特征显示,反向断层活动规律与天台西断裂基本同步(图7),也具有一定变换调节作用,因此,向南邻近天台西断裂总体表现出反向断层增多的趋势(图6b)。中晚始新世进入断-拗转换阶段,NE-NNE向断裂进一步发育,部分断裂南北硬联接稳定分布,NWW向断裂活动基本停止,仅天台西断裂局部段仍有明显活动,该时期反向西倾断裂虽有一定活动,但控沉积特征已不明显(图6c)。

    图  7  天台斜坡带典型断裂生长指数图(断裂位置见图1
    Figure  7.  Index chart of typical fault of Tiantai slope

    (3)渐新世—中新世盆地挤压反转阶段

    始新世末以来,随着太平洋板块向东北方向挤出,中国东部陆缘受到菲律宾海板块俯冲作用影响,逐步进入挤压环境。东海西湖凹陷受此影响最为显著,特别是进入中新世,凹陷内中央反转背斜带广泛背斜群形成并定型。由于中央反转背斜带在西湖凹陷表现出明显的南北差异,基底NWW向断裂活化所产生的扭动变换作用亦较显著。

    在天台斜坡带北部表现为原有NE-NNE向断裂整体发生走向偏转,经历长期多幕次挤压变形后转为NNW-NW向,明显受到NWW向扭动变换作用影响。由于斜坡带NWW向主扭带位于南侧的天台西断裂上,该断裂在强烈的近东西向挤压背景下具有扭张性质,诱发了深部强烈岩浆作用。由于天台斜坡带北部NWW向扭动变换作用表现为南段显性、北段隐性,北段活动不显著(图6d),NWW向断层活动伴生岩浆作用亦表现出明显的南强北弱特征。

    断陷盆地构造变换带与油气成藏关系十分密切。世界上许多大型含油气断陷盆地的油气富集区都与构造变换带有关,中国东部如渤海湾盆地等也都已发现了大量与构造变换带有关的含油气圈闭与油气富集区[30-31]。因此,天台斜坡带北部构造变换带同样对圈闭发育及油气富集过程具有积极意义。

    (1)控制圈闭的发育

    天台斜坡带北部圈闭发育普遍受到区域构造变换带作用的控制,各次级区带内受不同变换作用影响,圈闭类型存在一定的差异。其中,北段缓冲式变换区位于北缘主扭带西缘扭动发散端(图5),盆地伸展断陷、断-拗转换阶段,受较弱的张扭作用,NNE向断层自北向南逐步转为近SN、NNW向断层,沿走向形成弧形构造。在后期的挤压反转过程中,处于弧形构造中心、断裂东缘地层易形成一定的牵引背斜形态,同时上倾方向受弧形断层遮挡形成断鼻、断块圈闭群,根据断层倾向及其与地层组合关系,这些圈闭可分为弧形反向断层上升盘断块、弧形反向断层上升盘断鼻和弧形断层下降盘断鼻等(图8)。天台斜坡带北部南段传递式变换区邻近南缘主扭带北缘,扭动作用明显较强,尤其是在渐新世—中新世挤压反转时期以天台西断裂为代表的NWW向基底断裂强烈活化,向上错断始新统平湖组至中新统玉泉组地层,在使原有NNE向断层转向NNW向的同时,诱发深部强烈岩浆作用,形成NWW向、NNW断层及火成岩株共同控制的断块、断鼻圈闭群,根据主控断层方向及其与伴生岩体、地层的关系,这些圈闭可分为NWW向扭动断层主控断块、NNW向扭动断层主控断块及火成岩封挡的断鼻等(图8)。

    图  8  天台斜坡带北部扭动转换构造控圈模式
    Figure  8.  Trap-control model of torsional transfer structure for northern Tiantai slope

    (2)控制前平湖组优质砂体的富集

    构造变换带对储层控制作用主要体现于对沉积体系展布的影响,受基底断裂带影响区域变换带通常是沉积物源进入汇水盆地的通道,从而控制着盆地内沉积体系及砂体的展布。受NW向舟山国头断裂带活动影响,天台斜坡带北部构造变换带在断陷早期(古新世—早始新世)沉积发育阶段处于相对较低部位,夹持于渔山低隆起与海礁隆起之间(图1a),来自西部及南北两个隆起带的物源顺NWW向构造变换带向东汇聚,在NNE-SN-NNW走向弧形断层影响的坡折下逐步形成扇三角洲岩性体(图9),区内局部地震剖面上显著的低位前积楔形体即反映前平湖组低位扇三角洲沉积。在天台斜坡带南部及平湖斜坡带内,受NNE向控坡大断裂控制,前平湖组地层普遍埋藏较深(图2ac),多达5000 m以上,且砂体富集程度相对较低,对优质储层发育不利。而天台斜坡带北部前平湖组地层整体埋藏浅(图2b),受NWW向断裂影响的低地貌控制砂体相对富集,易形成较好的优质储层。

