Identification and division of high-frequency sequence based on Milakovitch cycle: A case of the 3rd Member of Pinghu Formation in Baoyunting Area, Pinghu Slope Zone, East China Sea Shelf Basin
-
摘要: 地球轨道周期性的变化控制着气候周期性变化,进而对层序叠加样式也会产生重要的影响。东海陆架盆地平湖组沉积时期经历了冷热交替的气候变化,这种气候变化的频繁波动必然会在相应的沉积物中有所记录。利用La(2004)计算方案计算北纬30°、30~40.4Ma期间地球轨道参数变化周期,确定该沉积时期理论米氏旋回周期比值;平湖斜坡带平湖组三段属于海相沉积,构造活动较弱,沉积稳定,物性相近,区域上分布广泛,因此以平湖组三段作为目的层,对该段伽马测井数据进行频谱检测以及一维连续小波变换,分析结果显示不同钻井中平三段沉积地层主要受405ka的长偏心率,131、99ka的短偏心率以及52ka的斜率周期所控制;选择控制平三段地层发育的主要米兰科维奇周期曲线,建立高分辨率天文年代标尺,进而对平三段地层进行高频层序划分,为平湖斜坡带高频层序单元对比框架的建立提供了一种新的有效方法。Abstract: Cyclical changes of climate owe its origin to cyclical changes in Earth orbit, which in turn have an effective impact on the pattern of stratigraphic sequence. During the depositional period of the Pinghu Formation, the East China Sea Continental Shelf Basin had suffered from a cold-hot alternating climate, as the records of sedimentation suggest. In this paper, we calculated the time of the variation of earth orbit parameters at the north latitude of 30°, during the time from 30~40.4Ma using the La(2004) calculation method to determine the theoretical time span of Milakovitch cycles. The 3rd Member of Pinghu Formation of the Pinghu Slope Belt is the marine sediments characterized by weak tectonic activity, stable sedimentation, similar physical properties and wide coverage. Therefore, it is selected from among others as the target layer to detect the spectrum of gamma data and analyze the one-dimensional continuous wavelet transform. Our results show that the 3rd Member of Pinghu Formation is dominated by eccentricity cycles of 405ka、131ka、99ka and a slope cycle of 52ka. A high-resolution astronomical timescale is then established according to the cyclicity of the Milakovitch cycle curve. Upon the basis, the sequence stratigraphy of high-frequency cycle in the 3rd Member of Pinghu Formation is constructed. Facts prove that the case provides a new effective approach for stratigraphic division and correlation in the Baoyunting area of the Pinghu Slope Zone.
-
-
图 5 基于归一化、去噪处理后的B-1井频谱分析
(a)B-1井测井曲线GR数据;(b)归一化、去噪处理之后GR数据;(c)频谱分析,x轴表示频率,其倒数代表旋回厚度,y轴表示振幅,代表频率的显著程度
Figure 5. Spectrum analysis of well B-1 based on normalized and de-noised GR data
(a) GR data of B-1well; (b) normalized and de-noised GR data; (c) spectrum analysis, X axis represents frequency, the count backwards represents the cycle thickness, Y axis represents the spectral amplitude which represents the significant degree of frequency
表 1 平湖斜坡带30~40.4Ma理论地球轨道周期比值
Table 1 The ratio of theoretical orbital period during 30~40.4Ma in Pinghu slope zone
理论周期/ka 平湖斜坡带30~40.4Ma理论轨道周期比值 偏
心
率405 21.316 18.409 17.609 13.966 10.125 7.788 4.263 4.091 3.240 3.092 1.000 131 6.895 5.955 5.696 4.517 3.359 2.519 1.379 1.323 1.048 1.000 125 6.579 5.682 5.435 4.310 3.205 2.404 1.316 1.263 1.000 99 5.211 4.500 4.304 3.414 2.538 1.904 1.042 1.000 95 5.000 4.318 4.130 3.276 2.436 1.827 1.000 斜
率52 2.737 2.364 2.261 1.793 1.333 1.000 40 2.105 1.818 1.739 1.379 1.062 39 2.053 1.773 1.696 1.345 1.000 29 1.526 1.318 1.261 1.000 岁
差23 1.211 1.045 1.000 22 1.158 1.000 19 1.000 表 2 宝云亭地区平三段地层米氏旋回信息识别
Table 2 Identification of Milakovitch cycles for the 3rd Member of Pinghu Formation of Baoyunting area
井号 优势旋回厚度/m 优势旋回厚度比 米氏旋回厚度/m 斜率52ka 短偏心率99ka 短偏心率131ka 长偏心率405ka B-1 13/23/35.71/90.91 3/5/8/21 13 23 35.71 90.91 B-2 18.14/41.63/96.81 4/9/21 18.14 41.63 96.81 B-3 14/20.41/40/96.73 3/4.4/8.6/21 14 20.41 40 96.73 B-4 20.38/40/100 4.1/8.4/21 20.38 40 100 -
