Characteristics and main controlling factors of the shelf-edge delta of the lower member of Zhujiang Formation in the northern Baiyun Depression
-
摘要: 为了明确白云凹陷北坡珠江组下段陆架边缘三角洲的形成演化阶段及其主要控制因素,采用地震沉积学、层序地层学的相关理论和方法,结合钻测井数据、地震反射结构特征和均方根振幅属性等资料,在前人研究的基础上对该陆架边缘三角洲的识别特征、演化模式和控制因素进行了重新认识和探讨分析。结果表明:陆架边缘三角洲在顺物源方向具有高角度斜交型前积反射,缺乏顶积层的海岸平原相,其前端发育盆底扇沉积;垂向沉积序列以多期反旋回的前三角洲、席状砂、河口沙坝和水下分流河道的叠置为特征,发育陆坡区常见的生物扰动、泥质条带变形和滑塌、滑动现象;珠江组下段陆架边缘三角洲形成于强制海退体系域时期,并伴随着盆底扇的发育,而低位体系域时期主要发育斜坡扇和低位楔状体;构造活动促使白云凹陷北坡在珠江组下段时期形成稳定分布的陆架坡折带,珠江组下段时期古珠江携带的充沛物源和该时期强烈的海平面下降使碎屑沉积物能够进积至陆架边缘,甚至陆坡地区形成陆架边缘三角洲沉积。Abstract: In order to reveal the evolutionary history and controlling factors of the shelf-edge delta discovered in the Lower Member of Zhujiang Formation in the northern Baiyun Depression, seismic sedimentology and sequence stratigraphy are applied with the support of drilling data, logging data, seismic reflection configuration and root mean square amplitude attributes. Seismic reflection characteristics suggest a high angle oblique progradational body in parallel to the direction of sediment movement. Topset deposits are missing. Instead there are fan deposits in front of the delta laid on the bottom of the basin. The vertical sequence of the delta is characterized by the multiple reverse cycles changing from prodelta, sheet sand, mouth bar to underwater distributary channel upwards. There are abundant bioturbated structures, shale strip deformation and sliding features usually found on continental slope. The shelf-edge delta in the Lower Member of the Zhujiang Formation was formed in forced regressive systems tract periods, and accompanied by basin floor fans. However, in the lowstand system tract period there were mainly developed slope fans and low wedgelike sand bodies. A stable distribution of shelf break zone was formed in the period while the Lower Member of Zhujiang Formation was deposited under the control of tectonic movement. Shelf-edge delta occurred in the shelf margin and slope area by the huge amount of sediment discharge from the paleo-Pearl River and the strong sea-level falling then.
-
