鸭绿江端元粒度分级样品常量元素控制因素分析及物源识别

方海超, 黄朋, 孙家文, 于永海, 李安春

方海超, 黄朋, 孙家文, 于永海, 李安春. 鸭绿江端元粒度分级样品常量元素控制因素分析及物源识别[J]. 海洋地质与第四纪地质, 2019, 39(3): 72-83. DOI: 10.16562/j.cnki.0256-1492.2018053001
引用本文: 方海超, 黄朋, 孙家文, 于永海, 李安春. 鸭绿江端元粒度分级样品常量元素控制因素分析及物源识别[J]. 海洋地质与第四纪地质, 2019, 39(3): 72-83. DOI: 10.16562/j.cnki.0256-1492.2018053001
FANG Haichao, HUANG Peng, SUN Jiawen, YU Yonghai, LI Anchun. Provenance and controlling factors of major elements in graded components of sediments from the Yalu River[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 72-83. DOI: 10.16562/j.cnki.0256-1492.2018053001
Citation: FANG Haichao, HUANG Peng, SUN Jiawen, YU Yonghai, LI Anchun. Provenance and controlling factors of major elements in graded components of sediments from the Yalu River[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 72-83. DOI: 10.16562/j.cnki.0256-1492.2018053001

鸭绿江端元粒度分级样品常量元素控制因素分析及物源识别

基金项目: 

“末次盛冰期黄海陆架气候变化的钙质结核硼-碳-氧同位素记录” 41276052

国家海洋公益性行业专项 201405025

国家自然科学基金项目:“末次冰消期以来北黄海‘源’-‘汇’系统演化及其对海平面变化的响应” 41076032

详细信息
    作者简介:

    方海超(1986—),男,硕士,工程师,主要从事海洋沉积学研究,E-mail:hcfang@nmemc.org.cn

    通讯作者:

    孙家文(1983—),男,博士,副研究员,主要从事海岸动力地貌学研究,E-mail:jwsun@nmemc.org.cn

  • 中图分类号: P736.21

Provenance and controlling factors of major elements in graded components of sediments from the Yalu River

  • 摘要: 对鸭绿江河口表层沉积物陆源组分进行了水动力敏感粒度分级,以消弱“粒度效应”对沉积物地球化学组成的影响。通过多元统计方法,对不同粒级样品内常量元素含量特征、控制因素、源区特征等内容进行了探讨,并与全样测试结果进行对比分析。结果表明:源区化学风化程度是控制常量元素分布的主要因素,“粒度效应”和表生环境下的自生作用对常量元素的分布也有一定的控制作用,但“粒度效应”主要控制8μm以下样品内元素分布;源区目前处于以斜长石风化为主的中等化学风化程度阶段,风化产物未遭受钾交代影响;Al2O3、Fe2O3、MgO、MnO、TiO2、P2O5六种元素在>63μm、32~63μm和8~32μm 3个粒级内含量相近,8μm以下样品随粒级减小元素含量显著增加,CaO、Na2O两种元素在各粒级内含量分布特征与上述6种元素相反,高K2O含量且未受“粒度效应”控制,可作为鸭绿江端元的指示性元素。根据流域岩性特征分析,>2μm粒级样品可能主要来自鸭绿江中下游地区变质基底和花岗质侵入体的风化产物;而 < 2μm粒级样品则可能主要来自鸭绿江上游地区基性侵入体的风化产物。此外,对比分析还表明,全样测试结果仅相当于分粒级样品的均值水平,极大地掩盖了不同粒级内元素地球化学特征的差异性和规律性。因此,在利用全样地球化学特征进行物源示踪时需综合考虑。
    Abstract: Terrigenous surface sediments taken from the Yalu River estuary were separated into grades in order to reduce the control of grain size on sediment geochemistry. With the statistical method for multivariate, major elements content, controlling factors and provenance characteristics of samples were discussed grade by grade in this paper, compared with the original testing data for bulk samples. The results show that the chemical weathering intensity in the provenance is the major factor controlling the distribution patterns of major elements. Grain size and authigenesis also play certain roles in control over the distribution patterns of elements in the samples smaller than 8μm. The provenance is now suffering from moderate chemical weathering characterized by the weathering of plagioclase and never affected by potassium replacement. The differences in Al2O3、Fe2O3、MgO、MnO、TiO2、P2O5 contents in the fractions >63μm、32~63μm and 8~32μm are rather small, but increased significantly in the fraction smaller than 8μm. The contents of CaO and Na2O in each fraction are opposite to those of the above six elements, suggesting the consistency of lithology of provenance rocks. The K2O, which can be used as an indicative element, remains high in each grain fraction. According to the lithologic characteristics of provenance, the components >2μm are mainly coming from metamorphic basement and granitic intrusive rocks at the middle and lower reaches, while the components < 2μm are mainly from the weathering products of basic intrusive rocks from the upper reach. Comparative analysis also suggests that the original bulk sample test results are close to the average of graded samples. As the result, the differences and change trend of geochemical characteristics between grades are hard to be observed. Therefore, integrated consideration is required in case the original geochemical data of bulk samples are used to trace the provenance.
  • 西湖凹陷是东海陆架盆地油气资源最丰富的凹陷,目前已发现油气田主要集中于中央反转带和西部斜坡带。随着勘探程度加深,勘探目标由构造油气藏向构造-岩性复合油气藏转变[1],油气充满度是影响勘探成败的重要因素,因此,油气来源及运移方向刻画在油气成藏研究中愈加重要。宝武区某中型气田的发现证实了西部斜坡带平北区构造-岩性复合油气藏具有很大勘探潜力[1],孔雀亭区亟待突破。前人对孔雀亭区烃源岩特征、油气成因及成藏条件研究认为,圈闭类型及盖层发育程度是本区油气成藏的主控因素[2-4],但精细化油源对比及油气运移方向研究不够深入,难以满足现阶段油气勘探需求。本文通过烃源岩生标特征精细化分析和天然气成熟度计算,开展油气源对比厘定油气来源,并在油气地化参数分析基础上进行油气运移效应研究,梳理油气运移方向,以期对孔雀亭区油气勘探提供支持。

    西湖凹陷是晚白垩世末期构造背景上发育的新生代沉积凹陷,位于东海陆架盆地中北部,是盆地内最大的含油气凹陷,演化过程经历断陷、拗陷和区域沉降3个阶段,可划分为5个构造带:西部斜坡带、西次凹、中央反转带、东次凹及东部断阶带(图1)。凹陷内以新生代碎屑沉积为主,自下而上发育始新统八角亭组、宝石组、平湖组,渐新统花港组,中新统龙井组、玉泉组和柳浪组,上新统三潭组以及第四系东海群(图2)。孔雀亭位于平湖斜坡带中北部地区鼻状隆起带上,其西靠海礁凸起,东邻西次凹,油气藏类型以断块、断鼻和断背斜为主。

