Identification and division of high-frequency sequence based on Milakovitch cycle: A case of the 3rd Member of Pinghu Formation in Baoyunting Area, Pinghu Slope Zone, East China Sea Shelf Basin
-
摘要: 地球轨道周期性的变化控制着气候周期性变化,进而对层序叠加样式也会产生重要的影响。东海陆架盆地平湖组沉积时期经历了冷热交替的气候变化,这种气候变化的频繁波动必然会在相应的沉积物中有所记录。利用La(2004)计算方案计算北纬30°、30~40.4Ma期间地球轨道参数变化周期,确定该沉积时期理论米氏旋回周期比值;平湖斜坡带平湖组三段属于海相沉积,构造活动较弱,沉积稳定,物性相近,区域上分布广泛,因此以平湖组三段作为目的层,对该段伽马测井数据进行频谱检测以及一维连续小波变换,分析结果显示不同钻井中平三段沉积地层主要受405ka的长偏心率,131、99ka的短偏心率以及52ka的斜率周期所控制;选择控制平三段地层发育的主要米兰科维奇周期曲线,建立高分辨率天文年代标尺,进而对平三段地层进行高频层序划分,为平湖斜坡带高频层序单元对比框架的建立提供了一种新的有效方法。Abstract: Cyclical changes of climate owe its origin to cyclical changes in Earth orbit, which in turn have an effective impact on the pattern of stratigraphic sequence. During the depositional period of the Pinghu Formation, the East China Sea Continental Shelf Basin had suffered from a cold-hot alternating climate, as the records of sedimentation suggest. In this paper, we calculated the time of the variation of earth orbit parameters at the north latitude of 30°, during the time from 30~40.4Ma using the La(2004) calculation method to determine the theoretical time span of Milakovitch cycles. The 3rd Member of Pinghu Formation of the Pinghu Slope Belt is the marine sediments characterized by weak tectonic activity, stable sedimentation, similar physical properties and wide coverage. Therefore, it is selected from among others as the target layer to detect the spectrum of gamma data and analyze the one-dimensional continuous wavelet transform. Our results show that the 3rd Member of Pinghu Formation is dominated by eccentricity cycles of 405ka、131ka、99ka and a slope cycle of 52ka. A high-resolution astronomical timescale is then established according to the cyclicity of the Milakovitch cycle curve. Upon the basis, the sequence stratigraphy of high-frequency cycle in the 3rd Member of Pinghu Formation is constructed. Facts prove that the case provides a new effective approach for stratigraphic division and correlation in the Baoyunting area of the Pinghu Slope Zone.
-