[1] 黄春菊.旋回地层学和天文年代学及其在中生代的研究现状[J].地学前缘, 2014, 21(2):48-66. http://d.old.wanfangdata.com.cn/Periodical/dxqy201402005 HUANG Chunju. Cyclic stratigraphy and astronomical chronology and their research status in Mesozoicera[J]. Earth Science Frontiers, 2014, 21(2):48-66. http://d.old.wanfangdata.com.cn/Periodical/dxqy201402005
[2] Osleger D. Subtidal carbonate cycles: Implications for allocyclic vs. autocyclic controls[J]. Geology, 1991, 19(9):917-920. doi: 10.1130/0091-7613(1991)019<0917:SCCIFA>2.3.CO;2
[3] 付文钊, 余继峰, 杨锋杰, 等.测井记录中米氏旋回信息提取及其沉积学意义——以济阳坳陷区为例[J].中国矿业大学学报, 2013, 42(6):1025-1032. doi: 10.3969/j.issn.1000-1964.2013.06.021 FU Wenzhao, YU Jifeng, YANG Fengjie, et al. Extraction of Milakovitch cycle information in logging data and sedimentological significance: a case study on Jiyang depression[J]. Journal of China University of Mining and Technology, 2013, 42(6):1025-1032. doi: 10.3969/j.issn.1000-1964.2013.06.021
[4] 马飞宙, 余继峰, 鲁静, 等.测井数据小波变换在层序地层分析中的应用研究[J].中国煤炭地质, 2007, 19(4):70-73. doi: 10.3969/j.issn.1674-1803.2007.04.024 MA Feizhou, YU Jifeng, LU Jing, et al. Application of logging data wavelet transform in sequence stratigraphic analysis[J]. Coal Geology of China, 2007, 19(4):70-73. doi: 10.3969/j.issn.1674-1803.2007.04.024
[5] 姚益民, 徐道一, 李保利, 等.东营凹陷牛38井沙三段高分辨率旋回地层研究[J].地层学杂志, 2007, 31(3):229-239. doi: 10.3969/j.issn.0253-4959.2007.03.004 YAO Yimin, XU Daoyi, LI Baoli, et al. Study on the high-resolution cycling strata in the Third Member of Shahejie Formation of Well niu 38 in Dongying Depression[J]. Journal of Stratigraphy, 2007, 31(3):229-239. doi: 10.3969/j.issn.0253-4959.2007.03.004
[6] 毛凯楠, 解习农, 徐伟, 等.基于米兰科维奇理论的高频旋回识别与划分——以琼东南盆地梅山组和三亚组地层为例[J].石油实验地质, 2013, 34(6):641-647. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201206015 MAO Kainan, XIE Xinong, XU Wei, et al. Identification and division of high-frequency cycles based on Milakovitch theory: A case study on Miocene Sanya and Meishan Formations in Qiongdongnan Basin[J]. Petroleum Experimental Geology, 2013, 34(6):641-647. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201206015
[7] 袁学旭, 郭英海, 赵志刚, 等.以米氏旋回为标尺进行测井层序划分对比——以东海西湖凹陷古近-新近系地层为例[J].中国矿业大学学报, 2013, 42(5):766-773. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201305011 YUAN Xuexu, GUO Yinghai, ZHAO Zhigang, et al. Sequence division and comparison based on Milakovitch cycle: a case study on the Paleogene-Neogene strata in the Xihu sag of the East China Sea[J], Journal of China University of Mining and Technology, 2013, 42(5):766-773. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201305011
[8] 徐伟.东营凹陷沙河街组三段、四段高频旋回识别及其地质意义[D].中国地质大学(武汉), 2011. XU Wei. High Frequency Cycle Identification and Its Geological Significance in the 3rd and 4th Member of Shahejie Formation in Dongying Depression[D]. China University of Geosciences (Wuhan), 2011.
[9] 薛年喜. MATLAB在数字信号处理中的应用[M].清华大学出版社, 2008. XUE Nianxi. Application of MATLAB in Digital Signal Processing[M]. Tsinghua University Press, 2008.
[10] 赵宗举, 陈轩, 潘懋, 等.塔里木盆地塔中—巴楚地区上奥陶统良里塔格组米兰科维奇旋回性沉积记录研究[J].地质学报, 2010, 84(4):518-536. ZHAO Zongju, CHEN Xuan, FAN Mao, et al. Study on the cyclvial sedimentary records of the Lianglitage Formation of the Upper Ordovician in the Tazhong-Bachu Area, Tarim Basin[J]. Geological Journal, 2010, 84(4):518-536.
