塔西南盆地海退时间及其形成机制研究

林旭, 程钰瑞, 冯一帆, 彭保发

林旭, 程钰瑞, 冯一帆, 彭保发. 塔西南盆地海退时间及其形成机制研究[J]. 海洋地质与第四纪地质, 2019, 39(3): 84-93. DOI: 10.16562/j.cnki.0256-1492.2018060301
引用本文: 林旭, 程钰瑞, 冯一帆, 彭保发. 塔西南盆地海退时间及其形成机制研究[J]. 海洋地质与第四纪地质, 2019, 39(3): 84-93. DOI: 10.16562/j.cnki.0256-1492.2018060301
LIN Xu, CHENG Yurui, FENG Yifan, PENG Baofa. A review on regressive time in southwest Tarim Basin and its forming mechanism[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 84-93. DOI: 10.16562/j.cnki.0256-1492.2018060301
Citation: LIN Xu, CHENG Yurui, FENG Yifan, PENG Baofa. A review on regressive time in southwest Tarim Basin and its forming mechanism[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 84-93. DOI: 10.16562/j.cnki.0256-1492.2018060301

塔西南盆地海退时间及其形成机制研究

基金项目: 

国家自然科学基金“青海南山新生代隆升与黄河龙羊峡下切时间的低温热年代学研究” 41702178

山东省自然科学基金“黄河流域现代沉积物钾长石Pb同位素物源示踪研究” ZR201702160378

湖南省自然科学基金面上项目“江汉盆地周缘河流碎屑磷灰石低温热年代学研究” 2019JJ40198

详细信息
    作者简介:

    林旭(1984—),男,博士,第四纪地质学专业,E-mail: hanwuji-life@163.com

    通讯作者:

    彭保发(1962—),男,教授,自然地理学专业,E-mail: pengbaofa@163.com

  • 中图分类号: P736.21

A review on regressive time in southwest Tarim Basin and its forming mechanism

  • 摘要: 位于塔里木盆地以西的新特提斯洋的退出过程对认识中亚盆山耦合过程、海陆分布变化引起的干旱化甚至亚洲气候环境的形成演化具有重要意义,一直是亚洲新生代构造与气候研究的重点科学问题。通过在广泛收集新特提斯洋东段的塔西南盆地的相关低温热年代学、地球物理学、沉积学和古地磁年代学等国内外文献的基础上,介绍了西昆仑山、帕米尔高原、塔里木盆地和新特提斯洋的地质背景,分析了塔里木与帕米尔-西昆仑的盆山耦合关系,确定了塔西南盆地最后的海退时间是在晚始新世,分析了海退出现的主要成因, 认为构造因素是造成塔西南盆地早—中始新世海退的主要原因。
    Abstract: The withdrawal the sea water from the Neo-Tethys in the west part of Tarim Basin brought about significant impacts to the Central Asia on basin-mountain coupling, sea-land distribution and associated aridification, and even the drastic changes of climate in the whole Asia. Therefore, it has been remained a key issue in the study of Cenozoic tectonics and climate in the region. On the basis of the data collected from the low temperature thermochronology, geophysics, sedimentology, and paleomagnetic chronology studies around the southwest Tarim Basin, this paper devotes to the description of geological background about the West Kunlun orogenic belt, Pamir Plateau, Tarim Basin, and the Neo-tethys, summarized the spatiotemporal relationship between the Tarim Basin and Pamir-West Kunlun, and reviewed the time of regression in the southwest Tarim Basin. After analyzing the mechanism about the sea water retreating from the southwest Tarim Basin, we suggest that the final sea water regression since the early-middle Eocene owes its origin to tectonic processes.
  • 在新生代早期,印度板块与欧亚大陆发生碰撞,持续的俯冲作用不仅造就了世界上地壳最厚的青藏高原[1],其碰撞的远程效应还引起亚洲大陆古生代和中生代的构造带再次活化,并改变了中亚地区的海陆分布格局[2]。塔里木海位于塔里木盆地西部,和塔吉克海相连,是新特提斯洋的东延部分[3]。塔里木盆地何时由海相环境转变为以陆相沉积为主,对于认识和理解青藏高原西北缘、中亚地区新生代以来的构造演化[2, 4]、古气候重建[5, 6]、海陆分布[7, 8]等地质问题十分重要。因此,近几十年以来,国内外学者对塔西南盆地海退的时间进行了详细的研究[9-15]。但是由于选择的研究地点不同,加上同一地点采用的研究方法不同,导致塔西南盆地最终海退的时间从始新世[7, 8, 14]、渐新世[10, 15-18]和中新世[12, 13, 19, 20]的结果均有报道。有的学者将塔西南盆地海退发生的原因归为气候因素,而有的则认为是构造作用所致。基于上述问题的存在,我们在国内外丰富的低温热年代学、地球物理学、沉积学和古地磁年代学等研究结果的基础上,对这些成果进行总结和梳理,厘定塔西南海水的退却时间,分析海退出现的成因。

    西昆仑造山带位于青藏高原西北缘,是“特提斯构造域”与“古亚洲构造域”转换的地带,南抵康西瓦谷地,北侧与塔里木盆地相接,东部与阿尔金左行走滑断裂衔接,西侧以喀喇昆仑山右行走滑断裂为界与帕米尔高原相连[21] (图 1)。从早古生代到早中生代,西昆仑造山带由北昆仑、南昆仑和喀喇昆仑3个主要地块碰撞形成[22],包含复理石沉积物和花岗岩侵入体。

    图  1  青藏高原周围主要构造单元分布图
    (图中蓝色方框代表了研究区)
    Figure  1.  Tectonic map showing the Tibetan Plateau, main faults and basins
    The blue rectangle presents the studying area

    自新生代以来,西昆仑山脉北坡的碎屑和基岩磷灰石裂变径迹年龄,沉积相变化记录了山体隆升的时间分别出现在60~37Ma[23-24]、22~16Ma[25-26]、约5.3 Ma[27-29]。西昆仑山脉在新生代早期发生初始隆升,自晚渐新世开始整体隆升,到上新世西昆仑山脉进入快速隆升阶段。

    帕米尔高原位于青藏高原的西北端,南侧与科西斯坦-拉达克岛弧连接,西侧靠近兴都库什山和阿富汗地块,北侧与西南天山对接[30] (图 1)。在侏罗纪—白垩纪,喀喇昆仑和南帕米尔地区因新特提斯洋的俯冲形成了安第斯型大陆边缘[31],随着印度板块的西北端与拉达克-科西斯坦岛弧的南侧碰撞(约50~47Ma)而结束[4, 32]