东海陆架盆地南部指海礁凸起以南,台西盆地以北海域,是发育于前中生代克拉通基础上的中、新生代叠合盆地,面积约10×104 km2。该区自1974年开展油气勘探以来,在新生界已获得重大油气突破,发现了残雪、断桥、平湖等9个油气田和玉泉、孤山等5个含油气构造[1-5];而中生界由于区域地质构造和地球物理场复杂,资料品质差,基础地质研究薄弱,严重制约了油气勘探进展。究其原因,主要是中生代以来盆地形成和演化过程受到古太平洋板块多期洋壳俯冲及其多构造体系叠加改造[6-13],使得对中生代以来盆地原型、构造-沉积演化及大规模构造-岩浆活动的动力学背景一直存在争议[14-21],针对盆地成因与动力学机制诸多学者提出了不同的构造成因模式:包括阿尔卑斯型的大陆碰撞说[22]、地幔柱说[23-24]、大陆伸展和裂谷说[25-26];及与古太平洋板块俯冲有关的古太平洋板块俯冲效应说[27-29]、古太平洋板块平板俯冲说[9-10, 30]、洋脊俯冲说[31-32]。盆地性质有的学者认为侏罗纪-早白垩世为弧前盆地[33],晚白垩世晚期为弧后盆地[15];有的学者认为晚三叠世-中侏罗世为克拉通边缘坳陷盆地,白垩纪为弧前盆地[16];还有学者认为早中生代(T3-J2)为活动大陆边缘坳陷盆地,晚中生代(K12-K2)为断陷盆地[14]等,从而影响了对盆地中生界油气成藏条件及油气成藏规律的认识。但随着勘探技术进步和理论的发展,已研究证明东海陆架南部中生界具有巨大的油气资源潜力[34-40]。本文综合应用东海陆架盆地南部最新地震调查、钻井、临近陆域资料,通过海陆对比、中生界层序地层分析、构造-沉积演化过程重塑,探讨中生界油气成藏的关键问题和主要勘探方向。
1. 地质背景
东海陆架盆地地处欧亚板块、太平洋板块、菲律宾板块交汇的东南大陆边缘,是华南陆壳向洋壳的延伸,西邻浙闽隆起,东以钓鱼岛隆褶带将其与冲绳海槽盆地分隔,是印度—澳大利亚板块和太平洋板块与欧亚板块巨型汇聚地带。呈北东向带状展布,具有NE分带、NW分块的构造格局(图1)。
大量地质证据表明,华南岩浆活动晚三叠世—中侏罗世火山活动是拉斑系列玄武岩、安山岩—流纹岩双峰式组合,晚侏罗世—早白垩世早期是钙碱性系列(玄武岩)安山岩—英安岩—流纹岩单峰式组合,早白垩世中期—晚白垩世是钙碱性系列玄武岩、安山岩—流纹岩双峰式组合,不同于以新生代为主的环太平洋东岸的南美和北美,也同样不同于日本岛弧和台湾岛弧。控制亚洲显生宙构造演化的3大动力体系(古亚洲洋体系,特提斯—古太平洋体系和印度洋—太平洋体系)在华南都有强烈表现[41-42],华南地壳表现出复杂的构造变形样式[43-44],新生代构造叠加使原有的地质和地貌被强烈破坏和改造。
印支运动早期随着古特提斯洋的关闭,三叠纪华夏内陆形成了一系列NW—NWW向的断裂带、剪切带、褶皱和变形页理以及伴生的变质作用和岩浆活动;印支运动晚期,由于Sibumasu地块不断向北运移,印支陆块和华南陆块碰撞拼合,中国东部形成了统一大陆[41]。晚三叠世之后华南构造体制逐渐转入古太平洋体系[10-13]。随着南海西部古特提斯逐渐关闭,印支地块和中缅马地块碰撞缝合形成巨大的含锡花岗岩带,粤东缺失中、下三叠统,华南东部开始海侵,形成NE向海盆;中侏罗世时期华南构造运动相对平静,主要发育河湖相红层;晚侏罗世—早白垩世早期华南西部一直保持为陆地,火山活动较少,华南东部由于古太平洋向西俯冲的远程效应,出现大规模的中酸性—酸性火山喷发和火山碎屑堆积;早白垩世早期古太平洋向欧亚大陆的俯冲因倾角太陡向洋后撤,区域应力场由压扭变为张扭;晚白垩世早期,东亚大陆边缘演变成俯冲型活动大陆边缘[13, 45],也有学者认为属安第斯型大陆边缘[46];晚白垩世晚期直至始新世,由于太平洋俯冲和西部印度—欧亚板块碰撞的联合效应形成了一系列拉分盆地群,其主控断层为NE向的走滑断层;古新世—始新世期间,太平洋板块运动方向由NWW转向NNW,东海主要处于单剪应力场,盆地发育一系列箕状断陷,是东海陆架盆地中各个断陷的主要发育期,也是东海陆架新生代盆地的主要成盆期。
2. 构造-沉积演化
2.1 地层层序格架
构造层序代表了在同一构造应力背景下充填演化的阶段性产物,其界面多为地层不整合面或与不整合相对应的整合面。通过对东海陆架盆地南部地震地层解析,经井-震标定验证,中生界可以分为2个构造层序、7个层序[47-48](图2)。中生界构造层序整体上反射波频率较低,连续性差,地震层速度明显高于上覆地层,受改造强烈,但闽江斜坡地震反射清晰。后期剥蚀的残留地层形态具有NE分带性,东厚西薄,以基隆凹陷最为发育,厚度可达5 000 m。
东海陆架中生界由Ss1、Ss2 两个超层序组成。Ss1由Tg区域不整合面和T6不整合面所限定,钻遇地层由中、下侏罗统福州组组成。岩性为砂砾岩、粉砂岩与灰黑色泥岩,夹薄煤层,钻遇厚度401 m(未穿),为含钙质超微化石的海侵体系沉积。但福州组之下还有千米以上地层未钻遇,推测为上三叠统[49](图3),相当于浙江乌灶组,福建文宾山组或广东小水组,以海相泥岩为主,是潜在烃源岩层。
Ss2超层序由T6不整合面与T5不整合面所限定,对应的地层包括下白垩统厦门组、渔山组和上白垩统闽江组、石门潭组。根据现有钻井资料,厦门组钻遇厚度为577 m,上部为砂泥岩互层,中部主要为泥岩,下部为长石砂岩;渔山组钻遇厚度为350 m,下部为砾岩,中部为砂岩,上部为泥岩与砂岩互层;闽江组钻遇厚度为450 m,岩性为泥岩夹泥质粉砂岩;石门潭组岩性为凝灰岩及杂色泥岩,夹安山岩,最大厚度约130 km,为火山碎屑岩沉积,在闽江北部尤为发育。地震剖面解释上白垩统比下白垩统分布广,闽江组超覆于渔山组之上(图3)。