[11] Giles P S. Time series analysis and cyclostratigraphy: Examining Stratigraphic records of environmental cycles.[J]. Geological Association of Canada, 2006, :33(1):43-127.
[12] Christopher Torrence, Gilbert P. Compo. A practical guide to wavelet analysis[C]// Bull. Am. Met. Soc. 1998: 61-78.
[13] Ruddiman W F. Earth's climate: past and future[J]. Eos Transactions American Geophysical Union, 2008, 82(47):576-576. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201004004
[14] 郑兴平, 罗平.川东渝北飞仙关组的米兰克维奇周期及其应用[J].天然气勘探与开发, 2004, 27(1):16-19. doi: 10.3969/j.issn.1673-3177.2004.01.005 ZHEN Xing ping, LUO Ping. The Milankovitch cycle of Feixianguan Formation in Northern Sichuan and its applications[J]. Exploration and Development of Natural Gas, 2004, 27(1):16-19. doi: 10.3969/j.issn.1673-3177.2004.01.005
[15] 李培廉, 盛蔚.米氏旋回在平湖油气田高分辨率层序地层分析中的应用[J].中国海上油气(地质), 1994(3):171-177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400608702 LI Peilian, SHENG Wei. Application of Milankovich cycle in high-resolution sequence stratigraphy analysis of Pinghu oil and gas field[J]. Offshore Oil and Gas in China(Geology), 1994(3):171-177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400608702
[16] Christopher Torrence, Gilbert P. Compo. A practical guide to wavelet analysis[C]// Bull. Am. Met. Soc. 1998: 61-78.
[17] 高迪, 郭变青, 邵龙义, 等.基于MATLAB的小波变换在沉积旋回研究中的应用[J].物探化探计算技术, 2012, 34(4):444-448. doi: 10.3969/j.issn.1001-1749.2012.04.14 GAO Di, GUO Bianqing, SHAO Longyi, et al. Application of wavelet transform based on MATLAB in the study of sedimentary cycles[J]. Geophysical and Geochemical Exploration Computing Technology, 2012, 34(4):444-448. doi: 10.3969/j.issn.1001-1749.2012.04.14
[18] 黄维婷.多尺度小波分析及其在测井曲线自动分层中的应用研究[D].成都理工大学, 2012. HUANG Weiting. Multiscale Wavelet Analysis and Its Application in Logging Curve Automatic Stratification[D]. Chengdu University of Technology, 2012.
[19] 赵军龙, 谭成仟, 李娜, 等.小波分析在高分辨率层序地层研究中的应用[J].地球科学与环境学报, 2007, 29(1):90-94. doi: 10.3969/j.issn.1672-6561.2007.01.018 ZHAO Junlong, TAN Chengqian, LI Na, et al. Application of wavelet analysis in high resolution sequence stratigraphy research[J]. Journal of Geoscience and Environment, 2007, 29(1):90-94. doi: 10.3969/j.issn.1672-6561.2007.01.018
[20] 田军, 汪品先, 成鑫荣, 等.南海ODP1143站上新世至更新世天文年代标尺的建立[J].地球科学:中国地质大学学报, 2005, 30(1):31-39. http://d.old.wanfangdata.com.cn/Periodical/dqkx200501004 TIAN Jun, WANG Pinxian, CHENG Xinrong, et al. Establishment of Plio-Pleistocene astronomical year scale from ODP1143 Station in the South China Sea[J]. Earth Science: Journal of China University of Geosciences, 2005, 30(1):31-39. http://d.old.wanfangdata.com.cn/Periodical/dqkx200501004
[21] 吴怀春, 张世红, 黄清华.中国东北松辽盆地晚白垩世青山口组浮动天文年代标尺的建立[J].地学前缘, 2008, 15(4):159-169. doi: 10.3321/j.issn:1005-2321.2008.04.018 WU Huai chun, ZHAGN Shihong, HUANG Qinghua. Establishment of the floating astronomical scale of the Late Cretaceous Qingshankou Formation in Songliao Basin, Northeast China[J]. Earth Science Frontiers, 2008, 15(4):159-169. doi: 10.3321/j.issn:1005-2321.2008.04.018
[22] 郑民, 彭更新, 雷刚林, 等.频谱分析法确定乌什凹陷白垩系米氏沉积旋回及沉积速率[J].新疆石油地质, 2007, 28(2):170-174. doi: 10.3969/j.issn.1001-3873.2007.02.011 ZHEN Min, PENG Genxin, LEI Ganglin, et al. Spectral analysis determination of Milankovich cycle and deposition rate of the cretaceous in Wushi Sag[J]. Xinjiang Petroleum Geology, 2007, 28(2):170-174. doi: 10.3969/j.issn.1001-3873.2007.02.011