    图  1  孔雀亭区域构造位置图
    Figure  1.  Tectonic map of the Xihu Sag and the location of Kongqueting area
    图  2  西湖凹陷地层综合柱状图
    Figure  2.  The stratigraphic column of Xihu Sag

    平湖组和宝石组是西湖凹陷主要烃源层段[5-9]。孔雀亭区平湖组烃源岩为受潮汐影响三角洲及潮坪沉积的一套煤系地层[10-11],岩性包括泥岩、碳质泥岩和煤;宝石组为滨—浅海环境下形成的一套灰色泥岩。煤是西湖凹陷重要的生烃母质,有机质类型好于泥岩[812],主要分布在平湖组地层,花港组及宝石组煤层发育规模较小[13]。孔雀亭不同部位钻井横向油气富集程度差异大,同一钻井纵向流体性质也不相同,揭示了研究区油气成藏复杂[3]

    孔雀亭区已钻遇含油气层段包括凝析气层、油层和气层,其中凝析气占探明储量60%左右,原油占比约20%。油气层大多集中于平湖组中、上段,少量分布于花港组,纵向呈现“上油下气”特征,横向呈现自东向西气层厚度和探明储量逐渐降低的趋势。原油密度较低,分布于0.75~0.86 g/cm3,平均值约0.82 g/cm3;含硫量都低于0.1%;含蜡量差别较大,分布于0.07%~19.53%(表1),整体以低密度、低硫、低原油为主,个别样品高含蜡。天然气主要分布在平湖组中段,少量分布于平湖组下段,气组分主要以烃类为主,甲烷占比73%~92%,属于湿气(表2)。非烃气主要以二氧化碳和氮气为主,含量低于10%。甲烷碳同位素分布于−37.8‰~−28.2‰,乙烷碳同位素分布于−28.4‰~−22.7‰,按照乙烷碳同位素母质遗传性,以−29‰为划分标准[14],本区天然气属于煤型气。

    表  1  西湖凹陷孔雀亭区原油物性统计
    Table  1.  Oil parameters from Kongqueting area
    井名深度/m密度/ (g/cm3凝固点/℃硫含量/%蜡含量/%
    G241500.842290.102.11
    Z24107.50.8248150.063.14
    Z241860.8152140.073.08
    Z141830.816750.043.27
    Z14548.70.8606290.0710.54
    G13542.60.8345140.0417.91
    G13565.60.8239170.0619.53
    G13810.20.7487−300.060.07
    D239490.8380−3400
    D24317.40.8443120.049.50
    D243330.8390−320.070
    G326470.831550.0212.00
    G330990.8105−10.017.70
    下载: 导出CSV 
    | 显示表格
    表  2  西湖凹陷孔雀亭区天然气组分及同位素统计
    Table  2.  Natural gas parameters from Kongqueting area
    井号深度/m组分/%同位素/‰iC4H10/nC4H10N2/C2H6成熟度%
    CH4C2H6C3H8iC4H10nC4H10iC5H12nC5H12N2CO2CH4C2H6C3H8C4H10
    G1354283.527.612.420.490.370.110.042.982.451.320.39
    G1356579.038.683.540.960.580.230.074.192.721.660.48
    G1381075.9610.335.701.800.700.250.121.703.402.570.16
    G2415089.14.480.630.160.100.050.030.365.00−37.1−22.7−20.8−21.71.600.080.79
    G4409379.438.382.841.040.650.280.200.596.29−34.6−25.3−24.5−25.41.600.071.02
    Z2411181.027.353.030.740.640.220.160.456.19−37.8−27.2−25.4−24.61.160.060.73
    Z2418681.427.292.970.720.620.220.160.186.19−28.2−23.8−23.7−23.31.160.021.97
    Z1418385.516.282.300.590.510.180.130.204.11−35.4−25.7−24.4−24.81.160.030.94
    Z1454873.208.435.831.681.400.490.310.577.79−37.7−27.6−26.3−26.21.200.070.74
    D1419889.825.511.660.440.330.140.0901.99−33.4−26.3−24.3−23.11.3201.16
    D1481092.055.381.510.360.360.170.120.020−33.6−28.4−27.1−22.71.0101.14
    下载: 导出CSV 
    | 显示表格

    厘定油气来源是准确刻画油气运移方向的基础,油气层周围、平湖组下部、宝石组及毗邻的西次凹等都属于有效供烃源岩[4],本地烃源岩处于生油阶段,西次凹烃源岩处于生气阶段[12]

    孔雀亭区平湖组中下段沉积时期属亚热带气候,高等植物和浮游生物发育,有机质生产率高,且较弱水动力条件下还原-弱还原、咸水-微咸水水介质有效保存了沉积有机质,优质烃源岩广泛发育[12];平湖组上段以河湖相为主,烃源岩发育相对较差。有机岩石学分析显示平湖组煤层样品和泥岩样品显微组分都以富含镜质组、贫惰质组,含有一定比例的壳质组和腐泥组为特征[15],不同显微组分随热演化程度增加相对含量随之变化,难以区分不同层段间烃源岩差异。生物标志化合物保留了生物有机质的原始信息,且在后期演化过程碳骨架结构中相对稳定,是烃源岩精细化对比研究的重要手段,常被用于油油对比和油岩对比[16]。由于海陆过渡相地层有机质生源变化快,纵向泥岩和煤的互层分布导致源岩生标参数非均质性强,且海上钻井取心成本高,烃源岩岩心样品不能满足大量数据统计分析条件,因此,本文从单井烃源岩岩屑生标特征入手,寻找不同层段间各生标参数变化规律,采用各层段烃源岩样品生标参数平均值代表不同层段烃源岩的整体特征,以降低地层非均质性对烃源岩判识带来的误差。