2.2 构造-沉积演化
前期研究表明,东海陆架盆地南部中、新生代以来构造运动强烈,构造环境复杂,具有前晚三叠世基底、晚三叠—早侏罗世活动大陆边缘坳陷和白垩纪断陷盆地的叠加改造型盆地演化过程[50](图4),遭受了晚三叠—早侏罗世和早白垩世2次较大规模海侵事件[51],形成了陆相、海陆过渡相及海相沉积。
2.2.1 基底性质与演化
随着太平洋板块的扩大并向NW方向推移,欧亚板块向南推移,处于压剪应力场环境下的古东海地区产生一系列NE向正负相间的凸起和凹陷(基底凸起和基底凹陷)[52-53]。在南北拼合应力场下,海礁凸起一带及瓯江凹陷西部随中国东南大陆发生了大规模的中酸性岩浆活动,北北东向的基底凸起和基底凹陷以及部分地区的火山活动是东海陆架盆地形成之前的古地质背景。其与早先存在的北西向转换断层(舟山—平湖—国头断裂、鱼山—久米断裂等)结合,导致了成盆期南北分块、东西分带的总体构造格局[53](图5),为盆地的现今面貌奠定了基础。
根据目前钻井及陆域对比等分析,东海陆架盆地的沉积基底为中、上元古界的黑云母斜长片麻岩,为华南海西-早印支期变质结晶基底,如瓯江断陷的LF1井和WZ6井揭示了厚度超过300 m的黑云母角闪斜长片麻岩。纵向上具有多层性,既有下元古界的深变质岩系,也有上元古界的浅变质岩系和古生界浅变质岩系等,基底的变质岩系在陆上浙闽区为弱磁性或无磁性的弱变质岩,与陈蔡群和龙泉群的岩性基本一致[53]。
根据重力场、磁场特征,东海陆架重磁特征与西邻华南地块相似,海区磁异常核心常为正,边部为负,磁性基底深度为5~11 km,呈北东—北北东方向展布,重力基底和磁力基底基本重合[36, 54-55],磁性基底深度往东增大[56]。地震资料表明东海陆架的地壳结构具有3个速度层,第1速度层是沉积层,层速度为3.4~5.5 km/s,厚约12 000 m,代表中、新生代的盆地沉积层;第2速度层的层速度为5.8~6.0 km/s,可能代表震旦系至古生界浅变质岩系的基础层;第3速度层为下地壳层,层速度为6.8~7.6 km/s,为前震旦系变质岩基底层。
2.2.2 晚三叠世—中侏罗世演化
晚三叠世—早侏罗世时期,构造活动较弱,整体显示为一大型坳陷盆地(图4,图5),基本上没有断层活动,具有NE向展布特征,发育闽江斜坡、台北转折带和基隆凹陷,最大沉积和沉降中心都位于基隆凹陷,最大厚度2 500 m。根据岩相古地理分析,基隆运动之后,该时期东海陆架西部浙闽隆起是主要物源区,大量的碎屑物质从隆起向盆地注入,盆地开始持续沉降,同时受到南部和东南部两个方向的海侵,形成了西部海陆过渡、东部海相的沉积建造。
到中侏罗末期,由于受到燕山Ⅰ幕运动影响,构造活动强烈,盆地整体开始抬升,西部大幅度抬升,东部抬升幅度小,海水逐渐向东退却,导致闽江斜坡西部早期沉积的早—中侏罗世地层被大量的剥蚀,并缺失晚侏罗世地层。雁荡低凸起也开始慢慢发育,形成一个白垩纪的水下低凸起。
2.2.3 白垩纪演化
进入白垩纪后,太平洋板块向欧亚板块俯冲加剧,伴随着区域性沉降和大规模的火山活动,早白垩世该区又开始沉降并遭受海侵[57-58],海侵面貌也发生变化,主要为自东而西的海侵,也就是来自古太平洋的海侵;华南东部开始大规模的伸展裂陷,东海陆架盆地继续扩张,沉积范围逐渐扩大,向西逐渐扩展越过雁荡凸起。此外,盆地内发育的古隆起对海水也有一定的屏障作用,反映了海平面比较稳定,水深变化不大,对该时期的沉积格局具有一定的影响。早白垩世末期发生了燕山Ⅲ幕运动,以右旋剪切、升降性质为主,构造活动中心逐渐向东迁移,伴随小规模的酸性火山喷发,发育酸性火山岩建造,在盆地闽江斜坡西部发生一系列北北东向左旋平移剪切断裂以及相配套的北西向、东西向断裂,瓯江断陷形成,发育了半地堑式湖盆沉积,主要受到东部控坳断裂影响,形成陆相特征为主的沉积,接受来自浙闽隆起带及灵峰凸起带物源,主要发育了冲积扇、三角洲、滨浅湖沉积。
晚白垩世末期燕山Ⅳ幕运动,盆地抬升剥蚀,没有沉积、岩浆活动纪录,主要表现为断块升降运动。早古新世,东海陆架盆地继承晚白垩世进入裂陷发育阶段,新生代盆地叠加在中生代残留盆地之上,呈现东断西超的断陷盆地特征,早期沉积中心位于瓯江断陷,闽江斜坡缺失下古新统;晚期全区发育沉积,上古新统分布广,东厚西薄,发育了半地堑式的箕状断陷盆地,沉积了以浅海相沉积为主的古新统碎屑岩。始新世,整个东海陆架盆地进入断拗发育阶段,接受了厚度不等的海相沉积。渐新世末期该区第3次遭受大规模的区域抬升(即龙井运动),使得盆地中西部地区整套渐新世地层沉积很薄。新近纪到第四纪,该区断裂不发育,整体接受了河流和冲积平原相到海相沉积,呈现东厚西薄的特征。
3. 油气勘探方向
3.1 基底NE向结构控制盆地构造格局及宏观含油气性
东海陆架盆地基底结构具有明显的分区特性,即NE分带,NW分块,并且发育系列NE向凹陷,其基底结构方面的差异性控制了盆地盖层NE分带的构造格局,即:东部地区临近西太平洋,表现为长期沉降的拗陷区,如基隆凹陷、西湖凹陷,是沉降中心,往往也是沉积中心,其沉积厚度大,有利于有机质富集、保存和向油气转化;西部地区临近浙闽隆起带,主要表现为西太平洋活动大陆边缘斜坡,沉积厚度向西逐渐减小,生油条件不如坳陷区,但是靠近物源区,是有利储集体及地层超覆与尖灭的发育区,也是油气运移的重要指向区,是油气聚集的有利场所。此外,与坳陷区相比,相同地层在斜坡区埋深较浅,油气演化程度相对较低,因而比坳陷区更容易富油少气。