    图  9  天台斜坡转换带储层发育模式图
    Figure  9.  Reservoir developing model of the transfer zone of northern Tiantai slope

    (3)控制油气运移

    构造变换带对油气运移的控制本质上是对砂体和断层的控制作用,其中对砂体控制作用前文已论述,在此着重强调其对断层输导体系的控制。构造变换带特征反映,顺NWW方向是应力的集中释放带,主要表现在两个方面,一个方面是顺NWW向天台西断裂的显著活化,另一个方面是原NNE向断裂顺NWW方向逐步弯折为近SN和NNW向,形成弧形断层带。由于中新世挤压反转阶段亦是西湖凹陷烃源岩大规模生排烃阶段,因此,该时期顺NWW方向的应力集中释放亦有助于生成油气的垂、侧向运移。主要通过NWW向扭动断裂和近SN向弧形断层运移。中新世时期,NWW向断裂张扭,且显著向上错断,为油气聚集提供高效的垂向运移通道;该成藏关键时期,近SN向弧形断层带没有明显向上错断,但断裂平面形态发生了显著的弧形弯折,为断裂开启创造了条件,同样利于油气垂向运移。在这两类断裂的控制下,来自东侧主力供烃洼陷及斜坡自身烃源岩生成的油气沿着断层与砂体向上倾方向运移,受断层遮挡聚集于变换带控制的断鼻、断块圈闭群内富集成藏(图10)。

    图  10  天台斜坡带北部油气成藏示意图
    Figure  10.  Hydrocarbon accumulation models on the northern Tiantai slope

    (1)在区域构造格局变换特征上,天台斜坡带北部构造变换带是西湖凹陷“南北分块”的重要体现,该区基底整体处于舟山-国头断裂带上,导致平湖斜坡带与天台斜坡带在区内变换过渡,具体表现为天台斜坡带北部发育独特的反向断阶。

    (2)在局部断裂体系变换特征上,天台斜坡带北部在扭动变换南强北弱背景下,断裂组合可分为北段缓冲式和南段传递式两个次级变换区,分别表现为NWW向隐性影响的“马尾式”和NWW向显性控制的“网格式”特征。

    (3)在构造变换的成因机制上,天台斜坡带北部构造变换在早期断陷及后期的挤压反转中均有作用,自下而上具有持续递进的演变过程,并最终定型于中新世末龙井运动时期,主要调节南北两侧NE-NNE向断裂系伸展、挤压强度的差异。

    (4)在油气地质意义方面,天台斜坡带北部构造变换作用控制下的断裂组合对成圈条件有利,通过NWW向扭动和断裂显性活化不仅丰富了圈闭形态,同时也利于油气垂向运移。此外,构造变换带控制下该区亦是有利的前平湖组优质砂体富集区带。

    致谢: 图件绘制过程中得到了中国科学院南海海洋研究所硕士生刘奎的热心帮助,在此表示衷心的感谢。
  • 图  1   南海4个典型断面表层沉积物取样站位图

    Figure  1.   Sampling sites of surface sediments from four typical transects in the South China Sea

    图  2   南海4条典型断面表层沉积物类型三角图解

    Figure  2.   Classification of surface sediments from four typical transects in the South China Sea

    图  3   断面Ⅰ表层沉积物氧化还原敏感元素、主量元素和平均粒径变化

    Figure  3.   Variations in redox sensitive elements, main elements and mean grain size of surface sediments in Transect Ⅰ

    图  4   断面Ⅱ表层沉积物氧化还原敏感元素、主量元素和平均粒径变化

    Figure  4.   Variations in redox sensitive elements, main elements and mean grain size of surface sediments in Transect Ⅱ

    图  5   断面Ⅲ表层沉积物氧化还原敏感元素、主量元素和平均粒径变化

    Figure  5.   Variations in redox sensitive elements, main elements and mean grain size of surface sediments in Transect Ⅲ

    图  6   断面Ⅳ表层沉积物氧化还原敏感元素、主量元素和平均粒径变化

    Figure  6.   Variations in redox sensitive elements, main elements and mean grain size of surface sediments in Transect Ⅳ

    图  7   南海典型断面沉积物中氧化还原敏感元素与Al2O3和CaO的相关关系

    Figure  7.   Correlations between Al2O3, CaO and redox sensitive elements of the surface sediments from four typical transects in the South China Sea