    G2井烃源岩岩屑样品深度包含从平湖组到宝石组所有层段,是单井生标参数纵向对比分析的最优选择(图3)。C27规则甾烷代表水生生物对沉积有机质的贡献,C29规则甾烷代表陆源高等植物贡献,常用规则甾烷C27/C29ααα20R比值反映有机质母源特征[16],G2井岩屑样品规则甾烷C27/C29ααα20R比值小于1.0占主体,表明有机质母源以陆源高等植物为主。规则甾烷C27/C29ααα20R比值随埋深增加呈先减小后增加趋势,最低值出现在3800 m深度,揭示3000~3800 m陆源高等植物对有机质贡献逐渐增加,水生生物减少;3800 m以下水生生物对有机质贡献开始增加,最大值可达到1.0以上。藿烷中Ts/Tm参数常用来表征烃源岩成熟度,前人依据该参数比值变化范围大推测原油可能来自不同层段[15],但该参数同时受有机质来源影响较大[16]。G2井烃源岩3800 m以浅Ts/Tm比值显示该参数并没有随埋深增加而增加,表明受成熟度影响较小;Ts/Tm比值与规则甾烷C27/C29ααα20R比值变化趋势一致(图3),随深度呈先减小后增加变化规律,表明有机母质来源对本区Ts/Tm比值变化影响更大。G2井不同层段间煤层厚度统计结果显示,平湖组上、中、下段煤层累计厚度分别为13、40和12.5 m,平中段煤层最发育,对应规则甾烷C27/C29ααα20R比值及Ts/Tm比值的最低点,揭示不同层段间煤层发育差异是影响该参数变化的主要原因。为进一步验证煤层对生标参数的影响,选择平北斜坡带X井同深度煤岩和泥岩岩心样品进行生标参数对比,结果显示煤岩与泥岩生标存在较大差别,与泥岩相比煤岩具有相对高C29规则甾烷、低Ts和低伽马蜡烷特征(图4),因此,规则甾烷C27/C29ααα20R比值、Ts/Tm比值及伽马蜡烷含量能够区分不同层段烃源岩,可作为孔雀亭区油源对比有效参数。同时,重排甾烷及C24四环萜等化合物相对含量也都指示平湖组中段陆源高等植物较其他层位发育。

    图  3  G2井烃源岩生标特征随深度变化图
    Figure  3.  Variation of biomarkers with depth, from well G2
    图  4  西湖凹陷泥岩与煤生标特征对比
    Figure  4.  Biomarkers of coal and mudstone from m/z217 and m/z191 of the Xihu sag

    基于以上特征生标参数,孔雀亭区烃源岩在垂向上大致可划分为两类(表3图5),第1类包括平上段和宝石组烃源岩,以相对较高Ts/Tm(>0.4)、规则甾烷C27/C29ααα20R比值>0.8和伽马蜡烷/C30藿烷比值>0.1为特征,呈现少煤、水生生物贡献相对丰富的有机母质构成和较深的沉积水体环境;第2类包括平中段和平下段烃源岩,以相对较低Ts/Tm(<0.4)、规则甾烷C27/C29ααα20R比值<0.4和伽马蜡烷/C30藿烷比值<0.1为特征,呈现多煤、陆源高等植物贡献相对丰富的有机母质构成和较浅的沉积水体环境。此外,烃源岩成熟度参数显示,平湖组上段烃源岩C29甾烷ββ/(αα+ββ)和20S/20(R+S)比值都在0.4以下(表3),表明烃源岩演化程度较低,尚未进入成熟门限,对原油贡献少;平湖组中段烃源岩样品成熟度略高于平湖组上段,仅平中段下部进入生油门限,对原油贡献有限;平下段和宝石组烃源岩已达到成熟阶段,处于生油高峰期。因此,通过成熟度参数可进一步将两类烃源岩中不同层段加以区分。需要说明的是沿斜坡延伸方向构造相对低部位烃源岩埋深大,演化程度高于高部位同层段烃源岩,平上段和平中段烃源岩部分进入生油阶段(如D2井),对原油具有一定贡献。

    表  3  孔雀亭区烃源岩与原油生标参数统计
    Table  3.  Biomarker of source rock and oil from Kongqueting area
    样品类型甾烷C27/
    C29ααα20R
    Ts/Tm伽马蜡烷/
    C30藿烷
    C29/C30
    藿烷
    C29重排甾
    烷/C29
    则甾烷
    C24四环萜/
    C23三环萜
    C29甾烷ββ/
    (αα+ββ)
    C29甾烷20S/20
    (R+S)
    C31藿烷S/
    (S+R)
    运移效应
    烃源岩平上段0.79(14)
    0.25~2.01
    0.96(13)
    0.01~2.66
    0.18(13)
    0.01~0.83
    0.7(12)
    0.26~2.17
    0.12(14)
    0.01~0.24
    0.75(6)
    0.24~1.50
    0.39(14)
    0.25~0.50
    0.38(14)
    0.17~0.50
    0.53(14)
    0.36~0.57
    平中段0.24(16)
    0.01~0.54
    0.37(16)
    0.05~1.49
    0.07(16)
    0.01~0.20
    0.78(16)
    0.46~1.22
    0.18(16)
    0.12~0.26
    0.95(13)
    0.36~3.44
    0.36(16)
    0.24~0.53
    0.42(16)
    0.28~0.49
    0.56(16)
    0.52~0.59
    平下段0.39(4)
    0.15~0.71
    0.33(4)
    0.15~0.56
    0.05(2)
    0.09~0.10
    0.65(4)
    0.61~0.69
    0.16(4)
    0.12~0.21
    1.03(2)
    0.43~1.68
    0.45(4)
    0.43~0.48
    0.46(4)
    0.45~0.47
    0.56(4)
    0.54~0.57
    宝石组0.83(2)
    0.70~0.95
    0.82(2)
    0.76~0.88
    0.14(2)
    0.12~0.15
    0.56(2)
    0.55~0.57
    0.19(2)
    0.19~0.20
    0.25(2)
    0.27~0.24
    0.43(2)
    0.42~0.43
    0.45(2)
    0.46~0.44
    0.5(2)
    0.48~0.52
    原油G20.31(1)0.08(1)0.62(1)0.53(1)
    Z20.91(2)
    0.89~0.94
    1.16(2)
    1.16~1.16
    0.08(2)
    0.08~0.08
    0.63(2)
    0.61~0.65
    0.17(2)
    0.16~0.17
    0.56(2)
    0.56~0.56
    0.45(2)
    0.44~0.46
    0.55(2)
    0.55~0.55
    26.19(2)
    23.22~29.31
    Z10.65(2)
    0.54~0.77
    0.86(2)
    0.77~0.94
    0.08(2)
    0.07~0.09
    0.61(2)
    0.55~0.67
    0.17(2)
    0.16~0.18
    0.55(2)
    0.54~0.56
    0.44(2)
    0.44~0.45
    0.55(2)
    0.54~0.56
    24.05(2)
    21.53~26.62
    D20.67(2)
    0.65~0.69
    0.51(2)
    0.49~0.53
    0.21(2)
    0.21~0.21
    0.68(2)
    0.66~0.70
    0.13(2)
    0.12~0.13
    0.21(2)
    0.21~0.21
    0.41(2)
    0.39~0.42
    0.41(2)
    0.40~0.42
    0.53(2)
    0.53~0.54
    ~0.59(2)
    ~1.89~0.64
    G30.74(3)
    0.67~0.85
    0.52(3)
    0.36~0.70
    0.08(3)
    0.05~0.11
    0.60(3)
    0.55~0.65
    0.21(3)
    0.21~0.22
    0.27(3)
    0.15~0.50
    0.53(3)
    0.52~0.54
    0.47(3)
    0.45~0.49
    0.56(3)
    0.55~0.56
    11.39(3)
    8.14~21.03
      注:运移效应=参数(C29甾烷ββ/(αα+ββ)−C29甾烷20S/20(R+S))×100/ C29甾烷20S/20(R+S);数据格式: 平均值(样品数量)/最小值-最大值。
    下载: 导出CSV 
    | 显示表格
    图  5  孔雀亭区烃源岩与原油饱和烃色谱质谱特征
    Figure  5.  GC-MS characteristics of saturated hydrocarbon of source rock and oil from Kongqueting area