东海陆架盆地的活动大陆边缘的构造格局,决定了不同构造区含油气的差异,闽江斜坡和台北转折带应该以中生界为主,主要目的层上三叠—中侏罗统和白垩系;基隆凹陷是继承性沉降区,埋藏深,主要目的层是古—始新统,以气为主。
3.2 两期构造演化旋回造就了两套生、储、盖组合
东海陆架盆地中生代以来经历了活动陆缘挤压拗陷(T3-J2)和伸展断陷(K)3个阶段叠加演化过程,遭受2次海侵事件,岩相古地理主要为东海西陆,发育海陆交互相、滨海、浅水陆架、陆坡—深水陆架及岛弧体系。大量地震剖面及钻井资料揭示,中生界发育了两套较好的烃源岩和两组储盖组合[59-62](图2,图3)。
上三叠统—下侏罗统福州组(T3-J1+2)烃源岩已被FZ10和FZ13井两口钻井所证实,是东海陆架中生界主要的烃源岩层系[37, 59-60],根据地震剖面预测,该套烃源岩暗色泥岩厚度为200~760 m,主要分布在闽江斜坡南部、台北转折带和基隆凹陷,呈现东厚西薄、南厚北薄的特征。沉积环境为滨浅海相,岩性由暗色泥岩、碳质泥岩、泥页岩和煤所组成。从钻井所揭示的福州组来看,泥质岩有机碳(TOC)为0.69%~1.24%,生烃潜量(S1+S2)最大可达1.97 mg/g。氢指数(HI指数)为23~251 mg/g,平均为93 mg/g;最高热解峰温(Tmax)为446~478 ℃,平均为461 ℃。干酪根类型以Ⅲ型为主,少量为Ⅱ2型,属于腐殖型烃源岩。Ro为0.7%~3%,中东部Ro>2%,达到成熟—过成熟阶段,自西北向东南逐渐变高。钻井揭示该套烃源岩品质中等,主要原因是钻井所揭示的仅仅是盆地中—下侏罗统的上半段;其次钻井位置不属于有利生烃相带,处于滨浅海沉积相带,据地震地层学推测优质烃源岩位于盆地东部和南部福州组中—下段。从邻域闽西南地区上三叠统暗色泥页岩、碳质泥岩为0.58%~14.96%,平均为2.36%,粤东地区小水组黑色炭质页岩,有机碳含量为1.17%~5.43%,为好—优质烃源岩。
下白垩统烃源岩主要是厦门组和渔山组,闽江斜坡、台北转折带和基隆凹陷广泛分布,暗色泥岩厚度一般为50~450 m。下白垩统渔山组钻遇泥质岩的总有机碳为0.07%~0.89%,热解指数(S1+S2)为0.03~1.09 mg/g[37, 60]。氢指数HI为57~113 mg/g,平均为75 mg/g;Tmax为444 ℃,典型的Ⅲ型干酪根类型。Ro值为0.5%~1.2%,东部基隆凹陷总体Ro>2%,烃源岩处于成熟—高成熟演化阶段。FZ10和FZ13两口钻井所揭示的该套烃源岩有机质丰度较低,主要是岩石沉积环境为扇三角洲和滨浅湖相沉积,但越接近凹陷沉降中心,烃源岩品质趋好。而与之对应的陆域板头组、馆头组暗色泥岩有机碳含量为0.6%~2.0%[61],是一套好—优质烃源岩。
通过钻井地层垂向沉积演化和地震地层学特征分析,东海陆架中生代发育2套生储盖组合:上三叠统—下侏罗统(生)—中侏罗统(储)—下白垩统(盖)组合和白垩系(生储盖)组合。上三叠—下侏罗统主要为拗陷型盆地扩张期的海侵细粒岩性沉积,是中生代地层的区域烃源岩层,中侏罗世受燕山运动影响,盆地不断抬升,海水逐渐向东海退,水体变浅,物源供给的变化,开始沉积河流—三角洲—滨浅海沉积体系,河道砂体及三角洲前缘砂体都是储集物性较好的储层,尤其中侏罗统顶部,砂体的横向连续性较好和不整合面的发育,储集性能好;早白垩世,古太平洋板块后撤式俯冲,盆地再次沉降遭受海侵影响,在下白垩统海侵域形成了连续性较好的偏泥页岩地层,既是第2套有利烃源岩层,也是下部组合的区域性盖层;晚白垩世,伴随着板块俯冲强烈,火山活动开始活跃,断陷活动增强,海平面变化频繁,形成了受火山物质影响的三角洲前缘砂体、分流河道砂体与海侵沉积的泥岩互层的沉积序列,三角洲前缘砂体、分流河道砂体构成储集性能较好的储集层,之间的海侵泥岩可以作为局部盖层或形成区域性盖层。
3.3 多期构造活动决定了油气成藏的多期性
多期构造运动,多期成藏、晚期调整定型,是复杂构造油气成藏的普遍规律。东海陆架盆地中生代以来具有复杂地球动力学背景,构造运动呈多期幕式和时空迁移特征,对油气成藏具有重要的控制。
东海陆架盆地自中生代以来经历了基隆运动、渔山运动、雁荡运动和龙井运动等4次重要构造运动,他们控制着盆地演化与油气成藏要素形成与关键时期的匹配关系(图6),基隆运动是在前中生界基底上开始的大规模的张性活动,奠定东海陆架盆地中生代盆地基础,形成盆地东部闽江斜坡、基隆凹陷等一系列坳陷;渔山运动以拉张为主,规模上比基隆运动更强、更广,瓯江断陷形成,基隆凹陷开始新一轮的沉降,中部形成反转的台北转折带,2期运动早期控制主要烃源岩分布,是主要的成盆期,为沉积物提供较大沉积空间,奠定盆地油气成藏的物质基础,同时加快上三叠—下侏罗统烃源岩油气生成;雁荡运动是张扭性的运动,较前期平静,控制圈闭形成,此阶段埋藏深度适宜,有利于烃类的成熟与排出,并发育多个沉积中心形成较好的区域盖层,是中生界主要成藏期;龙井运动是一次水平挤压运动,主要表现为区域性抬升剥蚀、褶皱,局部构造加强、定型,有利于油气排出和聚集,圈闭定型,并且使早期油气藏破坏、调整,最终成藏。