    基岩低温热年代学结果和现代河流碎屑锆石U-Pb最年轻年龄表明帕米尔高原在新生代早期(约50~40Ma)开始隆升[33-34],在渐新世到中中新世开始整体隆升(约25~16Ma)[35],到晚中新世—上新世,帕米尔高原与南天山发生碰撞,其前缘堆积了磨拉石沉积,表明高原北缘开始进入快速隆升阶段[36-38]

    塔里木盆地位于青藏高原和天山之间,具有复杂的前寒武纪和古生代地质演化历史,并在新近纪由几个中生代—早新生代盆地发育为统一的盆地[39] (图 1)。其基底主要由前寒武纪克拉通上覆海相碳酸盐岩组成,平均厚度约为43km,表层沉积约15km厚的古生代到新生代的沉积物,保存了周围造山带隆升剥蚀过程的信息,反映了亚洲大陆南侧自中生代以来所经历的陆-陆碰撞过程[39-41]

    塔西南盆地属于塔里木盆地的一部分,自侏罗纪以来堆积了巨厚(>10km)的碎屑沉积[42-44] (图 1)。白垩系呈带状自西北向东南分布在帕米尔-西昆仑北坡山前。古新近系沉积以红色碎屑岩夹泥灰岩和石膏的河湖相沉积为主,古新统和始新统基本上是海相沉积,渐新世后逐渐变为陆相沉积[44]

    奥地利地质学家Suess在1893年根据欧洲和非洲大陆不同地点的化石对比结果[45],发现在中生代冈瓦纳大陆和劳伦大陆之间存在一个大洋,将其命名为“特提斯”洋。根据其形成和发展的不同阶段,学术界将特提斯洋分为古特提斯洋、中特提斯洋和新特提斯洋,在时间上有先后继承的关系,在空间上有从南向北逐步发展的趋势[46]。新特提斯洋指晚中生代到新生代早期分布在欧亚大陆和非洲大陆之间的广阔海洋(图 2),塔里木海位于其最东端。塔里木海海平面自森诺曼阶(约100Ma)开始上升,科尼亚克阶(约86Ma)达到顶峰[3],但是在麦斯里希特阶(约66Ma)开始,海平面开始急剧下降,这与青藏地区南缘以及全球性的海平面下降是同步的[3]。新生代特提斯洋的演化可分为特提斯洋、副特提斯和特提斯消亡3个阶段,约34Ma之前,特提斯洋仍是一个较为统一的大洋,而塔里木海最终在始新世与渐新世之交从塔里木盆地消亡[46]

    图  2  新生代中始新世新特提斯洋分布示意图(修改自文献[14])
    黑色虚线代表塔里木盆地中始新世(41Ma)海退,白色虚线(37Ma)代表晚始新世海退
    Figure  2.  Paleogeographic map showing the distribution of oceans surrounding the Tarim Basin during the early Cenozoic
    The black and white dotted lines show the sea water retreat from the Tarim Basin since the middle and late Eocene era

    大陆造山带与沉积盆地之间具有十分密切的耦合关系,空间上相互依存,物质上相互补偿,构造上相互作用,时间上同步演化[47, 48]

    宽波段地震剖面资料解译结果表明,西昆仑山脉之下存在双向俯冲带[49],塔里木板块向南俯冲的深度达到了300~50km[49-52] (图 3)。地表则形成了向北迁移的逆冲断裂带,以发育薄皮构造为特征,是由一系列相对密集、近于平行排列的逆冲型韧性剪切带和脆、韧性逆冲断裂共同组成的大型构造变形带[39, 41, 53]

    图  3  塔里木盆地与西昆仑山脉盆山耦合示意图[52, 54]
    Figure  3.  Sketch map shows the coupling between the southwest Tarim Basin and west Kunlun orogenic belt

    早古生代以来,帕米尔-西昆仑地块以南发生多次洋-陆和陆-陆碰撞过程,导致帕米尔-西昆仑构造带深部物质沿奥依塔格-库地-喀什塔什断裂汇聚和持续向上移动,并在晚侏罗世—早白垩世转化成强烈的北向逆冲扩展作用[39, 41]。同时,塔里木地块自北向南俯冲,塔西南坳陷带步入形成期。晚白垩世—古近纪,塔西南坳陷带的沉积层厚度较前期明显变厚,沉积范围向北扩展[43]。在晚始新世(约46~37Ma)时,阿克陶[20]、奥依塔格[44]、阿尔塔什[55]、甫沙[20]剖面的中—新生代红层,由于受到西昆仑山前逆冲断裂活动的影响全部出现倒转,依次向塔里木盆地倾伏。碎屑磷灰石裂变径迹完全退火的年龄记录阿尔塔什沉积地层在约30Ma发生抬升[18]。塔西南盆地南缘的柯克亚和桑株剖面的碎屑锆石裂变径迹年龄,揭示剖面中分别存在60~21 Ma和37~7Ma的移动峰,代表了源区西昆仑山脉的加速隆升[24]。帕米尔构造结前缘的乌恰剖面古地磁磁性地层年龄结合岩石磁学和碎屑低温热年代学结果,表明帕米尔地块在50~40Ma经历了构造隆升[56]。进入新近纪(23~20Ma),在帕米尔-西昆仑北坡山前出现强烈的构造挤压[57],塔西南坳陷带快速沉降,这一时期是盆-山结合带造盆、造山作用机制发生重大转折时期,也是帕米尔-西昆仑山脉发生快速隆升的阶段[39, 58] (图 4)。自上新世,帕米尔-西昆仑北坡山前逆冲断裂持续向塔里木盆地内推进,沿着山麓走向线发育几排山前背斜带[39, 41, 53, 59],并广泛出现磨拉石沉积[27-29, 36-38]。塔西南盆地的沉降过程与帕米尔-西昆仑山的隆升是同时发生的,存在耦合关系,这主要体现在西昆仑山脉的隆升时间与塔西南盆地沉积地层变形、抬升的时间以及沉积地层的碎屑矿物的低温热年代学结果与西昆仑山脉的基岩结果相吻合。

    图  4  塔西南盆地奥依塔格剖面沉降史恢复示意图[40] (A)及塔西南盆地沉降速率图[59] (B)
    Figure  4.  Tectonic subsidence curve of the Oytag section (A); and the changes in subsidence rate with time (B) from the southwest Tarim Basin