    孔雀亭区原油生标特征整体相似(表3图6),属于同一组群。其中,规则甾烷C27/C29ααα20R比值主要分布于0.6~0.91,表明有机母质来源具有陆源高等植物和水生生物共同贡献,与第1类烃源岩(平上段和宝石组)有机质母源构成相近;原油Ts/Tm比值普遍高于0.5,与第1类烃源岩特征相符,揭示煤层对原油贡献不显著,但随着烃源岩进入成熟阶段,热演化对Ts/Tm比值的影响更加显著,表现为随演化程度增加Ts/Tm比值增加,因此,综合其他参数认为孔雀亭区原油以第1类烃源岩贡献为主,同时有部分第2类烃源岩混入(图5)。结合原油成熟度参数C29甾烷ββ/(αα+ββ)和20S/20(R+S)比值都在0.4以上,高于平上段烃源岩,表明宝石组是原油的主要贡献层段,其次为平下段,而平中段和平上段贡献较少。

    图  6  孔雀亭区烃源岩与原油生标参数交会图
    Figure  6.  Correlation of biomarkers from source rocks and the oil from Kongqueting area

    甲烷碳同位素是指示气源岩热演化程度的有效指标[17],孔雀亭区天然气甲烷碳同位素数值变化范围较大,乙烷碳同位素都在−28‰以下(表2),表明天然气母源一致但成熟度范围较宽。采用刘文汇提出的煤型气甲烷碳同位素二阶演化分馏公式计算天然气成熟度[17],结果显示存在两类天然气:一类为少量中等成熟度天然气(Ro<0.9%),另一类为高成熟天然气(Ro>0.9%)。现今孔雀亭区平湖组下段和宝石组烃源岩处于中等成熟度阶段,干酪根镜质体反射率Ro<1.0%,生气量较少;西次凹平湖组源岩已进入高演化阶段,Ro>1.3%,处于主生气阶段[18]。因此,基于孔雀亭区和西次凹烃源岩有机质演化程度差异,初步推测本区少量中等成熟天然气来源于本地烃源灶,而相对较高成熟度的天然气来源于西次凹平湖煤系烃源岩,且两者发生混合,前人基于含油饱和度和储层孔隙度的相关性研究也证实了以上结论[3]

    油气地化参数是表征油气运移效应的重要指标,其原理主要基于两个方面,一是有机质生烃演化规律:烃源岩演化早期生成油气成熟度较低,运移时间早、距离远,演化后期生成油气成熟度高,运移时间晚、距离近,因此,成熟度差异可指示油气运移方向;二是流体在地层运移过程中的分馏效应:不同分子量化合物、相同分子量不同构型的化合物因极性差异导致在地层中的运移速度不同,非极性化合物受围岩影响弱、运移速度快,强极性化合物受围岩影响大、运移速度慢,不同化合物间相对含量的变化可指示油气运移方向。

    孔雀亭区原油成熟度参数甾烷C2920S/20(R+S)分布于0.4~0.49(表3),其中,D2原油比值在0.42以下,成熟度最低;Z2和Z1原油成熟度相当,比值分布于0.44~0.46;G3井原油成熟度最高,其中2861.9 m深度样品成熟度与Z2和Z1井类似,C29甾烷20S/20(R+S)比值为0.45,其余两个样品成熟度参数分别为0.48、0.49。勘探证实宁波8洼是孔雀亭区坡内供油次洼,依据原油成熟度参数推测宁波8洼烃源岩低演化阶段形成原油首先在D2井聚集成藏,中期形成的相对高成熟原油向Z2、Z1井方向以及G3井方向运移,而演化中后期形成的高成熟原油主要向G3井方向运移。其他成熟度参数如藿烷C31S/(S+R)也具有相似变化规律,而Ts/Tm由于受有机质母源影响其规律性不明显(表3)。

    甾烷C29ββ/(αα+ββ)比值除受成熟度影响外,运移距离也是重要因素,而C29甾烷20S/20(R+S)主要受成熟度影响[19],因此两者差异可间接反映油气运移距离,差异大代表运移效应强、运移距离长。以不同构型C29规则甾烷比值计算原油运移效应量化参数(表3图7),结果显示,D2井原油运移效应弱,原油运移距离短,Z2及Z1井原油运移效应强,原油运移距离长,而G3井不同深度样品存在差别,其中2861.9 m样品运移效应强,其他样品则表现为弱运移效应特征,原油运移距离短。

    图  7  孔雀亭区原油成熟度与运移效应
    Figure  7.  Maturity and migration effect of the oil from Kongqueting area

    腐泥组和壳质组是孔雀亭煤系烃源岩主要生油母质,演化早期阶段生成少量低成熟度原油[10],难以大范围运移,仅在周缘圈闭就近成藏,如D2井;演化中期阶段,生油量增加,一定数量的成熟原油可持续运移至Z2、Z1及G3井成藏;演化中后期阶段,相对高成熟原油在构造相对高部位聚集,如G3井(图8)。

    图  8  孔雀亭区原油及天然气运移方向示意图
    Figure  8.  Migration direction of oil and gas of the Kongqeuting area

    烃源岩早期生气阶段具有甲烷相对含量低、碳同位素偏轻特征,随着演化程度增加,甲烷相对含量逐渐增加、同位素趋于偏重[17],因此,甲烷相对含量和甲烷碳同位素是指示天然气运移距离的有效参数。孔雀亭天然气甲烷相对含量分布于80%~90%,其中低带D1井天然气甲烷相对含量可达90%,但中高带甲烷相对含量相近,主要分布于75%~85%;甲烷碳同位素具有类似变化趋势,表现为低带偏重、中高带偏轻(表2),揭示了天然气自西次凹沿斜坡低带向高带运移特征。

    西湖凹陷天然气中N2主要以有机质热降解形成为主[20],因N2分子直径较小、岩层吸附能力较弱,运移速度较烃类快,在运移分异作用影响下,随运移距离增加天然气中N2含量增加,此参数在斜坡带平湖油气田应用效果较好[21]。孔雀亭区低带D1井N2含量低于0.1%,向斜坡中高带方向N2含量呈增加趋势,Z1、Z2井区都在0.2%以上,至高带G1井区达到4%,(表2),氮气与乙烷比值(N2/C2)揭示了天然气由低带向高带运移(图9)。iC4/nC4比值随运移距离增加而增加,在天然气运移示踪中有着广泛应用[21],孔雀亭区iC4/nC4呈现低带(D1)相对较低、高带(G1、G2)较高的特征,是天然气由低带向高带运移的结果(图9),表明斜坡低部位天然气供给丰富,勘探潜力大(图8)。