3.4 继承性隆起(斜坡)和“凹中凸”是主要油气勘探方向
区域性的继承性古隆起(斜坡)及古构造圈闭是各含油气系统油气早期运移聚集的有利场所。闽江斜坡从早期的古太平洋被动大陆边缘到中生代活动大陆边缘一直表现为面向太平洋的古斜坡,具有多期构造活动、多期运聚成藏的特点,受断层和不整合面的控制,既有侧向运移,也有垂向的运移,是中生界有利油气聚集区。台北转折带从基隆运动开始形成的低凸起(图5),经历多期演化形成现今“凹中凸”,其东部基隆凹陷表现为持续沉降(虽有沉积间断,但时间相对较短),西部发育闽江斜坡的浅凹,尽管存在多期构造运动,但都有助于烃源岩的成熟演化及油气排聚,发育自生自储的晚三叠—早侏罗世油气系统和白垩纪含油气系统,还发育下生上储式次生含油气系统(图7),需要注意的是新构造运动对原生油气藏的破坏和调整。
4. 结论
(1)东海陆架盆地中生代复杂的地球动力学机制,造就了东海陆架盆地南部构造运动活跃,具有多期幕式构造-沉积演化过程,不同时期、不同性质的盆地构造相互叠加改造,控制着中生界油气成藏与勘探方向。
(2)加强东海陆架盆地演化过程与中生界油气成藏关系综合研究,特别是构造运动对油气成藏的控制因素,查明不同时期油气资源分布规律与调整、改造,是东海陆架盆地南部中生界油气勘探实现突破的关键。
-
图 5 基于归一化、去噪处理后的B-1井频谱分析
(a)B-1井测井曲线GR数据;(b)归一化、去噪处理之后GR数据;(c)频谱分析,x轴表示频率,其倒数代表旋回厚度,y轴表示振幅,代表频率的显著程度
Figure 5. Spectrum analysis of well B-1 based on normalized and de-noised GR data
(a) GR data of B-1well; (b) normalized and de-noised GR data; (c) spectrum analysis, X axis represents frequency, the count backwards represents the cycle thickness, Y axis represents the spectral amplitude which represents the significant degree of frequency
表 1 平湖斜坡带30~40.4Ma理论地球轨道周期比值
Table 1 The ratio of theoretical orbital period during 30~40.4Ma in Pinghu slope zone
理论周期/ka 平湖斜坡带30~40.4Ma理论轨道周期比值 偏
心
率405 21.316 18.409 17.609 13.966 10.125 7.788 4.263 4.091 3.240 3.092 1.000 131 6.895 5.955 5.696 4.517 3.359 2.519 1.379 1.323 1.048 1.000 125 6.579 5.682 5.435 4.310 3.205 2.404 1.316 1.263 1.000 99 5.211 4.500 4.304 3.414 2.538 1.904 1.042 1.000 95 5.000 4.318 4.130 3.276 2.436 1.827 1.000 斜
率52 2.737 2.364 2.261 1.793 1.333 1.000 40 2.105 1.818 1.739 1.379 1.062 39 2.053 1.773 1.696 1.345 1.000 29 1.526 1.318 1.261 1.000 岁
差23 1.211 1.045 1.000 22 1.158 1.000 19 1.000 表 2 宝云亭地区平三段地层米氏旋回信息识别
Table 2 Identification of Milakovitch cycles for the 3rd Member of Pinghu Formation of Baoyunting area
井号 优势旋回厚度/m 优势旋回厚度比 米氏旋回厚度/m 斜率52ka 短偏心率99ka 短偏心率131ka 长偏心率405ka B-1 13/23/35.71/90.91 3/5/8/21 13 23 35.71 90.91 B-2 18.14/41.63/96.81 4/9/21 18.14 41.63 96.81 B-3 14/20.41/40/96.73 3/4.4/8.6/21 14 20.41 40 96.73 B-4 20.38/40/100 4.1/8.4/21 20.38 40 100 -
[1] 黄春菊.旋回地层学和天文年代学及其在中生代的研究现状[J].地学前缘, 2014, 21(2):48-66. http://d.old.wanfangdata.com.cn/Periodical/dxqy201402005 HUANG Chunju. Cyclic stratigraphy and astronomical chronology and their research status in Mesozoicera[J]. Earth Science Frontiers, 2014, 21(2):48-66. http://d.old.wanfangdata.com.cn/Periodical/dxqy201402005