    中外学者很早就开始关注塔西南盆地的海退问题,例如宋天锐、雍天寿、唐天福根据沉积相观察[15-17],认为始新世早期海水首先从阿莱海峡进入塔里木盆地;渐新世末发生的喜马拉雅运动使海水最后退出塔西南盆地。根据古生物地层学分析数据,丁孝忠等[12]、王树基等[19]、方爱民等[20]认为,晚白垩纪初至早古近纪晚期共形成了3次较大规模的海水进退沉积旋回,海水从塔里木盆地完全退出,即由海湾变为陆地发生在中新世晚期。Sobel等[18]通过对西昆仑、帕米尔和南天山山前沉积地层中碎屑磷灰石裂变径迹的年代学分析,结合沉积相观察,发现在早白垩纪海水从塔吉克盆地进入塔西南盆地,而海水最终完全退出的时间发生在早渐新世。利用有孔虫化石鉴定结果,郝诒纯[10]认为渐新世末,由于印度板块与欧亚板块汇聚的“远程效应”,使塔里木盆地西缘成为继喜马拉雅、喀喇昆仑地区海退之后的又一海退地区,基本上结束了与古地中海的连通。但Ritts等[13]研究了阿尔金山米兰河剖面,发现地层的有孔虫组合与东地中海极为相似,根据低温热年代学结果限定地层的沉积时代,认为在约15.6Ma时阿尔金山存在海洋并和西部的塔里木海相连通,其海平面也是新生代最高时期。但是阿尔金山米兰河剖面地层里的有孔虫化石极有可能是后期被其他媒介搬运而来的,并不是原位地层中的化石,因此仅依靠这一条有待商榷的证据来讨论塔里木海曾经出现过并不能令人信服。可见,早期对塔西南盆地海退何时出现的研究结果彼此存有较大差异,造成这一现象出现的原因一方面在于研究方法和研究地点的不一致,但最重要的原因是对所研究的地层缺乏精细定年,这导致区域内海退时间的研究结果混乱,阻碍各个剖面之间的海退时间的对比研究。

    然而最近几年,国内外研究者再次对塔西南盆地和塔吉克盆地内海相沉积地层开展了更为广泛的精细年代测定,发现海退时间与之前的研究结果有较大差异,但是随着研究程度的深入,各个沉积地层记录的海退时间逐渐清晰并能进行对比,这对于理清塔西南海退的演化时序极为有利(图 5),尽管仍有个别关键地点的地层仍然缺乏精细年龄的限定。例如,Sun等[60]对塔西南盆地南侧的克里阳剖面进行古地磁年代学分析,结合沉积相变化,限定该地区最后一次海退发生的时间在约40Ma。Bosboom等[14]根据西昆仑山脉北坡阿尔塔什和盖孜剖面的沉积记录和古生物化石结果,认为最后一次海退发生的时间在约37Ma,但这一年龄缺乏古地磁年龄交叉检验。随后,Bosboom等[61]对阿尔塔什剖面进行古地磁年龄分析,结合古生物出现的层位,修订最后一次海退的时间出现在约41Ma。Wang等[8]对南天山山前的乌恰剖面进行沉积学综合分析,结合古生物化石出现的层位,认为最后一次海退发生在始新世和渐新世界线(34Ma)附近。Bosboom等[62]对乌恰西侧的巴什布拉克剖面进行古生物化石分析,结合沉积相的变化,并和克里阳、阿尔塔什、盖孜剖面进行对比,认为塔里木盆地最终海退的时间在普利亚本期(33Ma),并指出塔里木盆地的海退是自东向西逐步完成的。然而,帕米尔东北缘的奥依塔格剖面记录的最后一次海退出现在约47Ma[7]。Carrapa等[63]利用沉积相变化、砂岩组分分析和碎屑锆石U-Pb年龄谱系对比,结合地层内的古生物化石,发现塔吉克盆地(WA、PE和ZD剖面)最后一次海退出现在约39Ma。Bosboom等[64]分别对帕米尔构造结以西北和以西的阿莱谷地和塔吉克盆地(SC剖面)的新生代地层进行沉积相、古生物化石研究并与周边地层进行对比后,指出海退最终发生在晚始新世(38~34Ma)。而Burtman对帕米尔构造结以西塔吉克盆地的3处剖面(标号71,72,73)进行沉积相和古生物化石对比得出的海退时间在早渐新世(34~28Ma)[65]。综合来看,塔西南盆地海退发生的时间集中在早始新世[4, 7]、中始新世[60, 61, 63]、晚始新世[8, 62]、早渐新世[18]、早中新世[10, 13, 15-17]和晚中新世[19, 20, 67]。在帕米尔构造结两侧的海退时间东侧出现在早—中始新世,西侧出现在晚始新世—早渐新世。

    图  5  不同研究方法揭示的塔西南盆地海退发生的时间
    红色圆圈中数字与参考文献顺序对应。塔西南盆地海退时间主要集中在早始新世[4, 7]、中始新世[60, 61, 63]、晚始新世[8, 62]、早渐新世[18]、早中新世[10, 13, 15-17]、晚中新世[19, 20, 67]
    Figure  5.  Retreating time of sea water from southwest Tarim sea extracted from references by different searching methods
    The number in the red circle is consistent with the reference number. The sea retreating times are focused on the early Eocene, middle Eocene, late Eocene, early Oligocene, early Miocene, and late Miocene, respectively

    南极冰盖在34Ma迅速扩张[66],全球气候由温室(green house)向冰室(ice house)转变,引起海平面下降的时间要晚于塔西南盆地最终海退发生的时间[69](图 7)。因而,在47~39Ma时期,全球性的海平面还处于相对高位期时,其波动会引起塔西南盆地海平面的阶段性变化[60, 61],但这一变化幅度并不十分显著(64~20m)[60]。因此,在此阶段全球性的海平面下降(气候因素)对塔西南盆地海退的影响作用并不显著。