    图  8   南海典型断面表层沉积物中氧化还原敏感元素含量与平均粒径之间的关系

    Figure  8.   Correlation between the content of redox sensitive elements and mean grain size of the surface sediments from four typical transects in the South China Sea

    图  9   氧化还原敏感元素的富集系数与含量之间的关系

    Figure  9.   Correlations between enrichment factor and content of redox sensitive elements of the surface sediments from four typical transects in the South China Sea

    表  1   南海典型断面表层沉积物粒级组成、平均粒径、微量元素(含氧化还原敏感元素)、主量元素分析结果和氧化还原敏感元素富集系数

    Table  1   Grain size composition, mean grain size, contents of trace elements (including redox sensitive elements) and main elements, and the enrichment factors of redox sensitive elements of the surface sediments from four typical transects in the South China Sea

    样品号粉砂黏土平均
    粒径/Φ
    MoVUSrAl2O3TiO2CaOFe2O3MnOMoEFVEFUEF
    /%/(μg/g)/%
    KJ010.0010.5560.4728.996.9812.096.01.665899.410.579.193.560.0612.151.100.68
    KJ020.000.3868.2231.407.390.2963.32.2733516.70.790.986.680.600.210.530.68
    KJ030.000.0079.0220.986.694.421432.3013415.90.871.436.380.652.961.090.63
    KJ040.000.8164.1735.017.485.161332.4613717.10.840.696.991.673.571.040.69
    KJ050.001.7662.3935.857.5213.41522.5012917.60.830.747.140.899.391.200.71
    KJ060.005.1254.3340.557.535.731572.5813615.50.732.366.501.014.561.420.84
    KJ070.001.6152.9845.427.894.351412.2317613.30.6010.85.231.494.191.540.88
    KJ080.003.2264.3832.407.234.261221.9641314.90.734.085.810.233.411.110.64
    KJ090.008.9354.8136.267.170.741302.4022112.30.5613.54.731.100.771.521.01
    KJ100.0013.4563.7922.776.325.381121.8751613.70.708.345.230.574.451.050.63
    KJ110.004.5858.9236.507.352.671202.6934315.40.723.125.931.602.161.100.89
    KJ120.004.4658.8436.707.339.011352.3120512.30.6110.64.740.748.541.450.89
    KJ130.008.9955.3035.717.073.1797.52.0140110.20.4416.03.661.864.141.451.07
    KJ140.009.9560.2329.836.869.5896.31.5461110.50.4618.13.761.0512.071.380.79
    KJ150.003.1861.1835.647.331.0289.71.8852211.80.5614.14.290.341.061.060.80
    KJ160.005.3867.8226.806.963.5995.41.6944910.30.4911.13.720.314.221.270.81
    KJ170.004.3159.9535.747.370.9197.32.0452811.70.6013.64.150.230.891.080.81
    KJ180.000.5770.5028.947.091.6385.72.2646211.70.6512.34.310.331.470.870.83
    KJ190.004.1769.3926.446.840.4899.02.9823314.40.835.285.420.090.340.780.85
    KJ200.0058.3226.0115.674.550.2848.32.553147.070.607.043.600.070.270.531.01
    KJ210.0030.0042.4727.545.542.1881.41.338908.780.3930.73.160.393.271.390.82
    KJ220.0027.1044.3928.515.891.2856.31.139206.790.3032.42.570.232.531.260.91
    KJ230.0032.8741.1425.995.721.0746.21.2914505.740.2433.12.110.202.541.251.25
    KJ240.0011.3051.8036.907.135.5968.91.388028.580.3624.83.140.899.021.260.91
    KJ250.004.2652.5343.217.642.5278.11.576819.980.4322.03.780.723.401.200.86
    KJ260.007.0352.5740.407.3910.81252.4719215.00.633.035.532.6010.091.320.94
    KJ270.0011.7649.5138.737.113.8179.31.6957910.90.4216.93.720.575.241.230.95
    KJ280.0011.8654.5333.616.907.1098.41.7860111.70.4616.93.950.808.931.400.92
    KJ290.0011.2064.1524.666.498.681042.1034513.20.537.844.711.479.551.290.94
    KJ300.000.3760.8938.747.653.501272.6413917.00.781.846.550.532.611.070.80
    KJ310.000.6158.2441.157.757.221372.7312017.40.770.756.690.935.451.170.84
    KJ320.000.2060.2939.517.702.391432.9414418.00.791.806.860.411.751.190.88