我国南海海域蕴藏大量的天然气水合物资源[1, 2],2017年由中国地质调查局主持在我国南海神狐海域开展首次天然气水合物试采工程获得成功,使我国成为全球首个实现在海域粉砂质储层水合物开采中获得连续稳定产气的国家[3, 4]。我国南海北部区域水合物储层埋藏浅、胶结性差、疏松程度极高[5-7],水合物试采过程中对水合物上覆地层特性的评价是保证试采作业安全进行的必要条件。
地层水平渗透系数是直接反映土体渗透性的参数,获取水合物储层上覆地层水平渗透系数具有重要的工程实践意义[8]。目前获取地层水平渗透系数的主要方法有室内渗透实验法、现场孔压消散法以及近年来逐渐发展完善的基于孔压静力触探数据资料进行反演的方法。由于室内实验法和现场孔压消散法耗时较长且其只能对测试特定深度的部分岩心或土层进行测试,不能反映地层渗透性能的纵向分布规律[9, 10]。因此,利用孔压静力触探获取的连续性资料,建立孔压静力触探参数与地层渗透系数之间的经验、半经验或理论关系式,对地层渗透系数进行反演,成为获取地层渗透系数的首选[11, 12]。其中最为行之有效且具有一定理论基础的,便是近年来逐步发展和完善的位错理论模型。
为此,本文在分析基于位错理论提出的不同的地层水平渗透系数预测模型基本原理、适用条件的基础上,提出采用基于位错理论的水平渗透系数预测模型计算神狐海域W18/19区块水合物上覆钙质黏土层水平渗透系数的合理性,基于位错理论模型对W18/19区块水合物上覆钙质黏土层水平渗透系数纵向分布规律进行预测。
1. 水平渗透系数求解方法
目前国内外常用的基于孔压静力触探资料估算地层水平渗透系数的方法都是基于位错理论提出的[13, 14],其基本思想是孔压静力触探探头压入地层过程中,利用土层内有限单元的运动体积错位来近似模拟探头周围孔隙水压力的改变情况。其核心是将探头周围一定体积空间内孔隙水的渗流量等价为探头贯入产生的土体体积改变量,通过不同的渗流模型描述孔隙水的渗流规律,进而求解地层水平渗透系数[15, 16]。根据位错理论计算地层水平渗透系数的基本原理如图 1所示。
图 1中A表示孔压扩散过程中的控制面积,m2;ia表示孔压扩散流表面的水力梯度;U表示探头贯入速度,m/s;ro表示探头半径,m;u2锥头处实测孔隙水压力,Pa;u0为静水压力,Pa。由图 1可知,基于位错理论求解地层水平渗透系数的基本原理可以表示为:
$$ k = \frac{{\pi r_o^2U}}{{A{i_a}}} $$ (1) 在孔压静力触探探头规格和贯入速度一定的条件下,地层水平渗透系数的估算结果直接取决于A、ia。基于上述基本理论,不同的研究者通过假设探头周围孔压扩散流表面形状(图 2)、初始孔隙水压力分布函数(式2)等的差异,提出了不同的地层水平渗透系数计算方法(表 1)。
$$ \left\{ \begin{gathered} 幂函数形式:u-{u_0} = \left( {{u_2}-{u_0}} \right)\frac{{{r_0}}}{r} \hfill \\ 负指数形式:u-{u_0} = \left( {{u_2} - {u_0}} \right){e^{ - \beta \left( {\frac{r}{{r0}} - 1} \right)}} \hfill \\ \;\;\;\;\left( {0.15 \leqslant \beta \leqslant 0.40} \right) \hfill \\ \end{gathered} \right. $$ (2) 表 1 基于位错理论的地层水平渗透系数计算方法对比Table 1. Horizontal permeability coefficient calculation methods based on CPTU dislocation theory求解模型 孔压扩散模型 初始孔压分布函数 KD ξ 建议适用条件 Elsworth方法[17, 18] 球面流 幂函数分布 ${K_D} = \frac{{0.62}}{{{{\left( {{B_q}{Q_t}} \right)}^{1.6}}}}$ 0.25 BqQt<1.2, 不排水地层 Chai方法[12] 半球面流 幂函数分布 $\left\{ \begin{gathered} {K_D} = \frac{1}{{{B_q}{Q_t}}}, {B_q}{Q_t} < 0.45 \hfill \\ {K_D} = \frac{{0.044}}{{{{\left( {{B_q}{Q_t}} \right)}^{4.91}}}}, {B_q}{Q_t} \geqslant 0.45 \hfill \\ \end{gathered} \right.$ 0.5 正常固结或轻微超固结的黏性土和松散的无黏性土 王君鹏方法[19, 20] 任意锥角球面流 负指数分布 $\frac{{{{\sin }^2}\frac{\alpha }{2}}}{{0.3{{\text{e}}^{-0.3}}\left( {\frac{1}{{\sin \alpha }}-1} \right)}}$ 邹海峰方法[15] 柱面径向流 幂函数分布 $\left\{ \begin{gathered} {K_D} = \frac{1}{{{B_q}{Q_t}}}, {B_q}{Q_t} < 0.35 \hfill \\ {K_D} = \frac{{0.017}}{{{{\left( {{B_q}{Q_t}} \right)}^{4.64}}}}, {B_q}{Q_t} \geqslant 0.35 \hfill \\ \end{gathered} \right.