    图  9  孔雀亭区天然气运移效应
    Figure  9.  Migration effect and direction of natural gas of the Kongqueting area

    斜坡带本地烃源岩自生天然气和西次凹外源气双重贡献条件下,两者混合作用导致斜坡低带(D1、Z1井)浅层系天然气成熟度高于深层系天然气的特征(表2)。成藏中后期,西次凹高成熟天然气沿斜坡低带向高带运移过程中沿断层垂向运移至有效圈闭聚集成藏,此时斜坡低带烃源岩部分进入生气阶段,低成熟度天然气就近聚集至附近圈闭,并与西次凹高成熟天然气混合,浅部层位烃源岩演化程度低、生气量少,混合后表现为西次凹天然气的高成熟特征,而深部层位烃源岩演化程度高、生气量大,混合后天然气成熟度较西次凹天然气程度低,且低于浅部层系天然气。

    (1)西湖凹陷孔雀亭区原油呈低密度、低硫、低蜡特征,主要分布于平湖组中、上段;天然气为煤型气,以湿气为主,主要分布于平湖组中、下段。

    (2)原油主要来自斜坡带内生油次洼,以宝石组和平下段烃源岩贡献为主,平中、上段烃源岩少量贡献;天然气以西次凹烃源岩贡献为主,同时有部分斜坡带自生天然气混入。

    (3)煤系烃源岩演化早期生成少量低熟油短距离运移成藏,中后期形成成熟原油由次洼向相对高部位运移,环次洼区域是原油优势聚集方向;天然气主要呈自西次凹沿斜坡低带向高带运移特征,斜坡低部位是天然气勘探有利区带。

  • 图  1   鸭绿江河口表层沉积物地球化学分析采样站位

    Figure  1.   Topographic map showing sampling stations for geochemical analysis of surface sediments in the Yalu River estuary

    图  2   鸭绿江河口表层沉积物样品A-CN-K图解

    Figure  2.   A-CN-K triangular diagram of surface sediments in the Yalu River estuary

    图  3   鸭绿江河口常量元素F1-F2判别方程图解

    Figure  3.   F1-F2 discrimination diagrams for the major elements from Yalu River estuary

    图  4   处理前(虚线)后(实线)沉积物粒度频率曲线变化

    Figure  4.   The variation of grain size frequency curve before (the dotted line)and after(solid line) processing

    表  1   鸭绿江河口表层沉积物粒度参数

    Table  1   Grain size parameters of surface sediments in the Yalu River estuary

    编号中值粒径/Φ平均粒径/Φ分选系数偏态系数峰态系数砂组分/%粉砂组分/%黏土组分/%
    YL-016.66.91.61.12.00.273.526.3
    YL-025.45.81.71.72.36.480.013.5
    YL-035.96.11.91.52.417.364.218.5
    YL-046.36.61.81.32.12.274.323.6
    YL-052.42.91.52.02.685.212.72.1
    YL-066.36.61.71.32.10.476.323.3
    YL-076.87.01.61.01.90.372.627.1
    YL-083.54.01.31.82.472.424.53.1
    YL-096.76.91.61.02.01.071.327.7
    最大值6.87.01.92.02.685.280.027.7
    最小值2.42.91.31.01.90.212.72.1
    平均值5.65.91.61.42.220.661.018.4
    YL016.36.51.71.42.22.776.620.6
    YL025.15.51.91.72.524.163.112.9
    YL035.75.92.11.52.624.857.118.1
    YL046.26.41.91.42.38.969.122.0
    YL052.52.91.42.02.687.410.52.1
    Yl066.56.61.81.32.23.174.122.8
    YL076.97.11.61.01.90.168.531.4
    YL083.53.81.31.82.477.819.32.9
    YL096.76.81.81.22.22.671.126.3
    最大值6.97.12.12.02.687.476.631.4
    最小值2.52.91.31.01.90.110.52.1
    平均值5.55.71.71.52.325.756.617.7
    注:YL-01—YL-09为处理后样品测试,YL01—YL09为全样测试。
    下载: 导出CSV

    表  2   鸭绿江河口表层沉积物常量元素含量特征

    Table  2   The major elements contents of surface sediments in the Yalu River estuary

    %
    编号Al2O3Fe2O3CaOMgOK2ONa2OMnOTiO2P2O5
    YL0114.843.130.741.203.061.910.030.880.03
    YL0212.152.350.901.003.232.310.030.740.03
    YL0410.441.831.230.733.092.660.030.610.03
    YL0615.413.430.811.293.162.030.030.840.03
    YL0715.863.990.801.553.131.920.040.850.05
    YL0916.093.930.641.373.181.730.030.870.05
    站位均值14.133.110.851.193.142.090.030.800.04
    标准偏差2.300.870.200.290.060.340.000.110.01
    变异系数0.160.280.240.240.020.160.110.130.27
    >63μm11.641.350.830.633.282.540.010.450.02
    32~63μm12.693.121.101.273.142.660.030.550.05
    8~32μm11.013.041.151.392.732.490.040.850.04
    2~8μm17.125.960.692.473.261.630.050.950.08
    < 2μm18.358.430.362.413.000.710.060.950.15
    粒级均值14.164.380.831.643.082.010.040.750.07
    下载: 导出CSV

    表  3   鸭绿江河口表层沉积物样品化学蚀变指数

    Table  3   The chemical index of alteration of surface sediments in the Yalu River estuary

    编号CIA粒级/μmCIA
    全样处理后样品
    YL017272>6364
    YL02657132~6365
    YL0460698~3263
    YL0672672~875
    YL077370< 282
    YL097473
    注:CIA= Al2O3/[Al2O3+ CaO*+ K2O+ Na2O]*100。当CaO的摩尔数大于Na2O时,mCaO*=mNa2O,而小于Na2O时,则mCaO*=m CaO[25]。本文中CaO*依据此方法计算获得。
    下载: 导出CSV

    表  4   鸭绿江河口表层沉积物全样常量元素相关性

    Table  4   The correlation coefficient of major elements for bulk samples in the Yalu River estuary

    Al2O3Fe2O3CaOMgOK2ONa2OMnOTiO2P2O5CIA砂/%粉砂/%黏土/%
    Al2O31.00
    Fe2O30.981.00
    CaO-0.91-0.851.00
    MgO0.960.98-0.841.00
    K2O0.010.04-0.180.081.00
    Na2O-0.96-0.930.97-0.90-0.031.00
    MnO0.390.51-0.060.59-0.17-0.211.00
    TiO20.950.89-0.970.89-0.01-0.980.211.00
    P2O50.710.82-0.670.760.20-0.740.390.591.00
    CIA0.990.96-0.950.940.01-0.990.310.980.691.00
    砂/%-0.68-0.690.39-0.610.610.57-0.50-0.53-0.46-0.621.00
    粉砂/%0.490.36-0.360.27-0.67-0.45-0.050.50-0.030.49-0.751.00
    黏土/%0.600.71-0.280.66-0.36-0.480.760.380.680.52-0.860.311.00
    注:相关系数|r|≥0.85时,在0.01水平上显著相关;|r| < 0.85时,在0.05水平上显著相关。
    下载: 导出CSV