    KJ330.000.1163.0636.837.560.831303.3518316.10.773.196.100.110.631.121.03
    KJ340.0017.7653.0229.226.414.1446.01.1610635.940.2129.72.021.0611.581.461.33
    KJ350.006.3649.1444.517.626.9982.61.8166011.00.4320.83.961.269.511.271.00
    KJ360.0046.3732.1521.494.852.5649.41.1310066.450.2435.52.350.416.191.351.11
    KJ370.0018.9647.4833.566.555.5268.51.339158.180.2924.72.680.7111.061.561.09
    KJ380.0013.4344.6741.907.156.7777.21.375718.790.3215.32.930.7712.431.611.02
    KJ390.008.4451.4240.147.2411.082.81.7071010.70.4021.33.701.5416.001.371.01
    KJ400.0020.6642.8136.536.544.9972.71.617249.570.3722.63.360.807.941.311.04
    KJ410.006.8948.1444.987.588.0389.31.8958711.60.4616.84.141.0810.191.290.98
    KJ420.007.5448.7143.757.5624.11052.1949712.00.4611.73.943.0030.261.491.12
    KJ430.004.1247.2248.667.907.171022.5543413.70.5610.64.831.967.461.201.08
    KJ440.007.7151.1441.157.400.821172.2734214.60.537.184.930.210.891.451.01
    KJ450.007.5157.6134.887.241.711292.6233115.50.596.795.130.361.691.441.06
    KJ460.001.9550.4847.577.9218.51313.0842513.60.598.634.713.7718.291.471.24
    KJ470.0021.6846.1632.176.390.8168.42.1710029.580.4620.93.650.121.030.991.13
    KJ480.002.5756.0441.397.613.471112.7438415.10.688.885.481.252.981.080.96
    KJ490.001.6354.3744.017.8210.51142.7638514.90.668.895.311.579.191.140.99
    KJ500.003.6862.9133.417.209.811512.6942514.80.629.544.912.499.141.601.02
    KJ510.0010.1750.5039.347.274.1592.62.3043713.00.5612.24.860.824.301.090.97
    KJ520.0098.110.691.201.692.4647.12.084293.670.3211.23.850.334.410.961.52
    KJ530.0093.033.633.342.350.4152.41.973755.640.369.743.850.080.660.961.29
    KJ540.00100.000.000.002.190.6248.61.856104.290.2916.84.700.471.261.111.52
    KJ550.0098.040.601.361.970.2747.11.685095.520.3110.33.210.060.511.011.29
    KJ560.0093.513.383.112.360.3143.41.491234.570.242.473.150.050.731.171.45
    KJ570.0051.1443.405.464.301.471711.0220016.00.742.967.820.311.161.530.33
    KJ5836.6555.157.151.060.200.2929.71.259632.850.1622.02.530.171.041.221.84
    KJ590.000.6462.1737.207.530.411113.5228515.60.756.315.950.080.320.981.11
    KJ600.002.4961.2836.237.430.541224.1634215.70.737.725.340.060.431.101.35
    KJ610.002.7756.0841.157.624.151002.1639912.60.528.964.241.254.601.260.98
    KJ620.002.1955.1242.697.7516.21152.5737914.00.588.484.661.7916.121.301.04
    KJ630.001.1058.5540.357.660.491102.8433015.00.717.825.740.100.411.030.95
    KJ640.002.5552.0945.367.8415.51282.7812916.50.700.696.212.1912.861.210.94
    KJ650.002.1151.2846.617.8911.31142.4937914.20.578.745.232.3511.481.321.03
    KJ660.009.4254.1036.497.058.1076.41.617399.850.3724.33.260.5812.841.371.04
    KJ670.0010.5855.6633.766.942.5850.81.069076.280.2331.32.280.366.561.471.10
    KJ680.0028.4643.7127.845.911.7245.51.1311815.720.1932.51.850.525.261.581.41
    KJ690.0020.8850.5128.616.251.9826.81.5746902.990.1036.00.940.3312.061.853.91
    KJ700.0023.7446.9429.336.162.5445.40.9411155.530.1935.51.950.487.821.591.18
    KJ710.0041.3734.3224.315.150.9429.21.1431693.460.1137.41.190.184.901.732.42
    KJ720.0035.6238.1826.205.537.5735.90.7010483.400.1129.21.091.1140.012.151.51
    KJ730.0017.9961.1020.915.962.3831.01.6023913.220.1138.71.200.4512.221.803.36
    KJ740.009.3452.3338.337.041.5669.43.2112947.380.2926.72.780.403.071.552.58
    KJ750.0023.8545.4130.746.251.1348.81.0510835.920.2131.22.160.573.081.511.16
    下载: 导出CSV