    图  6  晚始新世帕米尔构造结周缘海陆分布示意图
    底图据文献[2]和[68]修改。浅蓝色代表塔里木海曾经的位置,五角星代表不同剖面记录的海退发生时间,克里阳引自文献[60],阿尔塔什引自文献[14, 61],盖孜引自文献[14],奥依塔格引自文献[7],乌恰引自文献[8],巴什布拉克引自文献[62],塔吉克盆地北部(WA、PE、ZD)引自文献[63],塔吉克盆地东北部(阿莱、SC)引自文献[64],塔吉克盆地东部(73、74、71)引自文献[65]
    Figure  6.  The sketch map of sea-land distribution around the Pamir syntax since late Eocene
    (modified from references [2] and [68]). The light blue represents the previous position of Tarim Sea, and the stars are used to mark the lithostratigraphic sections (Keliyang, Aertashi, Gezi, Oytag, Wuqia, Bashibulake, WA、PE、ZD and Alai, SC, and 73, 74, 71 in the Tajik Basin) that recorded the regression times of Tarim sea and Tajik Sea
    图  7  新生代以来全球氧同位素(左)[66]和海平面(右)[69]变化曲线示意图
    图中虚线代表了自渐新世开始海平面显著下降的趋势线
    Figure  7.  Global deep-sea oxygen isotope records (left) and Cenozoic cycles of sea level change (right)
    The dot line presents a significant sea level falling since the Oligocene

    塔西南盆地发生海退的时间要比帕米尔-西昆仑开始强烈隆升的时间早[60, 61],这是否说明构造活动对塔西南盆地最终海退的影响不重要呢?始新世时帕米尔-西昆仑地块受到印度板块俯冲的影响而向北移动,逆冲到塔吉克和塔里木盆地基底之上,持续的双向俯冲过程,导致帕米尔-西昆仑的隆升已经开始[56],塔西南盆地发生沉降[52]。而帕米尔向北移动的速率要比西昆仑山脉快[70, 71],与西昆仑山脉的距离逐渐拉开[55],导致海退最先出现在帕米尔东北缘的奥依塔格剖面[7]。理论上,最早发生海退的剖面应位于帕米尔构造结的最前缘,但可能随着阿莱板片俯冲到帕米尔高原之下而消失[40],或是因强烈掩埋而不见[67]

    如果将帕米尔-西昆仑北坡新生代剖面记录的海退时间进行对比,可以发现塔西南盆地的海退没有遵循自东(40Ma)向西(41Ma)逐渐变晚的规律,海退具有穿时性。同时考虑塔吉克盆地各处剖面记录的初始海退发生在约39~38Ma[63, 64],帕米尔构造结在约47Ma时已开始发育[4],这充分说明长时间尺度上(47~38Ma)塔西南盆地的海退受控于帕米尔构造结的发育和发展。可见,构造活动是驱动区域内海退发生的主导因素。这也体现在随着帕米尔-西昆仑地块不断向北移动,与南天山之间的距离逐渐缩短[7, 65],水平范围内压缩塔西南盆地内海水分布面积,垂向上由于盆地沉降形成更大的可容空间,最终在渐新世随着南天山、帕米尔-西昆仑的整体隆升而得到进一步加强[40],伴随着帕米尔构造结轮廓的逐渐稳定[65],塔西南盆地周缘也开始以陆相沉积为主[12, 60-65]。中亚地区大陆度明显增强,加上与周围大洋的距离遥远,该地区逐渐开始干旱[46],受高山圈闭的塔里木和准噶尔盆地表现得尤为明显[38],同时考虑到帕米尔构造结西侧海退出现的时间节点(晚始新世—早渐新世)与中亚干旱化出现的时间吻合[46]。因此,有理由相信气候变干也可能导致海水的退却。因而,构造和气候因素共同导致了塔西南盆地最终海退的发生,但主要受控于区域尺度塔西南与帕米尔-西昆仑的盆山耦合过程,期间受到全球性海平面下降和气候变干的影响[60, 61]

    另外,伴随着塔里木海周缘(主要是南缘)的山体隆升,大量碎屑沉积物开始剥蚀、搬运进入塔西南盆地,但是在海相沉积为主的时期,沉积速率却相对较低[7, 61]。此外,从将今论古的角度来看,通过对发源于青藏高原的大河对其入海的沉积物贡献率来看,以规模最大的黄河为例,其沉积物的大量卸载对于现今渤海海平面的影响微乎其微[72]。考虑到当时的塔里木海与新特提斯洋还存在广泛的连通,因而周缘山体剥蚀物质的卸入虽会对海平面的下降起到一定的作用,但并不能成为主导因素。

    (1) 新生代早期,受印度板块向欧亚大陆俯冲的影响,青藏高原西北缘的帕米尔-西昆仑向北移动,与此同时塔里木盆地基底向南发生陆内俯冲,引起帕米尔-西昆仑山脉的阶段性隆升,盆山耦合关系进一步加强。

    (2) 塔西南盆地最后海退的时间,发生在晚始新世,早于全球性海面下降的时间。海退没有沿着帕米尔-西昆仑山脉自东向西逐渐发生,而是最先发生在接近帕米尔前缘的奥依塔格剖面,受到塔西南和帕米尔-西昆仑之间的盆山耦合关系的影响,海退具有穿时性。

    (3) 构造因素是驱动区域内海退发生的主导因素。全球性海平面阶段性波动和气候变干引起塔西南盆地海平面的变化。在渐新世陆相沉积开始广泛出现的时候,塔西南盆地的海退已经完成。塔西南盆地周缘山体的剥蚀物质的卸入不是海平面下降的主导因素。

    虽然近几年的研究结果,尤其是在海相地层精细定年上,较之前面的研究有了很大的提高,有些地层依然缺乏古地磁年龄限定,这导致在进行具体的地层对比的时候,尤其是关键地点(例如乌恰和巴什布拉克地区)的海退时间的确定上依然需要谨慎,应进一步开展有关地层的精细定年工作。同样,在塔吉克盆地东部紧靠帕米尔构造结的各处新生代地层的海退时间研究也缺乏精细地层的年龄限定。另外,在帕米尔-西昆仑山前一些重要部位的地层由于进入俯冲带或是经历后期的掩埋而并没有出现,这也影响了塔西南海退时间空间上的对比。因而,今后的研究在挖掘现有剖面的基础上,不断发现新剖面,同时运用多种分析方法对海退时间进行相互检验,结合区域上的其他研究结果,进而有助于我们理解自新生代以来在印度-欧亚板块碰撞的大背景下,其远程效应驱动帕米尔构造结的发育、演化和定型对中国西部和中亚盆山耦合体系和海陆分布的影响进而引起的气候变化等地质问题。

  • 图  1   青藏高原周围主要构造单元分布图

    (图中蓝色方框代表了研究区)

    Figure  1.   Tectonic map showing the Tibetan Plateau, main faults and basins

    The blue rectangle presents the studying area

    图  2   新生代中始新世新特提斯洋分布示意图(修改自文献[14])