[2] Osleger D. Subtidal carbonate cycles: Implications for allocyclic vs. autocyclic controls[J]. Geology, 1991, 19(9):917-920. doi: 10.1130/0091-7613(1991)019<0917:SCCIFA>2.3.CO;2
[3] 付文钊, 余继峰, 杨锋杰, 等.测井记录中米氏旋回信息提取及其沉积学意义——以济阳坳陷区为例[J].中国矿业大学学报, 2013, 42(6):1025-1032. doi: 10.3969/j.issn.1000-1964.2013.06.021 FU Wenzhao, YU Jifeng, YANG Fengjie, et al. Extraction of Milakovitch cycle information in logging data and sedimentological significance: a case study on Jiyang depression[J]. Journal of China University of Mining and Technology, 2013, 42(6):1025-1032. doi: 10.3969/j.issn.1000-1964.2013.06.021
[4] 马飞宙, 余继峰, 鲁静, 等.测井数据小波变换在层序地层分析中的应用研究[J].中国煤炭地质, 2007, 19(4):70-73. doi: 10.3969/j.issn.1674-1803.2007.04.024 MA Feizhou, YU Jifeng, LU Jing, et al. Application of logging data wavelet transform in sequence stratigraphic analysis[J]. Coal Geology of China, 2007, 19(4):70-73. doi: 10.3969/j.issn.1674-1803.2007.04.024
[5] 姚益民, 徐道一, 李保利, 等.东营凹陷牛38井沙三段高分辨率旋回地层研究[J].地层学杂志, 2007, 31(3):229-239. doi: 10.3969/j.issn.0253-4959.2007.03.004 YAO Yimin, XU Daoyi, LI Baoli, et al. Study on the high-resolution cycling strata in the Third Member of Shahejie Formation of Well niu 38 in Dongying Depression[J]. Journal of Stratigraphy, 2007, 31(3):229-239. doi: 10.3969/j.issn.0253-4959.2007.03.004
[6] 毛凯楠, 解习农, 徐伟, 等.基于米兰科维奇理论的高频旋回识别与划分——以琼东南盆地梅山组和三亚组地层为例[J].石油实验地质, 2013, 34(6):641-647. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201206015 MAO Kainan, XIE Xinong, XU Wei, et al. Identification and division of high-frequency cycles based on Milakovitch theory: A case study on Miocene Sanya and Meishan Formations in Qiongdongnan Basin[J]. Petroleum Experimental Geology, 2013, 34(6):641-647. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201206015
[7] 袁学旭, 郭英海, 赵志刚, 等.以米氏旋回为标尺进行测井层序划分对比——以东海西湖凹陷古近-新近系地层为例[J].中国矿业大学学报, 2013, 42(5):766-773. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201305011 YUAN Xuexu, GUO Yinghai, ZHAO Zhigang, et al. Sequence division and comparison based on Milakovitch cycle: a case study on the Paleogene-Neogene strata in the Xihu sag of the East China Sea[J], Journal of China University of Mining and Technology, 2013, 42(5):766-773. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201305011