$ $\frac{{{r_0}}}{{2h}}$ 李镜培方法(2016)[21] 柱面径向流 负指数分布 $\left\{ \begin{gathered} {K_D} = \frac{{0.1}}{{{B_q}{Q_t}}}, {B_q}{Q_t} < 0.45 \hfill \\ {K_D} = \frac{{0.0044}}{{{{\left( {{B_q}{Q_t}} \right)}^{4.91}}}}, {B_q}{Q_t} \geqslant 0.45 \hfill \\ \end{gathered} \right.$ $\frac{{{r_0}}}{{0.6h}}$ 引入无量纲渗透系数KD,尽管不同的水平渗透系数计算模型所采取的孔压扩散模型和初始孔压分布假设有所区别,但式(1)均可转化为通式(3)来表述:
$$ k = \xi \cdot {K_D} \cdot \frac{{U{r_o}{\gamma _w}}}{{{{\sigma '}_{vo}}}} $$ (3) 式中,ξ为模型系数,不同的学者提出的基于位错理论的地层水平渗透系数计算模型参数及其基本应用条件如表 1所示。
表 1中,Qt、Bq分别表示归一化锥尖阻力和孔压参数比,${Q_t} = \frac{{{q_t}-{\sigma _{vo}}}}{{{{\sigma '}_{vo}}}}$,${B_q} = \frac{{{u_2}-{u_0}}}{{{q_t}-{\sigma _{vo}}}}$。σv0、σ′v0分别为上覆土层的总自重应力及有效自重应力,qt为锥尖总阻力, α为触探探头锥尖角,h表示孔压过滤环的高度。
值得指出的是,虽然基于球面流、半球面流计算模型并未明确说明计算的地层渗透系数k的方向,然而实际上无量纲渗透系数KD仍然主要受到土层水平向渗透系数的控制[7],因此,上述方法计算的渗透系数均为水平渗透系数。而且,上述方法均假定CPTU探头的贯入产生正的超静孔隙水压力,而对强超固结黏土和致密砂土,探头贯入可能引起周围土体剪胀,从而导致正超静孔隙水压力的降低,甚至产生负值。因此,上述方法均仅适用于松散的无黏性土与正常固结或轻微超固结的黏性土。
2. 水合物上覆层水平渗透系数分布
2.1 CPTU测试曲线特征
CPTU测试采用国际标准探头完成,W18/19区块全井段井下CPTU测试深度达141mbsf,测试区平均水深约1300m。与地层水平渗透系数分布求解相关的典型CPTU测试结果如图 3所示。
由图 3可知,W18/19区块CPTU测试过程中锥尖阻力、孔隙压力线性规律比较明显,说明该站位纵向上土类分布较为一致,但自上而下土层压实程度逐渐增大。临井全井段取心结果显示,该区块水合物上覆地层为典型的钙质黏土层。
由图 4可知,W18/19区块水合物上覆地层超孔隙压力和有效上覆土应力线性趋势较好,超孔隙压力均为正值,地层为正常固结地层,因此, 可以采用位错理论,利用孔压静力触探基本参数进行地层水平渗透系数纵向分布规律的求解。
2.2 地层水平渗透系数纵向分布规律
由表 1可知,求解地层水平渗透系数的关键是计算无量纲参数(Bq·Qt),W18/19区块水合物上覆地层无量纲参数(Bq·Qt)的纵向分布规律如图 5所示。由图可知,测试站位水合物上覆钙质黏土层无量纲参数的基本分布范围是:2.5≤Bq·Qt≤3.6,而文献[22]指出,Elsworth方法的基本适用条件是Bq·Qt<1.2,因此,Elsworth方法不适用于我国南海神狐海域天然气水合物上覆钙质黏土层评价。
因此,以下将基于半球面流、任意锥角球面流和柱面径向流模型评价水合物上覆钙质黏土层的水平渗透系数。基于不同预测模型的水合物上覆钙质黏土层水平渗透系数纵向分布规律评价结果如图 6所示。
由图 6可知,W18/19水合物储层上覆钙质黏土层水平渗透率系数为0.1×10-8 ~4×10-8m/s,当深度小于30mbsf时,地层水平渗透率系数较大,且不同模型的预测结果均有较大的扰动,模型预测结果离散性强。当深度大于30mbsf时,不同模型的预测结果趋于一致,30mbsf以深地层的水平渗透率系数为0.1×10-8 ~0.6×10-8m/s,且随着深度的增加,水平渗透率系数逐渐降低。
为了进一步分析不同模型对水合物上覆钙质黏土层水平渗透率系数预测结果的差异,将30mbsf以深地层的预测结果单独分析(如图 6右下角)。横向对比结果发现,不同模型预测结果之间恒存在如下关系式:
$$ {k_{{\text{Chai}}}} \leqslant {k_{李镜培}} < {k_{王君鹏}} \leqslant {k_{邹海峰}} $$ (4) 式(4)中下标分别代表不同的预测模型。即:虽然从数量级上来讲,不同模型的预测结果均表明W18/19区块水合物上覆地层的水平渗透率系数在10-8m/s量级,但Chai模型和李镜培模型预测的水合物上覆钙质黏土层水平渗透率系数较接近且偏保守,而王君鹏方法和邹海峰方法的预测结果较接近且偏大。