    黑色虚线代表塔里木盆地中始新世(41Ma)海退,白色虚线(37Ma)代表晚始新世海退

    Figure  2.   Paleogeographic map showing the distribution of oceans surrounding the Tarim Basin during the early Cenozoic

    The black and white dotted lines show the sea water retreat from the Tarim Basin since the middle and late Eocene era

    图  3   塔里木盆地与西昆仑山脉盆山耦合示意图[52, 54]

    Figure  3.   Sketch map shows the coupling between the southwest Tarim Basin and west Kunlun orogenic belt

    图  4   塔西南盆地奥依塔格剖面沉降史恢复示意图[40] (A)及塔西南盆地沉降速率图[59] (B)

    Figure  4.   Tectonic subsidence curve of the Oytag section (A); and the changes in subsidence rate with time (B) from the southwest Tarim Basin

    图  5   不同研究方法揭示的塔西南盆地海退发生的时间

    红色圆圈中数字与参考文献顺序对应。塔西南盆地海退时间主要集中在早始新世[4, 7]、中始新世[60, 61, 63]、晚始新世[8, 62]、早渐新世[18]、早中新世[10, 13, 15-17]、晚中新世[19, 20, 67]

    Figure  5.   Retreating time of sea water from southwest Tarim sea extracted from references by different searching methods

    The number in the red circle is consistent with the reference number. The sea retreating times are focused on the early Eocene, middle Eocene, late Eocene, early Oligocene, early Miocene, and late Miocene, respectively

    图  6   晚始新世帕米尔构造结周缘海陆分布示意图

    底图据文献[2]和[68]修改。浅蓝色代表塔里木海曾经的位置,五角星代表不同剖面记录的海退发生时间,克里阳引自文献[60],阿尔塔什引自文献[14, 61],盖孜引自文献[14],奥依塔格引自文献[7],乌恰引自文献[8],巴什布拉克引自文献[62],塔吉克盆地北部(WA、PE、ZD)引自文献[63],塔吉克盆地东北部(阿莱、SC)引自文献[64],塔吉克盆地东部(73、74、71)引自文献[65]

    Figure  6.   The sketch map of sea-land distribution around the Pamir syntax since late Eocene

    (modified from references [2] and [68]). The light blue represents the previous position of Tarim Sea, and the stars are used to mark the lithostratigraphic sections (Keliyang, Aertashi, Gezi, Oytag, Wuqia, Bashibulake, WA、PE、ZD and Alai, SC, and 73, 74, 71 in the Tajik Basin) that recorded the regression times of Tarim sea and Tajik Sea

    图  7   新生代以来全球氧同位素(左)[66]和海平面(右)[69]变化曲线示意图

    图中虚线代表了自渐新世开始海平面显著下降的趋势线

    Figure  7.   Global deep-sea oxygen isotope records (left) and Cenozoic cycles of sea level change (right)

    The dot line presents a significant sea level falling since the Oligocene

  • [1]

    Wang C, Zhao X, Liu Z, et al. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2008, 105(13): 4987-4992. doi: 10.1073/pnas.0703595105

    [2]

    Tapponnier P, Mattauer M, Proust F, et al. Mesozoic ophiolites, sutures, and arge-scale tectonic movements in Afghanistan[J]. Earth and Planetary Science Letters, 1981, 52(2): 355-371. doi: 10.1016/0012-821X(81)90189-8

    [3]

    Xi D, Cao W, Cheng Y, et al. Late Cretaceous biostratigraphy and sea-level change in the southwest Tarim Basin[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2016, 441:516-527. doi: 10.1016/j.palaeo.2015.09.045

    [4]

    Sun J, Xiao W, Windley B F, et al. Provenance change of sediment input in the northeastern foreland of Pamir related to collision of the Indian Plate with the Kohistan-Ladakh arc at around 47Ma[J]. Tectonics, 2016, 35(2): 1-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0fe323ae1f488ad6b63eb67d3061c5f9

    [5]

    Sun J, Ye J, Wu W, et al. Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior[J]. Geology, 2010, 38: 515-518. doi: 10.1130/G30776.1

    [6]

    Sun J, Windley B F. Onset of aridification by 34 Ma across the Eocene-Oligocene transition in Central Asia[J]. Geology, 2015, 43(11):1016-1018. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f084675609d99cb72e539eca7871e8a4

    [7]

    Sun J, Jiang, M. Eocene seawater retreat from the southwest Tarim Basin and implications for early Cenozoic tectonic evolution in the Pamir Plateau[J]. Tectonophysics, 2013, 588(2): 27-38.

    [8]

    Wang X, Sun D, Chen F, et al. Cenozoic paleo-environmental evolution of the Pamir-Tien Shan convergence zone[J]. Journal of Asian Earth Sciences, 2014, 80: 84-100. doi: 10.1016/j.jseaes.2013.10.027

    [9] 唐天福.新疆塔里木盆地西部白垩纪至早第三纪海相地层及含油性[M].北京:科学出版社, 1989.

    TANG Tianfu. Characteristics and Sedimentary Environments of the Late Cretaceous to Early Tertiary Marine Strata in the Western Tarim Basin[M]. Beijing: Science Press, 1989.

    [10] 郝诒纯, 曾学鲁, 郭宪璞.新疆塔里木盆地西部海相白垩纪及其沉积环境探讨[J].地质学报, 1987, 3(3): 205-217. http://www.cnki.com.cn/Article/CJFD1987-DZXE198703001.htm

    HAO Yichun, ZENG Xuelu, GUO Xianpu. The marine Cretaceous in the western part of the Tarim Basin of Xinjiang and its depositional environments[J]. Acta Geologica Sinica, 1987, 3(3): 205-217. http://www.cnki.com.cn/Article/CJFD1987-DZXE198703001.htm

    [11] 郭宪璞, 丁孝忠, 何希贤, 等.塔里木盆地中新生代海侵和海相地层研究的新进展[J].地质学报, 2002, 76(3): 299-307. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200203002

    GUO Xianpu, Ding Xiaozhong, He Xixian, et al. New progress in the study of marine transgressional events and marine strata of the Meso-Cenozoic in the Tarim Basin[J]. Acta Geologica Sinica, 2002, 76(3): 299-307. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200203002