    表  2   南海典型断面表层沉积物粒度、主量元素和氧化还原敏感元素含量及其特征参数

    Table  2   Character parameters of grain sizes, contents of main elements and redox sensitive elements of the surface sediments from four typical transects in the South China Sea

    断面特征参数粒级组分含量/%氧化还原敏感元素/(μg/g)主量元素/%
    粉砂黏土MoVUAl2O3TiO2CaOFe2O3MnO
    断面Ⅰ最小值0.000.0026.0115.670.2848.31.547.070.440.693.560.06
    最大值0.0058.3279.0245.4213.41572.9817.60.8718.17.141.86
    平均值0.007.4960.6431.884.401112.2113.10.668.175.090.75
    标准偏差0.0012.2310.076.833.8028.10.362.770.135.421.180.56
    断面Ⅱ最小值0.000.1132.1521.490.8346.01.135.740.210.752.020.11
    最大值0.0046.3764.1548.6624.11433.3518.00.7935.56.863.00
    平均值0.0013.0150.4536.546.0189.11.8811.20.4617.64.030.98
    标准偏差0.0011.597.507.134.8228.20.623.610.1810.81.430.72
    断面Ⅲ最小值0.000.647.151.060.2926.80.702.850.100.690.940.06
    最大值36.6555.1562.1746.6116.21714.1616.50.7538.77.822.35
    平均值1.9317.9748.9131.194.2576.81.949.270.3920.93.500.70
    标准偏差8.1817.0512.3711.864.9141.90.985.160.2513.02.030.69
    断面Ⅳ最小值0.001.630.000.000.2743.41.493.670.242.473.150.05
    最大值0.00100.0062.9147.5718.51513.0815.50.6820.95.483.77
    平均值0.0041.5133.6524.844.1488.72.2910.40.4810.34.440.89
    标准偏差0.0043.8225.6018.665.3037.30.454.690.154.370.761.09
    全海区最小值0.000.000.000.000.2726.80.702.850.100.690.940.05
    最大值36.65100.0079.0248.6624.11714.1618.00.8738.77.823.77
    平均值0.4917.7349.8731.914.8191.72.0511.10.5014.64.250.83
    标准偏差4.2024.9116.5411.804.7636.00.684.310.2110.81.580.76
    下载: 导出CSV

    表  3   南海典型断面表层沉积物中主量和微量元素相关系数

    Table  3   Correlation coefficients of main and trace elements of the surface sediments from four typical transects in the South China Sea

    MoVUSrAl2O3TiO2CaOFe2O3MnO
    Mo1.00
    V0.361.00
    U0.130.631.00
    Sr-0.18-0.62-0.431.00
    Al2O30.290.910.71-0.631.00
    TiO20.170.860.74-0.670.941.00
    CaO-0.20-0.75-0.690.74-0.79-0.871.00
    Fe2O30.160.860.68-0.700.910.94-0.891.00
    MnO0.780.390.23-0.210.330.18-0.210.211.00
    下载: 导出CSV
  • [1]

    Morford J L, Russell A D, Emerson S. Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC[J]. Marine Geology, 2001, 174(1-4): 355-369. doi: 10.1016/S0025-3227(00)00160-2

    [2] 常华进, 储雪蕾, 冯连君, 等.氧化还原敏感微量元素对古海洋沉积环境的指示意义[J].地质论评, 2009, 55(1): 91-99. doi: 10.3321/j.issn:0371-5736.2009.01.011

    CHANG Huajin, CHU Xuelei, FENG Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91-99. doi: 10.3321/j.issn:0371-5736.2009.01.011

    [3]

    Rimmer S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, central Appalachian basin (USA)[J]. Chemical Geology, 2004, 206(3-4): 373-391. doi: 10.1016/j.chemgeo.2003.12.029

    [4] 许淑梅, 翟世奎, 张爱滨, 等.长江口及其邻近海域表层沉积物中氧化还原敏感性微量元素的环境指示意义[J].沉积学报, 2007, 25(5): 759-766. doi: 10.3969/j.issn.1000-0550.2007.05.015

    XU Shumei, ZHAI Shikui, ZHANG Aibin, et al. Distribution and environment significance of redox sensitive trace elements of the Changjiang Estuary Hypoxia Zone and its contiguous sea area[J]. Acta Sedimentologica Sinica, 2007, 25(5): 759-766. doi: 10.3969/j.issn.1000-0550.2007.05.015