    表  5   鸭绿江河口表层沉积物分级样品常量元素相关性

    Table  5   The correlation coefficient of major elements for graded samples in the Yalu River estuary

    Al2O3Fe2O3CaOMgOK2ONa2OMnOTiO2P2O5CIA砂/%粉砂/%黏土/%
    Al2O31.00
    Fe2O30.571.00
    CaO-0.41-0.381.00
    MgO0.910.70-0.151.00
    K2O0.970.51-0.530.811.00
    Na2O-0.67-0.810.82-0.58-0.691.00
    MnO0.180.670.370.55-0.01-0.181.00
    TiO20.830.58-0.610.690.80-0.820.091.00
    P2O50.620.85-0.020.810.48-0.580.810.631.00
    CIA0.990.63-0.540.890.97-0.780.170.880.631.00
    砂/%0.140.180.320.140.160.120.160.100.340.071.00
    粉砂/%-0.360.020.50-0.24-0.380.320.26-0.160.23-0.390.801.00
    黏土/%0.15-0.10-0.450.080.15-0.24-0.230.05-0.290.20-0.93-0.961.00
    注:相关系数|r|≥0.85时,在0.01水平上显著相关;|r| < 0.85时,在0.05水平上显著相关。
    下载: 导出CSV

    表  6   鸭绿江河口表层沉积物分级样品常量元素旋转矩阵

    Table  6   The rotation matrix of major elements for graded samples in the Yalu River estuary

    分析要素成份
    123
    Al2O30.90-0.040.27
    Fe2O30.570.060.69
    CaO-0.710.380.31
    MgO0.70-0.030.62
    K2O0.95-0.030.07
    Na2O-0.830.21-0.24
    MnO-0.070.120.99
    TiO20.910.040.15
    P2O50.490.270.82
    CIA0.94-0.090.25
    砂/%0.140.970.06
    粉砂/%-0.310.910.12
    黏土/%0.12-0.98-0.10
    贡献方差/%44.8023.2321.96
    累积方差/%44.8068.0389.98
    下载: 导出CSV

    表  7   分级样品与全样元素含量差异百分比

    Table  7   Percentage difference in content of elements between grading samples and bulk samples

    %
    粒级/μmAl2O3Fe2O3CaOMgOK2ONa2OMnOTiO2P2O5
    >6317.6556.542.1546.974.3121.4450.4443.4241.72
    32~6310.230.2328.877.020.0527.0714.1830.8320.93
    8~3222.082.3134.9817.1213.1618.8834.556.981.89
    2~821.1691.4718.82107.453.6421.8870.9218.8398.24
    < 229.87170.9157.56102.684.3666.2889.5218.66284.29
    下载: 导出CSV
  • [1] 严杰, 高建华, 李军, 等.鸭绿江河口及近岸地区稀土元素的物源指示意义[J].海洋地质与第四纪地质, 2010, 30(4):95-103. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=a77b17f7-6932-4d73-9f87-f34ad8a4cda4

    YAN Jie, GAO Jianhua, LI Jun, et al.Implications of ree for provenance in the Yalu estuary and its adjacent sea area[J]. Marine Geology & Quaternary Geology, 2010, 30(4):95-103. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=a77b17f7-6932-4d73-9f87-f34ad8a4cda4

    [2] 白凤龙, 高建华, 汪亚平, 等.鸭绿江口的潮汐特征[J].海洋通报, 2008, 27(3):7-13. doi: 10.3969/j.issn.1001-6392.2008.03.002

    BAI Fenglong, GAO Jianhua, WANG Yaping, et al.Tidal characteristics at Yalu river estuary[J].Marine Science Bulletin, 2008, 27(3):7-13. doi: 10.3969/j.issn.1001-6392.2008.03.002

    [3] 高建华, 高抒, 董礼先, 等.鸭绿江河口地区沉积物特征及悬沙输送[J].海洋通报, 2003, 22(5):26-33. doi: 10.3969/j.issn.1001-6392.2003.05.005

    GAO Jianhua, GAO Shu, DONG Lixian, et al.Sediment distribution and suspended sediment transport in Yalu river estuary[J]. Marine Science Bulletin, 2003, 22(5):26-33. doi: 10.3969/j.issn.1001-6392.2003.05.005

    [4] 高建华, 李军, 王珍岩, 等.鸭绿江河口及近岸地区沉积物中重金属分布的影响因素分析[J].地球化学, 2008, 37(5):430-438. doi: 10.3321/j.issn:0379-1726.2008.05.002

    GAO Jianhua, LI Jun, WANG Zhenyan, et al.Heavy metal distribution and their influence factors in sediments of Yalu river estuary and its adjacent sea area[J].Geochimica, 2008, 37(5):430-438. doi: 10.3321/j.issn:0379-1726.2008.05.002

    [5] 齐君, 李凤业, 宋金明, 等.北黄海沉积速率及其沉积通量[J].海洋地质与第四纪地质, 2004, 24(2):9-14. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=9b2a3e95-2a10-4b1c-83ec-02faa116531b

    QI Jun, LI Fengye, SONG Jinming, et al.Sedimentation rate and flux of the North Yellow Sea[J].Marine Geology & Quaternary Geology, 2004, 24(2):9-14. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=9b2a3e95-2a10-4b1c-83ec-02faa116531b

    [6] 冉隆江, 石勇, 高建华, 等.鸭绿江河口地区沉积物的粒度变化及其影响因素[J].海洋地质与第四纪地质, 2012, 32(2):31-42. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=136c7e48-d840-43ef-af39-7917eabb4223

    RAN Longjiang, SHI Yong, GAO Jianhua, et al.Gain size variation and its influencing factors in the sediment cores of Yalu river estuary[J]. Marine Geology & Quaternary Geology, 2012, 32(2):31-42. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=136c7e48-d840-43ef-af39-7917eabb4223

    [7] 李家胜, 高建华, 李军, 等.鸭绿江河口沉积物元素地球化学及其控制因素[J].海洋地质与第四纪地质, 2010, 30(1):25-31. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=8ed847e6-387b-4daa-8577-83e5ef839b07

    LI Jiasheng, GAO Jianhua, LI Jun, et al.Distribution and controlling factors of major elements in sediments of the Yalu river estuary[J].Marine Geology & Quaternary Geology, 2010, 30(1):25-31. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=8ed847e6-387b-4daa-8577-83e5ef839b07