    [12] 丁孝忠, 刘训, 吴绍祖, 等.塔里木盆地西部库孜贡苏地区白垩纪早第三纪沉积特征及沉积环境探讨[J].新疆地质, 1993, 11:179-190. http://www.cqvip.com/QK/82738X/199303/4001480518.html

    DING Xiaozhong, LIU Xun, WU Shaozu, et al. Discussion on the Cretaceous-Paleogene sedimentary features and environments of Kuzgongsu area, western Tarim Basin[J]. Xinjiang Geology, 1993, 11:179-190. http://www.cqvip.com/QK/82738X/199303/4001480518.html

    [13]

    Ritts B D, Yue Y, Graham S A, et al. From sea level to high elevation in 15 million years:Uplift history of the northern Tibetan Plateau margin in the Altun Shan[J]. American Journal of Science, 2008, 308(5): 657-678. doi: 10.2475/05.2008.01

    [14]

    Bosboom R E, Dupont-Nivet G, Houben A P, et al. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(3-4): 385-398. doi: 10.1016/j.palaeo.2010.11.019

    [15] 宋天锐.塔里木盆地及邻区第三纪沉积岩系发育的探讨[J].地质论评, 1982, 28(4): 317-325. doi: 10.3321/j.issn:0371-5736.1982.04.004

    SONG Tianrui. The development of Tertiary sedimentary sequences in the Tarim Basin and its neighbouring areas[J]. Geological Review, 1982, 28(4): 317-325. doi: 10.3321/j.issn:0371-5736.1982.04.004

    [16] 雍天寿, 单金榜.白垩纪及早第三纪塔里木海湾的形成与发展[J].沉积学报, 1986, 4(3): 67-75. http://www.cnki.com.cn/Article/CJFDTotal-CJXB198603006.htm

    YONG Tianshou, SHAN Jinbang. The development and formation in the Tarim bay in Cretaceous-Paleogene ages[J]. Acta sedimentologica Sinica, 1986, 4(3): 67-75. http://www.cnki.com.cn/Article/CJFDTotal-CJXB198603006.htm

    [17] 唐天福.新疆塔里木盆地西部白垩纪至早第三纪海相地层及含油性[M].北京:科学出版社. 1989.

    TANG Tianfu. Characteristics and Sedimentary Environments of the Late Cretaceous to Early Tertiary Marine Strata in the Western Tarim Basin[M]. Beijing: Science Press, 1989.

    [18]

    Sobel E, Dumitru T. Thrusting and exhumation around the margins of the western Tarim basin during the India-Asia collision[J]. Journal of Geophysical Research: Solid Earth, 1997, 102: 5043-5063. doi: 10.1029/96JB03267

    [19] 王树基, 高存海.塔里木内陆盆地晚新生代干旱环境的形成与演变[J].第四纪研究, 1990, 10(4): 372-380. doi: 10.3321/j.issn:1001-7410.1990.04.010

    WANG Shuji, GAO Cunhai. The formation and evolution of the arid environment of the inland Tarim Basin since late Cenozoicera[J]. Quatenary Geology, 1990, 10(4): 372-380. doi: 10.3321/j.issn:1001-7410.1990.04.010

    [20] 方爱民, 马建英, 王世刚等.西昆仑-塔西南坳陷晚古生代以来的沉积构造演化[J].岩石学报, 2009, 25(12): 3396-3406. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200912025

    FANG Aimin, MA Jianying, WANG Shigang, et al. Sedimentary tectonic evolution of the southwestern Tarim Basin and west Kunlun orogen since late Paleozoic[J]. Acta Petrologica Sinica, 2009, 25(12): 3396-3406. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200912025

    [21]

    Wang Z. Tectonic evolution of the western Kunlun orogenic belt, western China[J]. Journal of Asian Earth Sciences, 2004, 24(2): 153-161. doi: 10.1016/j.jseaes.2003.10.007

    [22]

    Xiao W, Windley B, Hao J, et al. Arc-ophiolite obduction in the Western Kunlun Range (China): implications for the Palaeozoic evolution of central Asia[J]. Journal of the Geological Society, 2002, 159(13): 517-528. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200212001058.htm

    [23]

    Yin A, Rumelhart P E, Butler R, et al. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation[J]. Geological Society of America Bulletin, 2002, 114(114): 1257-1295. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=31db3d694f4205f4d62d5999f2fd2363

    [24]

    Cao K, Wang G C, Bernet M, et al. Exhumation history of the West Kunlun Mountains, northwestern Tibet: Evidence for a long-lived, rejuvenated orogen[J]. Earth Planetary Sciences Letters, 2015, 432: 391-403. doi: 10.1016/j.epsl.2015.10.033

    [25]

    Arnaud N O, Brunel M, Cantagrel J M, et al. High cooling and denudation rates at Kongur Shan, Eastern Pamir (Xinjiang, China) revealed by 40Ar/39Ar alkali feldspar thermochronology[J]. Tectonics, 1993, 12(6): 1335-1346. doi: 10.1029/93TC00767

    [26]

    Wang E, Wan J, Liu J, et al. Late Cenozoic geological evolution of the foreland basin bordering the West Kunlun range in Pulu area: Constraints on timing of uplift of northern margin of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(8):1-15. http://www.researchgate.net/publication/248802843_Late_Cenozoic_geological_evolution_of_the_foreland_basin_bordering_the_West_Kunlun_range_in_Pulu_area_Constraints_on_timing_of_uplift_of_northern_margin_of_the_Tibetan_Plateau?ev=auth_pub

    [27]

    Zheng H, Powell C M, An Z, et al. Pliocene uplift of the northern Tibetan Plateau[J]. Geology, 2000, 28(8): 715-718. doi: 10.1130/0091-7613(2000)28<715:PUOTNT>2.0.CO;2

    [28]

    Sun J, Zhang L, Deng C, et al. Evidence for enhanced aridity in the Tarim Basin of China since 5.3Ma[J]. Quaternary Science Reviews, 2008, 27(9): 1012-1023. http://www.sciencedirect.com/science/article/pii/S0277379108000310

    [29]

    Sun J, L Tungsheng. The Age of the Taklimakan Desert[J]. Science, 2006, 312(5780): 1621. doi: 10.1126/science.1124616

    [30]

    Robinson A C. Mesozoic tectonics of the Gondwanan terranes of the Pamir Plateau[J]. Journal of Asian Earth Sciences, 2015, 102:170-179. doi: 10.1016/j.jseaes.2014.09.012

    [31]