    [5] 孟楚洁, 胡文瑄, 贾东, 等.宁镇地区上奥陶统五峰组——下志留统高家边组底部黑色岩系地球化学特征与沉积环境分析[J].地学前缘, 2017, 24(6): 300-311. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201706023

    MENG Chujie, HU Wenxuan, JIA Dong, et al. Analyses of geochemistry features and sedimentary environment in the Upper Ordovician Wufeng-Lower Silurian Gaojiabian Formations in Nanjing-Zhenjiang area[J]. Earth Science Frontiers, 2017, 24(6): 300-311. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201706023

    [6] 王双, 杨瑞东.贵阳花溪燕楼剖面下三叠统大冶组地球化学特征与沉积环境分析[J].古地理学报, 2018, 20(2): 285-298. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201802009

    WANG Shuang, YANG Ruidong. Analysis of geochemistry features and sedimentary environment of the Lower Triassic Daye Formation in Yanlou section of Huaxi, Guiyang[J]. Journal of Palaeogeography, 2018, 20(2): 285-298. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201802009

    [7]

    Algeo T J, Maynard J B. Trace-metal covariation as a guide to water-mass conditions in ancient anoxic marine environments[J]. Geosphere, 2008, 4(5): 872-887. doi: 10.1130/GES00174.1

    [8]

    Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3-4): 211-225. doi: 10.1016/j.chemgeo.2009.09.001

    [9]

    Tribovillard N, Algeo T J, Baudin F, et al. Analysis of marine environmental conditions based on molybdenum-uranium covariation-Applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324: 46-58.

    [10]

    Algeo T J, Morford J, Cruse A. Reprint of: New applications of trace metals as proxies in marine paleoenvironments[J]. Chemical Geology, 2012, 324: 1-5.

    [11] 汤冬杰, 史晓颖, 赵相宽, 等. Mo-U共变作为古沉积环境氧化还原条件分析的重要指标——进展、问题与展望[J].现代地质, 2015, 29(1): 1-13. doi: 10.3969/j.issn.1000-8527.2015.01.001

    TANG Dongjie, SHI Xiaoying, ZHAO Xiangkuan, et al. Mo-U Covariation as an important proxy for sedimentary environment redox conditions-progress, problems and prospects[J]. Geoscience, 2015, 29(1): 1-13. doi: 10.3969/j.issn.1000-8527.2015.01.001

    [12]

    Dahl T W, Anbar A D, Gordon G W, et al. The behavior of molybdenum and its isotopes across the chemocline and in the sediments of sulfidic Lake Cadagno, Switzerland[J]. Geochimica et Cosmochimica Acta, 2010, 74(1): 144-163. doi: 10.1016/j.gca.2009.09.018

    [13] 温汉捷, 张羽旭, 樊海峰, 等.华南下寒武统地层的Mo同位素组成特征及其古海洋环境意义[J].科学通报, 2010, 55(2): 176-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201002009

    WEN Hanjie, ZHANG Yuxu, FAN Haifeng, et al. Mo isotopes in the Lower Cambrian formation of southern China and its implications on paleo-ocean environment[J]. Chinese Science Bulletin, 2010, 55(2): 176-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201002009

    [14] 周炼, 苏洁, 黄俊华, 等.判识缺氧事件的地球化学新标志——钼同位素[J].中国科学:地球科学, 2011, 41(3): 309-319. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201103004

    ZHOU Lian, SU Jie, HUANG Junhua, et al. A new paleoenvironmental index for anoxic events-Mo isotopes in black shales from Upper Yangtze marine sediments[J]. Science China Earth Science, 2011, 41(3): 309-319. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201103004

    [15]

    Andersen M B, Romaniello S, Vance D, et al. A modern framework for the interpretation of U-238/U-235 in studies of ancient ocean redox[J]. Earth and Planetary Science Letters, 2014, 400: 184-194. doi: 10.1016/j.epsl.2014.05.051

    [16]

    Dickson A J, Cohen A S, Coe A L. Continental margin molybdenum isotope signatures from the early Eocene[J]. Earth and Planetary Science Letters, 2014, 404: 389-395. doi: 10.1016/j.epsl.2014.08.004

    [17]

    Wen H J, Fan H F, Zhang Y X, et al. Reconstruction of early Cambrian ocean chemistry from Mo isotopes[J]. Geochimica et Cosmochimica Acta, 2015, 164: 1-16. doi: 10.1016/j.gca.2015.05.008

    [18]

    Kurzweil F, Wille M, Schoenberg R, et al. Continuously increasing delta Mo-98 values in Neoarchean black shales and iron formations from the Hamersley Basin[J]. Geochimica et Cosmochimica Acta, 2015, 164: 523-542. doi: 10.1016/j.gca.2015.05.009