但对比上述预测结果与表 1可知,从探针外围初始孔压分布函数来分析,邹海峰方法与Chai方法均假设探针外围初始孔隙压力扩散模式为幂函数分布,而王君鹏方法和李镜培方法均假设探针外围初始孔隙压力扩散模式为负指数分布。而从孔压扩散模型的角度来分析,Chai方法与王君鹏方法均采用“类球面流”模型,而邹海峰方法与李镜培方法则采用柱面径向流模型,上述结论与式(4)的相对大小关系没有确切的对应关系,因此,地层水平渗透系数是孔压扩散模型和孔压分布函数共同作用的结果,虽然部分研究已证明负指数分布函数更能确切的表述静力触探探针外围孔压分布规律[23, 24],但是如果抛开孔压扩散模型,不能仅利用孔压分布函数来判断水平渗透系数计算模型对特定土层的适应性。
3. 结论
(1) 位错理论提供了利用CPTU数据直接进行地层水平渗透系数估算的有效途径,南海北部W18/19区块水合物上覆钙质黏土层属于正常固结土层,孔压静力触探探头贯入过程中产生的超孔隙压力均为正值,因此,可以用基于位错理论的模型评价该区域水合物上覆钙质黏土层的水平渗透系数,Elsworth方法不适用于W18/19区块水合物上覆钙质黏土层水平渗透系数评价;
(2) 基于不同的模型,得到的W18/19区块水合物上覆钙质黏土层水平渗透系数为0.1×10-8~4×10-8m/s,且随着深度的增大而减小;30mbsf以浅地层预测结果受扰动较大,30mbsf以深地层的水平渗透率系数为0.1×10-8 ~0.6×10-8m/s且不同模型预测结果间的差异较小,因此,基于位错理论的模型预测结果能反映W18/19区块水合物上覆钙质黏土层水平渗透系数分布区间;
(3) 孔压扩散模型和初始孔压分布函数的差异是导致不同模型预测结果差异的根本因素,为了进一步优化模型,需要从以上两方面进行优化,并结合实际矿场孔压消散结果和室内渗透系数测试结果对模型进行修正,才能进一步增强模型的实用性。
-
图 1 白云凹陷北坡构造区划及研究资料分布(据文献[15]修改)
Figure 1. Tectonic map of the northern Baiyun Depression and distribution of research data
图 5 陆架边缘三角洲钻测井特征(岩性图例见图 4)
a.B4井岩心特征;b.B4井单井柱状图;c.B4井取心段概率累积曲线
Figure 5. Drilling core, logging curve and probability cumulative curve of the shelf-edge delta
a.core pictures of well B4;b.column diagram of well B4; c.probability cumulative curve of a sample from well B4
图 6 陆架边缘三角洲相关的均方根振幅属性图
a.强制海退体系域顶面往下提取30ms均方根振幅属性;b.强制海退体系域底面往上提取30ms均方根振幅属性;c.图 6b局部放大图
Figure 6. Root mean square amplitude attribute associated with the shelf-edge delta
a.30ms root mean square amplitude attribute extracted downard from the upper interface of forced regressive systems tract; b.30ms root mean square amplitude attribute exssion; c. enlarged part of Fig. 6b
-
[1] Porebski S J, Steel R J. Shelf-margin deltas: their stratigraphic significance and relation to deep-water sands[J]. Earth Science Reviews, 2003, 62: 283-326. doi: 10.1016/S0012-8252(02)00161-7
[2] 易雪斐, 张昌民, 李少华, 等.珠江口盆地21Ma和13.8Ma陆架边缘三角洲对比[J].石油与天然气地质, 2014, 35(5):670-678. http://d.old.wanfangdata.com.cn/Conference/8739937 YI Xuefei, ZHANG Changmin, LI Shaohua, et al. Comparison between shelf-margin delta of 21 Ma and 13.8 Ma in Pearl River Mouth Basin[J]. Oil & Gas Geology, 2014, 35(5): 670-678. http://d.old.wanfangdata.com.cn/Conference/8739937