    Searle M P, Windley B F, Coward M P, et al. The closing of Tethys and the tectonics of the Himalaya[J]. Geological Society of America Bulletin, 1987, 98(6): 678-701. doi: 10.1130/0016-7606(1987)98<678:TCOTAT>2.0.CO;2

    [32]

    Zeitler P K. Cooling history of the NW Himalaya, Pakistan[J]. Tectonics, 1985, 4(4): 127-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/TC004i001p00127

    [33]

    Amidon W H, Hynek S A. Exhumational history of the north central Pamir[J]. Tectonics, 2010, 29(5):1-13. doi: 10.1029-2009TC002589/

    [34] 刘浪涛, 陈杰, 李涛.帕米尔、南天山及其会聚带现代河流沉积物碎屑锆石U-Pb测年[J].地震地质, 2017, 39(3): 497-516. doi: 10.3969/j.issn.0253-4967.2017.03.005

    LIU Langtao, CHEN Jie, LI Tao. Detrital zircon U-Pb dating of modern rivers' deposits in Pamir, south Tian Shan and their convergence zone[J].Seismology and Geology, 2017, 39(3): 497-516. doi: 10.3969/j.issn.0253-4967.2017.03.005

    [35]

    Sobel E R, Chen J, Schoenbohm L M, et al. Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen[J]. Earth and Planetary Science Letters, 2013, 363(2): 204-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c96bd3c01a444badeaadb8b4fcaf269c

    [36]

    Fu B, Ninomiya Y, Guo J. Slip partitioning in the northeast Pamir-Tian Shan convergence zone[J]. Tectonophysics, 2010, 483(3-4): 344-364. doi: 10.1016/j.tecto.2009.11.003

    [37]

    Thompson J, Burbank W, Li T, et al. Late Miocene northward propagation of the northeast Pamir thrust system, northwest China[J]. Tectonics, 2015, 34: 510. doi: 10.1002/2014TC003690

    [38]

    Sun J, Liu W, Liu Z, et al. Extreme aridification since the beginning of the Pliocene in the Tarim Basin, western China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 189-200. doi: 10.1016/j.palaeo.2017.06.012

    [39] 何登发.塔里木盆地构造演化与油气聚集[M].地质出版社, 1996.

    HE Dengfa. Tarim basin tectonic evolution and oil-gas accumulation[M]. Geological publishing house, 1996.

    [40]

    Sobel E R. Basin analysis and apatite fission-track thermochronology of the Jurassic-Paleogene southwest Tarim basin, NW China[D]. Stanford University, 1995.

    [41] 崔军文, 郭宪璞, 丁孝忠, 等.西昆仑-塔里木盆地盆-山结合带的中新生代变形构造及其动力学[J].地学前缘, 2006, 13(4): 103-118. doi: 10.3321/j.issn:1005-2321.2006.04.009

    CUI Junwen, GUO Xianpu, DING Xiaozhong, et al. Mesozoic-Cenozoic deformation structures and their dynamics in the basin-range junciton belt of the west Kunlun-Tarim basin. Earth Science Frontiers, 2006, 13(4): 103-118. doi: 10.3321/j.issn:1005-2321.2006.04.009

    [42] 潘裕生.喀喇昆仑山-昆仑山地区地质演化[M].北京:科学出版社, 2000.

    PAN Yusheng. Geological Evolution Karakoram and Kunlun Mountains Area[M]. Beijing: Science Press, 2000.

    [43] 丁道桂, 罗月明.帕米尔地区碰撞构造与塔里木盆地的改造[J].石油与天然气地质, 2005, 26: 57-63. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz200501009

    DING Daogui, LUO Yueming. Collision structures in Pamir region and reformation of Tarim Basin[J].Oil and Gas Geology, 2005, 26: 57-63. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz200501009

    [44] 丁道桂.西昆仑造山带与盆地[M].地质出版社, 1996.

    DING Daogui. The Western Kunlun Orogenic Belt and Tarim Basin[M].Geological Publishing House, 1996.

    [45]

    Suess E. Are great ocean depths permanent[J]. National Science, 1893, 2: 180-187.

    [46] 孙东怀, 王鑫, 李宝锋, 等.新生代特提斯海演化过程及其内陆干旱化效应研究进展[J].海洋地质与第四纪地质, 2013, 33(4): 135-151. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=6ec1496a-48a3-42af-b720-42274e133768

    SUN Donghuai, WANG Xin, LI Baofeng, et al. Evolution of Cenozoic tethys and its environmental effects on inland drought[J]. Marine Geology & Quaternary Geolgoy, 2013, 33(4): 135-151. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=6ec1496a-48a3-42af-b720-42274e133768

    [47]

    DeCelles P G, Giles K A. Foreland basin systems[J]. Basin Research, 1996, 8(2): 105-123. doi: 10.1046/j.1365-2117.1996.01491.x

    [48] 刘和甫.盆地-山岭耦合体系与地球动力学机制[J].地球科学, 2001 26: 581-596. doi: 10.3321/j.issn:1000-2383.2001.06.005

    LIU Hefu. Geodynamic scenario of coupled basin and mountain system[J]. Earth Science, 2001 26: 581-596. doi: 10.3321/j.issn:1000-2383.2001.06.005

    [49]

    Kao H, Gao R, Rau R J, et al. Seismic image of the Tarim basin and its collision with Tibet[J]. Geology, 2001, 29(7): 575-578. doi: 10.1130/0091-7613(2001)029<0575:SIOTTB>2.0.CO;2

    [50]

    Lyon-Caen H, Molnar P. Gravity anomalies and the structure of western Tibet and the southern Tarim Basin[J]. Geophysical Research Letters, 1984, 11(12): 1251-1254. doi: 10.1029/GL011i012p01251

    [51]

    Gao R, Huang D, Lu D, et al. Deep seismic reflection profile across the juncture zone between the Tarim Basin and the West Kunlun Mountains[J]. Chin. Sci. Bull, 2000, 45(24): 2281-2286. doi: 10.1007/BF02886369

    [52]

    Wittlinger G, Vergne J, Tapponnier P, et al. Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet[J]. Earth Planetary Science Letters, 2004, 221(1-4): 117-130. doi: 10.1016/S0012-821X(03)00723-4

    [53] 贾承造.中国塔里木盆地构造特征与油气[M].石油工业出版社, 1997.

    JIA Chengzao. Tectonic characteristics and petroleum Tarim Basin China[M]. Petroleum Industry Press, 1997.