    [8] 程岩, 刘月, 李富祥, 等.鸭绿江口及邻近浅海碎屑矿物特征与物源辨识[J].地理研究, 2010, 29(11):1950-1960. http://d.old.wanfangdata.com.cn/Periodical/dlyj201011004

    CHENG Yan, LIU Yue, LI FUxiang, et al.Detrital mineral characteristics and material source identification in surface sediments of Yalu river estuary and adjacent waters[J].Geographical Research, 2010, 29(11):1950-1960. http://d.old.wanfangdata.com.cn/Periodical/dlyj201011004

    [9] 高建华, 李军, 汪亚平, 等.鸭绿江河口及近岸海域沉积物中重矿物组成、分布及其沉积动力学意义[J].海洋学报, 2009, 31(3):84-94. doi: 10.3321/j.issn:0253-4193.2009.03.010

    GAO Jianhua, LI Jun, Wang Yaping, et al.Heavy mineral distribution and their implications for sediment dynamics in the Yalu estuary and its adjacent sea area[J].Acta Oceanologica Sinica, 2009, 31(3):84-94. doi: 10.3321/j.issn:0253-4193.2009.03.010

    [10] 王应飞, 高建华, 石勇, 等.鸭绿江河口西岸潮间带柱状沉积物中重金属的分布特征及其对流域变化的响应[J].地球化学, 2014, 43(1):64-76. http://d.old.wanfangdata.com.cn/Periodical/dqhx201401007

    WANG Yingfei, GAO Jianhua, SHI Yong, et al.Distribution characteristics of intertidal sediment heavy metal of the western bank of the Yalu river, and its responses to catchment changes[J].Geochimica, 2014, 43(1):64-76. http://d.old.wanfangdata.com.cn/Periodical/dqhx201401007

    [11] 李红军, 程岩, 刘月, 等.鸭绿江口重金属沉积记录的环境意义[J].环境科学学报, 2017, 37(6):2296-2306. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201706035

    LI Hongjun, CHENG Yan, LIU Yue, et al.Environmental significance of heavy metals in the core sediments of the Yalu river estuary[J].Acta Scientiae Circumstantiae, 2017, 37(6):2296-2306. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201706035

    [12] 程岩, 毕连信.鸭绿江河口浅滩的基本特征和动态变化[J].泥沙研究, 2002, 3:59-63. doi: 10.3321/j.issn:0468-155X.2002.03.010

    CHENG Yan, BI Lianxin.Primary character and motive change of shallow beach in Yalu river mouth[J].Journal of Sediment Research, 2002, (3):59-63. doi: 10.3321/j.issn:0468-155X.2002.03.010

    [13] 高峰, 孙连成, 麦苗.鸭绿江河口潮流泥沙数值模拟[J].水道港口, 2009, 30(2):89-95. doi: 10.3969/j.issn.1005-8443.2009.02.003

    GAO Feng, SUN Liancheng, MAI Miao.Numerical simulation of tidal current and sediment in Yalu river estuary[J].Journal of Waterway and Harbor, 2009, 30(2):89-95. doi: 10.3969/j.issn.1005-8443.2009.02.003

    [14] 孙永根, 吴桑云.鸭绿江西水道口悬沙动力特征[J].海洋地质与第四纪地质, 2010, 30(2):33-38. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=ca871455-cec4-422d-8a56-ae607ac082fb

    SUN Yonggen, WU Sangyun.Dynamic characteristics of suspended sediments in the west channel of the Yalu river[J]. Marine Geology & Quaternary Geology, 2010, 30(2):33-38. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=ca871455-cec4-422d-8a56-ae607ac082fb

    [15] 程岩.鸭绿江河口地貌的形成、演变与港口建设[J].海港工程, 1988, 7(1): 28-35. http://www.cnki.com.cn/Article/CJFD1988-HAGC198801005.htm

    CHENG Yan.Formation and evolution on geomorphology of Yalu river mouth and harbor construction[J].Coastal Engineering, 1988, 7(1):28-35. http://www.cnki.com.cn/Article/CJFD1988-HAGC198801005.htm

    [16]

    M.Revel, M.Cremer, F.E.Grousset, et al.Grain-size and Sr-Nd isotopes as tracer of paleob-ottom current strength, Northeast Atlantic Ocean[J].Marine Geology, 1996, 131: 233-249.

    [17] 赵一阳, 鄢明才.中国浅海沉积物地球化学[M].北京:科学出版社, 1994.

    ZHAO Yiyang, YAN Mingcai.Sedimentary Geochemistry in China Sea[M].Beijing:Science Press, 1994.

    [18] 赵一阳, 喻德科.黄海沉积物的地球化学分析[J].海洋与湖沼, 1983, 14(5):432-446. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200703012

    ZHAO Yiyang, YU Deke.Geochemical analysis of the Yellow Sea sediments[J].Oceanologia et Limnologia Sinica, 1983, 14(5) : 432-446. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200703012

    [19]

    Rollinson H R.Using geochemical data:evaluation, presentation, interpretation[M].New York:Longman Scientific Technical.1993.

    [20]

    McManus J.Grain sie determination and interpretation.In:Tucker M ed[J].Techniques in Sedimentology, Backwell, Oxford.1988: 63-85.

    [21] 臧家业, 汤毓祥, 邹娥梅, 等.黄海环流的分析[J].科学通报, 2001, 46:7-15. http://d.old.wanfangdata.com.cn/Periodical/hyxb200902001

    CANG Jiaye, TANG Yuxiang, ZOU Emei, et al.The analysis of the Yellow Sea circulation[J].Science Bulletin, 2001, 46:7-15. http://d.old.wanfangdata.com.cn/Periodical/hyxb200902001

    [22] 杨守业, Jung Hoi-Soo, 李从先, 等.黄河、长江与韩国Keum、Yeongsan江沉积物常量元素地球化学特征[J].地球化学, 2004, 33(1):99-105. doi: 10.3321/j.issn:0379-1726.2004.01.013

    YANG Shouye, JUNG Hoi-Soo, LI Congxian.et al.Major element geochemistry of sediments from Chinese and Korean rivers[J].Geochimica, 2004, 33(1):99-105. doi: 10.3321/j.issn:0379-1726.2004.01.013

    [23]

    Nesbitt H W, Young G M. Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]:Nature, 1984, 299, 715-717. doi: 10.1038-299715a0/

    [24] 吴丰昌, 王立英, 黎文, 等.天然有机质及其在地表环境中的重要性[J].湖泊科学, 2008, 20(1): 1-12. doi: 10.3321/j.issn:1003-5427.2008.01.001

    WU Fengchang, WANG Liying, LI Wen, et al.Natural organic matter and its significance in terrestrial surface environment[J].Lake Sci, 2008, 20(1):1-12. doi: 10.3321/j.issn:1003-5427.2008.01.001

    [25]