[3] 朱筱敏, 葛家旺, 宋爽, 等.南海北部长昌—鹤山凹陷渐新世陆架边缘三角洲—深水扇地震响应及形成条件[J].古地理学报, 2016, 18(3):367-380. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201603005 ZHU Xiaomin, GE Jiawang, SONG Shuang, et al. Seismic responses and forming conditions of the Oligocene shelf-edge delta and deepwater fan system in Changchang-Heshan sag, northern South China Sea[J]. Journal of Palaeogeography, 2016, 18(3): 367-380. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201603005
[4] Uroza C A, Stell R. A highstand shelf-margin delta system from the Eocene of West Spitsbergen, Norway[J]. Sedimentary Geology, 2008, 203: 229-245. doi: 10.1016/j.sedgeo.2007.12.003
[5] Dixon J F, Stell R, Olariu C. Shelf-edge delta regime as a predictor of deepwater deposition[J]. Journal of Sedimentary Research, 2012, 82: 681-687. doi: 10.2110/jsr.2012.59
[6] Catuneanu O, Abreu V, Bhattacharya J P, et al. Towards the standardization of sequence stratrigraphy[J]. Earth Science Reviews, 2009, 92: 1-33. doi: 10.1016/j.earscirev.2008.10.003
[7] Posamentier H W, Kolla V. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings[J]. Journal of Sedimentary Research, 2003, 73: 367-388. doi: 10.1306/111302730367
[8] Plink-bjorklund P, Steel R J. Sea level fall below the shelf edge, without basin-floor fans[J]. Geology, 2002, 30: 115-118. doi: 10.1130/0091-7613(2002)030<0115:SLFBTS>2.0.CO;2
[9] 庞雄, 申俊, 袁立忠, 等.南海珠江深水扇系统及其油气勘探前景[J].石油学报, 2006, 27(3):11-15. doi: 10.3321/j.issn:0253-2697.2006.03.003 PANG Xiong, SHEN Jun, YUAN Lizhong, et al. Petroleum prospect in deep water fan system of the Pearl River in the South China Sea[J]. Acta Petrolei Sinica, 2006, 27(3): 11-15. doi: 10.3321/j.issn:0253-2697.2006.03.003
[10] 彭大钧, 庞雄, 黄先律, 等.南海珠江深水扇系统的形成模式[J].石油学报, 2007, 28(5):7-11. http://d.old.wanfangdata.com.cn/Periodical/syxb200705002 PENG Dajun, PANG Xiong, HUANG Xianlv, et al. Depositional model of Pearl Rive deep water fan system in South China Sea[J]. Acta Petrolei Sinica, 2007, 28(5): 7-11. http://d.old.wanfangdata.com.cn/Periodical/syxb200705002