    [54] 阳怀忠.塔里木盆地中央隆起带隆坳格局变迁及其构造控制机制分析[D].中国地质大学, 2010. http://cdmd.cnki.com.cn/article/cdmd-10491-2010250512.htm

    YANG Huaizhong. Research on Uplift-Depression framework evolution and its tectonic control Mechanism in the Central uplift Belt, Tarim Basin[D]. China Univertisy of Geosciences, 2010. http://cdmd.cnki.com.cn/article/cdmd-10491-2010250512.htm

    [55]

    Cowgill E. Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China[J]. Geological Society of America Bulletin, 2010, 122(1): 145-161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e555d5eb72135b458b7ef93b0952e420

    [56]

    Liu D, Li H, Sun Z, et al. Cenozoic episodic uplift and kinematic evolution between the Pamir and Southwestern Tien Shan[J]. Tectonophysics, 2017, 712-713(21):438-454. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3e452593c02b0ca05f9e1b1adfc68adc

    [57]

    Jiang X, Li Z X, Li H. Uplift of the West Kunlun Range, northern Tibetan Plateau, dominated by brittle thickening of the upper crust[J]. Geology, 2013, 41(4): 439-442. doi: 10.1130/G33890.1

    [58]

    Hu J Z, Tan Y J, Zhang P, et al. Structural features of Cenozoic thrust-fault belts in the piedmont of southwestern Tarim basin[J]. Earth Science Frontiers, 2008, 15(2): 222-231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200802025

    [59]

    Ding X Z, Lin C S, Liu J Y, et al. The sequence stratigraphic response to the basin-orogene coupling process of Cretaceous-Neogene in Tarim Basin, China[J]. Earth Science Frontiers, 2011, 18(4):144-157. http://d.old.wanfangdata.com.cn/Periodical/dxqy201104012

    [60]

    Sun J, Windley B F, Zhang Z, et al. Diachronous seawater retreat from the southwestern margin of the Tarim Basin in the late Eocene[J]. Journal of Asian Earth Sciences, 2016, 116: 222-231. doi: 10.1016/j.jseaes.2015.11.020

    [61]

    Bosboom R, Dupont-Nivet G, Grothe A, et al. Timing, cause and impact of the late Eocene stepwise sea retreat from the Tarim Basin (west China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 403(2): 101-118. http://www.sciencedirect.com/science/article/pii/S0031018214001709

    [62]

    Bosboom R, Dupont-Nivet G, Mandic O, et al. Late Eocene paleogeography of the Proto-Paratethys Sea in Central Asia (NW China, S Kyrgyzstan and SW Tajikistan)[J]. Geological Society London Special Publications, 2015, 34: 743-746. http://www.researchgate.net/publication/281330940_Late_Eocene_paleogeography_of_the_Proto-Paratethys_Sea_in_Central_Asia_NW_China_S_Kyrgyzstan_and_SW_Tajikistan

    [63]

    Carrapa B, Decelles P G, Wang X, et al. Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia[J]. Earth Planetary Science Letters, 2015, 424:168-178. doi: 10.1016/j.epsl.2015.05.034

    [64]

    Bosboom R. Paleogeography of the Central Asian Proto-Paratethys Sea in the Eocene[D]. 2013.

    [65]

    Burtman V S. Cenozoic crustal shortening between the Pamir and Tien Shan and a reconstruction of the Pamir-Tien Shan transition zone for the Cretaceous and Palaeogene[J]. Tectonophysics, 2000, 319(2): 69-92. doi: 10.1016/S0040-1951(00)00022-6

    [66]

    Zachos J P, Mark Sloan, Lisa Thomas, et al. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present[J]. Science, 2001, 292(5517): 686-693. doi: 10.1126/science.1059412

    [67]

    Jin X, Wang J, Chen B, et al. Cenozoic depositional sequences in the piedmont of the west Kunlun and their paleogeographic and tectonic implications[J]. Journal of Asian Earth Sciences, 2003, 21(7): 755-765. doi: 10.1016/S1367-9120(02)00073-1

    [68]

    Bazhenov, M. L., Burtman, V, S. Tectonics and paleomagnetism of structural arcs of the Pamir-Punjab syntaxis[J]. Journal of geodynamics, 1986, 5(3-4): 383-396. doi: 10.1016/0264-3707(86)90017-7

    [69]

    Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic (250 million years ago to present)[J]. Science, 1987, 235: 1156-1167. doi: 10.1126/science.235.4793.1156

    [70]

    Sippl C, Schurr B, Yuan X, et al. Geometry of the Pamir-Hindu Kush intermediate-depth earthquake zone from local seismic data[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(4):1438-1457. doi: 10.1002/jgrb.50128

    [71]

    Negredo A M, Replumaz A, Villaseñor A, et al. Modeling the evolution of continental subduction processes in the Pamir-Hindu Kush region[J]. Earth and Planetary Science Letters, 2007, 259(1): 212-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=61398dd57a9627c1cbd3a58ca0cb6900

    [72]

    Yu L. The Huanghe (Yellow) River: Recent changes and its countermeasures[J]. Continental Shelf Research, 2006, 26 (1): 2281-2298. http://www.sciencedirect.com/science/article/pii/S0278434306002457

  • 期刊类型引用(4)

    1. 刘帆,程志国,郭祝芳,冀文涛. 西南天山托云盆地古近纪熔积岩成因及其古环境意义. 现代地质. 2025(01): 46-61 . 百度学术
    2. 林旭,吴中海,董延钰,谢远云,刘海金,李兆宁. 新生代亚洲季风的演化过程. 地质力学学报. 2024(04): 673-690 . 百度学术
    3. 王红太,周金龙,曾妍妍,魏兴. 喀什噶尔河流域平原区地下水灌溉适宜性评价. 环境科学与技术. 2021(03): 226-236 . 百度学术
    4. 席党鹏,唐自华,王雪娇,覃祚焕,曹文心,江湉,吴宝旭,栗源浩,张赢月,姜文彬,KAMRAN Muhammad,方小敏,万晓樵. 塔里木盆地西部白垩纪—古近纪海相地层框架及对重大地质事件的记录. 地学前缘. 2020(06): 165-198 . 百度学术

    其他类型引用(2)

图(7)
计量
  • 文章访问数:  2570
  • HTML全文浏览量:  471
  • PDF下载量:  33
  • 被引次数: 6
出版历程
  • 收稿日期:  2017-06-02
  • 修回日期:  2017-09-27
  • 刊出日期:  2019-06-27

目录

/

返回文章
返回