    [19]

    Goto K T, Anbar A D, Gordon G W, et al. Uranium isotope systematics of ferromanganese crusts in the Pacific Ocean: Implications for the marine U-238/U-235 isotope system[J]. Geochimica et Cosmochimica Acta, 2014, 146: 43-58. doi: 10.1016/j.gca.2014.10.003

    [20]

    Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3-4): 289-318. doi: 10.1016/j.chemgeo.2003.12.009

    [21]

    Asael D, Rouxel O, Poulton S W, et al. Molybdenum record from black shales indicates oscillating atmospheric oxygen levels in the Early Paleoproterozoic[J]. American Journal of Science, 2018, 318(3): 275-299. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=44fc2fdab875978dffa324b6e29f5cf5

    [22]

    Palomares R M, Hernandez R L, Frias J M. Mechanisms of trace metal enrichment in submarine, methane-derived carbonate chimneys from the Gulf of Cadiz[J]. Journal of Geochemical Exploration, 2012, 112: 297-305. doi: 10.1016/j.gexplo.2011.09.011

    [23]

    Sato H, Hayashi K, Ogawa Y, et al. Geochemistry of deep sea sediments at cold seep sites in the Nankai Trough: Insights into the effect of anaerobic oxidation of methane[J]. Marine Geology, 2012, 323: 47-55. https://www.sciencedirect.com/science/article/abs/pii/S0025322712001648

    [24]

    Hu Y, Feng D, Peckmann J, et al. New insights into cerium anomalies and mechanisms of trace metal enrichment in authigenic carbonate from hydrocarbon seeps[J]. Chemical Geology, 2014, 381: 55-66. doi: 10.1016/j.chemgeo.2014.05.014

    [25]

    Adelson J M, Helz G R, Miller C V. Reconstructing the rise of recent coastal anoxia; molybdenum in Chesapeake Bay sediments[J]. Geochimica et Cosmochimica Acta, 2001, 65(2): 237-252. doi: 10.1016/S0016-7037(00)00539-1

    [26]

    Chaillou G, Anschutz P, Lavaux G, et al. The distribution of Mo, U, and Cd in relation to major redox species in muddy sediments of the Bay of Biscay[J]. Marine Chemistry, 2002, 80(1): 41-59. doi: 10.1016-S0304-4203(02)00097-X/

    [27]

    Ge L, Jiang S Y, Swennen R, et al. Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: Evidence from trace and rare earth element geochemistry[J]. Marine Geology, 2010, 277(1-4): 21-30. doi: 10.1016/j.margeo.2010.08.008

    [28]

    Wang S H, Yan W, Chen Z, et al. Rare earth elements in cold seep carbonates from the southwestern Dongsha area, northern South China Sea[J]. Marine and Petroleum Geology, 2014, 57: 482-493. doi: 10.1016/j.marpetgeo.2014.06.017

    [29]

    Wang S H, Zhang N, Chen H, et al. The surface sediment types and their rare earth element characteristics from the continental shelf of the northern south China sea[J]. Continental Shelf Research, 2014, 88: 185-202. doi: 10.1016/j.csr.2014.08.005

    [30]

    Wang S H, Wu S Z, Yan W, et al. Rare metal elements in surface sediment from five bays on the northeastern coast of the South China Sea[J]. Environmental Earth Sciences, 2015, 74(6): 4961-4971. doi: 10.1007/s12665-015-4504-6

    [31]

    Liu F W, Miao L, Cai G Q, et al. The rare earth element geochemistry of surface sediments in four transects in the South China Sea and its geological significance[J]. Environmental Earth Sciences, 2015, 74(3): 2511-2522. doi: 10.1007/s12665-015-4265-2

    [32]

    McManus J. Grain size determination and interpretation[C]//In: Tucker M, ed. Techniques in sedimentology. Blackwell, Oxford, 1988: 63-85.

    [33]

    Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3869-3878. doi: 10.1016/0016-7037(96)00236-0

    [34]

    Li G, Rashid H, Zhong L F, et al. Changes in deep water oxygenation of the South China Sea since the Last Glacial Period[J]. Geophysical Research Letters, 2018, 45. https://doi.org/10.1029/2018GL078568.

    [35]

    Rudnick R L, Gao S. Composition of the Continental Crust[M]. Oxford: Elsevier, 2014: 1-51.