[11] 郑荣才, 李云, 戴朝成, 等.白云凹陷珠江组深水扇砂质碎屑流沉积学特征[J].吉林大学学报:地球科学版, 2012, 42(6):1581-1588. http://d.old.wanfangdata.com.cn/Conference/7857646 ZHENG Rongcai, LI Yun, DAI Chaocheng, et al. Depositional features of sand debris fole of submarine fan in Zhujiang Formation, Baiyun Sag[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(6): 1581-1588. http://d.old.wanfangdata.com.cn/Conference/7857646
[12] 徐强, 王英民, 吕明, 等.陆架边缘三角洲在层序地层格架中的识别及其意义——以南海白云凹陷为例[J].石油与天然气地质, 2011, 32(5):733-742. XU Qiang, WANG Yingmin, LV Ming, et al. Identification of the shelf margin delta in sequence stratigraphic frameworks and its significance: a case study of the Baiyun Sag, South China Sea[J]. Oil & Gas Geology, 2011, 32(5): 733-742.
[13] 王思琦, 张忠涛, 林畅松, 等.白云凹陷东南部晚渐新世陆架边缘三角洲沉积特征及沉积地貌演化[J].东北石油大学学报, 2017, 41(1):33-42. doi: 10.3969/j.issn.2095-4107.2017.01.004 WANG Siqi, ZHANG Zhongtao, LIN Changsong, et al. Sedimentary features and sedimentary evolution of the shelf-margin delta in late Oligocene of southeast Baiyun sag[J]. Journal of Northeast Petroleum University, 2017, 41(1): 33-42. doi: 10.3969/j.issn.2095-4107.2017.01.004
[14] 吴景富, 徐强, 祝彦贺.南海白云凹陷深水区渐新世—中新世陆架边缘三角洲形成及演化[J].地球科学——中国地质大学学报, 2010, 35(4):681-690. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201004021.htm WU Jingfu, XU Qiang, ZHU Yanhe. Generation and evolution of the shelf-edge delta in Oligocene and Miocene of Baiyun Sag in the South China Sea[J]. Earth Science-Journal of China University of Geosciences, 2010, 35(4): 681-690. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201004021.htm
[15] 陈维涛, 施和生, 杜家元, 等.珠江口盆地陆架坡折区地层岩性圈闭形成条件及发育模式——以珠江组地层为例[J].石油实验地质, 2016, 38(5):619-627. http://d.old.wanfangdata.com.cn/Periodical/sysydz201605009 CHEN Weitao, SHI Hesheng, DU Jiayuan, et al. Formation conditions and development model of stratigraphic-lithologic traps in shelf break zone, Pearl River Mouth Basin: Zhujiang Formation as an example[J]. Petroleum Geology and Experiment, 2016, 38(5): 619-627. http://d.old.wanfangdata.com.cn/Periodical/sysydz201605009
[16] 陈长民, 施和生, 许仕策, 等.珠江口盆地(东部)第三系油气藏形成条件[M].北京:科学出版社, 2003:1-31. CHEN Changmin, SHI Hesheng, XU Shice, et al. Original condition of the Tertiary oil and gas accumulation, Pearl River Mouth Basin[M]. Beijing: Science Press, 2003: 1-31.