[8] 徐伟.东营凹陷沙河街组三段、四段高频旋回识别及其地质意义[D].中国地质大学(武汉), 2011. XU Wei. High Frequency Cycle Identification and Its Geological Significance in the 3rd and 4th Member of Shahejie Formation in Dongying Depression[D]. China University of Geosciences (Wuhan), 2011.
[9] 薛年喜. MATLAB在数字信号处理中的应用[M].清华大学出版社, 2008. XUE Nianxi. Application of MATLAB in Digital Signal Processing[M]. Tsinghua University Press, 2008.
[10] 赵宗举, 陈轩, 潘懋, 等.塔里木盆地塔中—巴楚地区上奥陶统良里塔格组米兰科维奇旋回性沉积记录研究[J].地质学报, 2010, 84(4):518-536. ZHAO Zongju, CHEN Xuan, FAN Mao, et al. Study on the cyclvial sedimentary records of the Lianglitage Formation of the Upper Ordovician in the Tazhong-Bachu Area, Tarim Basin[J]. Geological Journal, 2010, 84(4):518-536.
[11] Giles P S. Time series analysis and cyclostratigraphy: Examining Stratigraphic records of environmental cycles.[J]. Geological Association of Canada, 2006, :33(1):43-127.
[12] Christopher Torrence, Gilbert P. Compo. A practical guide to wavelet analysis[C]// Bull. Am. Met. Soc. 1998: 61-78.
[13] Ruddiman W F. Earth's climate: past and future[J]. Eos Transactions American Geophysical Union, 2008, 82(47):576-576. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201004004
[14] 郑兴平, 罗平.川东渝北飞仙关组的米兰克维奇周期及其应用[J].天然气勘探与开发, 2004, 27(1):16-19. doi: 10.3969/j.issn.1673-3177.2004.01.005 ZHEN Xing ping, LUO Ping. The Milankovitch cycle of Feixianguan Formation in Northern Sichuan and its applications[J]. Exploration and Development of Natural Gas, 2004, 27(1):16-19. doi: 10.3969/j.issn.1673-3177.2004.01.005
[15] 李培廉, 盛蔚.米氏旋回在平湖油气田高分辨率层序地层分析中的应用[J].中国海上油气(地质), 1994(3):171-177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400608702 LI Peilian, SHENG Wei. Application of Milankovich cycle in high-resolution sequence stratigraphy analysis of Pinghu oil and gas field[J]. Offshore Oil and Gas in China(Geology), 1994(3):171-177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400608702
[16] Christopher Torrence, Gilbert P. Compo. A practical guide to wavelet analysis[C]// Bull. Am. Met. Soc. 1998: 61-78.