    McLennan S W.Weathering and global denudation[J].Journal of Geology, 1993, 101:295-303. doi: 10.1086/648222

    [26]

    Nesbitt H W, Young G M.Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J].Geochimicaet Cosmochimica Acta, 1984, 48:1523-1534. doi: 10.1016/0016-7037(84)90408-3

    [27]

    Nesbitt H W, Young G M.Petrogenesis of sediments in the absence of chemical weathering effects of abrasion and sorting on bulk composition mineralogy[J].Sedimentology, 1996, 43(2):243-358. doi: 10.1046-j.1365-3091.1996.d01-12.x/

    [28]

    Nesbitt H W, Markovics G, Price R C.Chemical processes affecting alkalis and alkaline earths during continental weathering[J].Geochem Cosmochim Acta, 1980, 44(11):1659-1666. doi: 10.1016/0016-7037(80)90218-5

    [29] 刘若新, 樊祺诚, 郑详身, 等.长白山天池火山的岩浆演化[J].中国科学D辑, 1998, 3(20):226-231. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200403021

    LIU Ruoxin, FAN Qicheng, ZHENG Xiangshen, et al.The magma evolution of tianchi volcano in changbai mountain[J].Science in China(Serics D), 1998, 3(20):226-231. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200403021

    [30] 赵一阳, 喻德科.黄海沉积物地球化学分析[J].海洋与湖沼, 1983, 14(5):432-446. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200703012

    ZHAO Yiyang, YU Deke.Geochemical analusis of the sediments of the HuangHai sea[J].Oceanologia et Limnologia Sinica, 1983, 14(5):432-446. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200703012

    [31] 赵一阳, 何丽娟, 陈毓蔚.论黄海沉积物元素区域分布格局[J].海洋科学, 1989, 1:1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-HYKX198901000.htm

    ZHAO Yiyang, HE Lijuan, CHEN Yuwei.On regional distribution patterns of elements in sediments of the Yellow Sea[J].Marine Sciences, 1989, 1:1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-HYKX198901000.htm

    [32]

    Murray R W, Knowlton C, Leinen K W, et al.Export production and terrigenous matter in the central equatorial Pacific Ocean during interglacial oxygen isotope stage 11[J].Global and Planetary Change, 2000, 24(1):59-78. doi: 10.1016/S0921-8181(99)00066-1

    [33] 米兰诺夫斯基EE.地球历史上的裂谷作用[M].北京:地质出版社, 1985.

    Milanovsky EE.The Rift in Earth's History[M]. Beijing:Geological Press.1985.

    [34] 于成广.辽宁鸭绿江成矿带水系沉积物地球化学特征及成矿远景预测[D].2016. http://cdmd.cnki.com.cn/Article/CDMD-11415-1016067854.htm

    YU Chengguang.Geochemical characteristics and prospective prognosis of the Yalu river metallogenic belt based on stream sediment survey[D].2016. http://cdmd.cnki.com.cn/Article/CDMD-11415-1016067854.htm

    [35] 王成文, 刘永江, 李东涛.辽河岩群南北区域对比的新证据[J].长春地质学院学报, 1997, 27(1):17-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700196062

    WANG Chengwen, LIU Yongjiang, LI Dongtao.New evidences on the correlation of Liaohe lithogroup between the southern and the northern regions in eastern Liaoning province[J].Journal of ChangChun University of Earth Sciences, 1997, 27(1):17-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700196062

    [36]

    LI S Z, ZHAO G C, SUN M, et al.Deformation history of the paleoproterozoic Liaohe assemblage in the eastern block of the North China Craton[J].Journal of the Asian Earth Sciences, 2005, 24:659-674. doi: 10.1016/j.jseaes.2003.11.008

    [37]

    LI S Z, ZHAO G C.SHRIM PU-Pb zircon geochronology of the Liaoji granitoids:Constraints on the evolution of the Plaleoprot erozoic Jiao-Liao-Ji belt In the Eastern Block of the North China Craton[J].Precambrian Res., 2007, 158:1-16. doi: 10.1016/j.precamres.2007.04.001

    [38]

    Roser B P, Korsch R J.Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data[J].Chem. Geol., 1988, 67:119-139. doi: 10.1016/0009-2541(88)90010-1

  • 期刊类型引用(9)

    1. 张年念,万延周,何新建. 西湖凹陷始新统宝石组优质烃源岩初探. 复杂油气藏. 2024(02): 152-156+161 . 百度学术
    2. 丁飞,蒋一鸣,赵洪,刁慧,于仲坤,王皖丽. 西湖凹陷始新统宝石组烃源岩分布差异及控制因素. 中国海上油气. 2024(05): 68-82 . 百度学术
    3. 丁飞,邹玮,刘金水,刁慧,张武,赵洪,于仲坤. 东海西湖凹陷中南部HY区天然气碳同位素分布控制因素及充注模式. 天然气地球科学. 2024(11): 2029-2039 . 百度学术
    4. Bo Yan,Hong-Qi Yuan,Ning Li,Wei Zou,Peng Sun,Meng Li,Yue-Yun Zhao,Qian Zhao. Differences in hydrocarbon accumulation and controlling factors of slope belt in graben basin: A case study of Pinghu Slope Belt in the Xihu sag of the east China Sea Shelf basin(ECSSB). Petroleum Science. 2024(05): 2901-2926 . 必应学术
    5. 丁飞,李宁,刁慧,于仲坤,王皖丽,余箐. 东海西湖凹陷海陆过渡型油气成熟度恢复方法及应用. 海洋地质前沿. 2024(12): 41-49 . 百度学术
    6. 张尚虎,黄建军,李昆,万丽芬,庄建建,王丹萍,王修平,蒋涔. 西湖凹陷孔雀亭地区复合圈闭发育模式与油气富集差异控制因素. 海洋地质与第四纪地质. 2023(01): 128-137 . 本站查看
    7. 刘峰,时新强,张传运,杨鹏程,黄苏卫,张昆. 西湖凹陷K构造平湖组成藏系统分析. 海洋石油. 2023(01): 1-6+15 . 百度学术
    8. 孙鹏. 西湖凹陷K区烃源岩有机质碳同位素倒转及地质意义分析. 海洋石油. 2023(03): 8-12 . 百度学术
    9. 杨学文,王清华,李勇,吕修祥,谢会文,吴超,王翠丽,王祥,莫涛,汪瑞. 库车前陆冲断带博孜—大北万亿方大气区的形成机制. 地学前缘. 2022(06): 175-187 . 百度学术

    其他类型引用(5)

图(4)  /  表(7)
计量
  • 文章访问数:  2430
  • HTML全文浏览量:  504
  • PDF下载量:  60
  • 被引次数: 14
出版历程
  • 收稿日期:  2018-05-29
  • 修回日期:  2018-12-02
  • 刊出日期:  2019-06-27

目录

/

返回文章
返回