[17] 施和生, 秦成岗, 高鹏, 等.珠江口盆地番禺低隆起—白云凹陷北坡天然气晚期成藏特征[J].中国海上油气, 2008, 20(2):73-77. doi: 10.3969/j.issn.1673-1506.2008.02.001 SHI Hesheng, QIN Chenggang, GAO Peng, et al. Late gas accumulation characteristics in Panyu low-uplift and the north slope of Baiyun sag, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2008, 20(2): 73-77. doi: 10.3969/j.issn.1673-1506.2008.02.001
[18] 余烨, 张昌民, 李少华, 等.白云北坡泥岩地球化学特征及源区性质[J].中国矿业大学学报, 2014, 43(4):616-625. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201404014 YU Ye, ZHANG Changmin, LI Shaohua, et al. Geochemical characteristics of mudstone in the northern Baiyun Depression and provenance nature[J]. Journal of China University of Mining & Technology, 2014, 43(4): 616-625. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201404014
[19] 庞雄, 陈长民, 邵磊, 等.白云运动:南海北部渐新统—中新统重大地质事件及其意义[J].地球论评, 2007, 53(2):145-151. http://d.old.wanfangdata.com.cn/Periodical/dzlp200702001 PANG Xiong, CHEN Changmin, SHAO Lei, et al. Baiyun Movement, a great tectonic event on the Oligocene-Miocene boundary in the Northern South China Sea and its implications[J]. Geological Review, 2007, 53(2): 145-151. http://d.old.wanfangdata.com.cn/Periodical/dzlp200702001
[20] 柳保军, 庞雄, 颜承志, 等.珠江口盆地白云深水区渐新世-中新世陆架坡折带演化及油气勘探意义[J].石油学报, 2011, 32(2):234-242. http://d.old.wanfangdata.com.cn/Periodical/syxb201102007 LIU Baojun, PANG Xiong, YAN Chengzhi, et al. Evolution of the Oligocene-Miocene shelf slope-break zone in the Baiyun deep-water area of the Pearl River Mouth Basin and its significance in oil-gas exploration[J]. Acta Petrolei Sinica, 2011, 32(2): 234-242. http://d.old.wanfangdata.com.cn/Periodical/syxb201102007
[21] 李向阳, 张昌民, 张尚锋, 等.珠江口盆地新近系层序划分与发育模式[J].石油天然气学报, 2012, 34(4):47-52. doi: 10.3969/j.issn.1000-9752.2012.04.009 LI Xiangyang, ZHANG Changmin, ZHANG Shangfeng, et al. Neogene sequence subdivision and its development pattern in Pearl River Mouth Basin[J]. Journal of Oil and Gas Technology, 2012, 34(4): 47-52. doi: 10.3969/j.issn.1000-9752.2012.04.009
[22] 郭秀蓉, 武强, 邱燕, 等.南海曾母盆地南部陆架边缘三角洲沉积特征[J].海洋地质与第四纪地质, 2006, 26(4):1-6. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200604001 GUO Xiurong, WU Qiang, QIU Yan, et al. Analysis of the shelf-margin delta in the south of Zengmu basin, South China Sea[J]. Marine Geology & Quaternary Geology, 2006, 26(4): 1-6. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200604001
[23] Moller L K, Rasmussen E S, CLAUSEN O R. Clinoform migration patterns of a Late Miocene delta complex in the Danish Central Graben: implications for relative sea-level changes[J]. Basin Research, 2009, 21(5): 704-720. doi: 10.1111/bre.2009.21.issue-5