[17] 高迪, 郭变青, 邵龙义, 等.基于MATLAB的小波变换在沉积旋回研究中的应用[J].物探化探计算技术, 2012, 34(4):444-448. doi: 10.3969/j.issn.1001-1749.2012.04.14 GAO Di, GUO Bianqing, SHAO Longyi, et al. Application of wavelet transform based on MATLAB in the study of sedimentary cycles[J]. Geophysical and Geochemical Exploration Computing Technology, 2012, 34(4):444-448. doi: 10.3969/j.issn.1001-1749.2012.04.14
[18] 黄维婷.多尺度小波分析及其在测井曲线自动分层中的应用研究[D].成都理工大学, 2012. HUANG Weiting. Multiscale Wavelet Analysis and Its Application in Logging Curve Automatic Stratification[D]. Chengdu University of Technology, 2012.
[19] 赵军龙, 谭成仟, 李娜, 等.小波分析在高分辨率层序地层研究中的应用[J].地球科学与环境学报, 2007, 29(1):90-94. doi: 10.3969/j.issn.1672-6561.2007.01.018 ZHAO Junlong, TAN Chengqian, LI Na, et al. Application of wavelet analysis in high resolution sequence stratigraphy research[J]. Journal of Geoscience and Environment, 2007, 29(1):90-94. doi: 10.3969/j.issn.1672-6561.2007.01.018
[20] 田军, 汪品先, 成鑫荣, 等.南海ODP1143站上新世至更新世天文年代标尺的建立[J].地球科学:中国地质大学学报, 2005, 30(1):31-39. http://d.old.wanfangdata.com.cn/Periodical/dqkx200501004 TIAN Jun, WANG Pinxian, CHENG Xinrong, et al. Establishment of Plio-Pleistocene astronomical year scale from ODP1143 Station in the South China Sea[J]. Earth Science: Journal of China University of Geosciences, 2005, 30(1):31-39. http://d.old.wanfangdata.com.cn/Periodical/dqkx200501004
[21] 吴怀春, 张世红, 黄清华.中国东北松辽盆地晚白垩世青山口组浮动天文年代标尺的建立[J].地学前缘, 2008, 15(4):159-169. doi: 10.3321/j.issn:1005-2321.2008.04.018 WU Huai chun, ZHAGN Shihong, HUANG Qinghua. Establishment of the floating astronomical scale of the Late Cretaceous Qingshankou Formation in Songliao Basin, Northeast China[J]. Earth Science Frontiers, 2008, 15(4):159-169. doi: 10.3321/j.issn:1005-2321.2008.04.018
[22] 郑民, 彭更新, 雷刚林, 等.频谱分析法确定乌什凹陷白垩系米氏沉积旋回及沉积速率[J].新疆石油地质, 2007, 28(2):170-174. doi: 10.3969/j.issn.1001-3873.2007.02.011 ZHEN Min, PENG Genxin, LEI Ganglin, et al. Spectral analysis determination of Milankovich cycle and deposition rate of the cretaceous in Wushi Sag[J]. Xinjiang Petroleum Geology, 2007, 28(2):170-174. doi: 10.3969/j.issn.1001-3873.2007.02.011
-
期刊类型引用(5)
1. 梁岳立,赵晓明,张喜,李树新,葛家旺,聂志宏,张廷山,祝海华. 轨道周期约束下海-陆过渡相页岩层系高精度层序界面识别及其地质意义——以鄂尔多斯盆地东缘二叠系山西组2~3亚段为例. 石油与天然气地质. 2023(05): 1231-1242 . 百度学术
2. 高祥宇,邵龙义,王学天,华芳辉,鲁静. 乐平统含煤岩系旋回地层的天文周期驱动:以黔西北毕节地区为例. 矿业科学学报. 2022(01): 89-100 . 百度学术
3. 刘英辉,蔡华,段冬平,荣乘锐,常吟善,徐清海. 西湖凹陷平湖地区平湖组海侵体系域潮控三角洲-潮坪沉积特征及模式. 海洋地质前沿. 2022(01): 33-40 . 百度学术
4. 唐闻强,伊海生,陈云,张承志,泽仁拉姆,邢浩婷. 基于测井曲线频谱分析米氏旋回特征——以柴西尕斯地区上干柴沟组为例. 科学技术与工程. 2021(11): 4360-4368 . 百度学术
5. 常吟善,段冬平,张兰,丁芳,包全. 西湖凹陷平湖斜坡带A气田沉积体系定量表征及海平面变化周期性探讨. 海洋地质与第四纪地质. 2021(03): 12-21 . 本站查看
其他类型引用(3)