    [36] 赵一阳.中国海大陆架沉积物地球化学的若干模式[J].地质科学, 1983, 18(4): 307-314. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198304000.htm

    ZHAO Yiyang. Some geochemical patterns of shelf sediments of the China Sea[J]. Scientia Geologica Sinica, 1983, 18(4): 307-314. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198304000.htm

    [37] 许淑梅, 翟世奎, 张爱滨, 等.长江口外缺氧区沉积物中元素分布的氧化还原环境效应[J].海洋地质与第四纪地质, 2007, 27(3): 1-8. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=30eba64c-f181-4278-8516-cf40ad4a4e87

    XU Shumei, ZHAI Shikui, ZHANG Aibin, et al. Redox environment effect on the redox sensitive elements in surface sediments from the Yangtze Estuary Hypoxia Zone[J]. Marine Geology & Quaternary Geology, 2007, 27(3): 1-8. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=30eba64c-f181-4278-8516-cf40ad4a4e87

    [38]

    Boning P, Brumsack H J, Bottcher M E, et al. Geochemistry of Peruvian near-surface sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(21): 4429-4451. doi: 10.1016/j.gca.2004.04.027

    [39] 李泽文, 栾振东, 阎军, 等.南海北部外陆架表层沉积物粒度参数特征及物源分析[J].海洋科学, 2011, 35(12): 92-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykx201112015

    LI Zewen, LUAN Zhendong, YAN Jun, et al. Characterization of grain size parameters and the provenance analysis of the surface sediment in the outer shelf of the northern South China Sea[J]. Marine Sciences, 2011, 35(12): 92-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykx201112015

    [40] 张晋. 南海南部表层沉积物粒度和粘土矿物组成与分布特征及其物源指示[D]. 中国石油大学(华东)硕士学位论文, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10425-1016711605.htm

    ZHANG Jin. Composition and distribution characteristics of grain-size and clay minerals in surface sediments of the southern South China Sea and their indication to provenance[D]. Master's Thesis of China University of Petroleum(East China), 2014. http://cdmd.cnki.com.cn/Article/CDMD-10425-1016711605.htm

    [41] 李学杰, 汪品先, 廖志良, 等.南海西部表层沉积物碎屑矿物分布特征及其物源[J].中国地质, 2008, (1): 123-130. doi: 10.3969/j.issn.1000-3657.2008.01.013

    LI Xuejie, WANG Pinxian, LIAO Zhiliang, et al. Distribution of clastic minerals of surface sediments in the western China Sea and their provenance[J]. Geology in China, 2008, (1): 123-130. doi: 10.3969/j.issn.1000-3657.2008.01.013

    [42]

    Zhang C S, Wang L J, Li G S, et al. Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay, China[J]. Applied Geochemistry, 2002, 17(1): 59-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=12899223c2a9304dd695642efb7bad9c

    [43] 张晓东, 翟世奎, 许淑梅, 等.长江口外缺氧区沉积物中氧化还原敏感性元素的"粒控效应"[J].中国海洋大学学报:自然科学版, 2005, 35(5): 868-874. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdhydxxb200505034

    ZHANG Xiaodong, ZHAI Shikui, XU Shumei, et al. The "Grain Size Effect" of redox sensitive elements in the sediments in the hypoxia zone of the Changjiang Estuary[J]. Periodical of Ocean University of China (Natural Science Edition), 2005, 35(5): 868-874. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdhydxxb200505034

    [44]

    Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012

    [45]

    Erickson B E, Helz G R. Molybdenum (Ⅵ) speciation in sulfidic waters: Stability and lability of thiomolybdates[J]. Geochimica et Cosmochimica Acta, 2000, 64(7): 1149-1158. doi: 10.1016/S0016-7037(99)00423-8

    [46]

    Wehrli B, Stumm W. Vanadyl in natural waters: Adsorption and hydrolysis promote oxygenation[J]. Geochimica et Cosmochimica Acta, 1989, 53(1): 69-77. doi: 10.1016/0016-7037(89)90273-1

    [47]

    Breit G N, Wanty R B. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis[J]. Chemical Geology, 1991, 91(2): 83-97. https://www.sciencedirect.com/science/article/abs/pii/0009254191900834

  • 期刊类型引用(1)

    1. 何娟,倪军娥,郭丽娜,蒋百召. 印尼马都拉海峡上新统抱球虫灰岩储层特征及控制因素. 中国海上油气. 2021(06): 110-118 . 百度学术

    其他类型引用(0)

图(9)  /  表(3)
计量
  • 文章访问数:  2767
  • HTML全文浏览量:  522
  • PDF下载量:  19
  • 被引次数: 1
出版历程
  • 收稿日期:  2018-10-25
  • 修回日期:  2018-11-11
  • 刊出日期:  2019-04-27

目录

/

返回文章
返回