[24] Aiello, Budillon. Lowstand prograding wedges as fourth-order glacio-eustatic cycles in the Pleistocene continental shelf of Apulia (southern Italy)[J]. SPEM Special Publication, 2004, 81: 215-230. http://cn.bing.com/academic/profile?id=e2bff72b06f916f27398a1a61aad1575&encoded=0&v=paper_preview&mkt=zh-cn
[25] Plink-bjorklund P, Mellere D, Sterl R J. Turbidite variability and architecture of sand-prone, deep-water slopes: Eocene clinoforms in the central basin, spitsbergen[J]. Journal of Sedimentary Research, 2001, 71: 895-912. doi: 10.1306/030501710895
[26] 赵春晨, 刘豪, 张帅, 等.断陷湖盆沉积层序演化模式及主控因素分析[J].科学技术与工程, 2017, 17(17):39-49. doi: 10.3969/j.issn.1671-1815.2017.17.003 ZHAO Chunchen, LIU Hao, ZHANG Shuai, et al. The evolution model of depositional sequences of rift lacustrine basin and analysis on its main controlling factors[J]. Science Technology and Engineering, 2017, 17(17): 39-49. doi: 10.3969/j.issn.1671-1815.2017.17.003
[27] 曾清波, 陈国俊, 张功成, 等.珠江口盆地深水区珠海组陆架边缘三角洲特征及其意义[J].沉积学报, 2015, 33(3):595-606. http://d.old.wanfangdata.com.cn/Periodical/cjxb201503018 ZENG Qingbo, CHEN Guojun, ZHANG Gongcheng, et al. The shelf-margin delta feature and its significance in Zhuhai Formation of deep-water area, Pearl River Mouth Basin[J]. Acta Sedimentologica Sinica, 2015, 33(3): 595-606. http://d.old.wanfangdata.com.cn/Periodical/cjxb201503018
[28] Yu Y, Zhang C M, Li S H, et al. Influences of Tibetan Plateau uplift on provenance evolution of the paleo-Pearl River[J]. Chinese Journal of Geochemistry, 2015, 34(2): 208-218. doi: 10.1007/s11631-015-0032-z
[29] Mclennan S M, Hemming S, Mcdaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[C]// Jonnson M J, Basu A. Processes Controlling the Composition of Clastic Sediments.[S.l.]: Geological Society of America, Boulde CO, 1993: 21-40.
[30] 秦国权.珠江口盆地新生代晚期层序地层划分和海平面变化[J].中国海上油气(地质), 2002, 16(1):1-10. doi: 10.3969/j.issn.1673-1506.2002.01.001 QIN Guoquan. Late Cenozoic sequence stratigraphy and sea-level changes in Pearl River Mouth Basin, South China Sea[J]. China Offshore Oil and Gas (Geology), 2002, 16(1): 1-10. doi: 10.3969/j.issn.1673-1506.2002.01.001
-
期刊类型引用(6)
1. Peng-fei Xie,Lin Yang,Qian-yong Liang,Xu-hui Zhang,Liang-hua Zhang,Bin Zhang,Xiao-bing Lu,Hui-ce He,Xue-min Wu,Yi-fei Dong. Stability analysis of seabed strata and casing structure during the natural gas hydrates exploitation by depressurization in horizontal wells in South China Sea. China Geology. 2022(02): 300-309 . 必应学术
2. 王辉,修宗祥,孙永福,刘绍文,宋玉鹏,董立峰,宋丙辉. 考虑天然气水合物上覆层不排水抗剪强度深度变化的海底斜坡稳定性影响分析. 高校地质学报. 2022(05): 747-757 . 百度学术
3. 李彦龙,刘昌岭,廖华林,董林,卜庆涛,刘志超. 泥质粉砂沉积物—天然气水合物混合体系的力学特性. 天然气工业. 2020(08): 159-168 . 百度学术
4. 吴能友,李彦龙,万义钊,孙建业,黄丽,毛佩筱. 海域天然气水合物开采增产理论与技术体系展望. 天然气工业. 2020(08): 100-115 . 百度学术
5. 卜庆涛,刘圣彪,胡高伟,刘昌岭,万义钊. 含水合物沉积物声学特性——实验模拟与数值模拟的对比分析. 海洋地质前沿. 2020(09): 56-67 . 百度学术
6. 李彦龙,陈强,刘昌岭,吴能友,孙建业,申志聪,张民生,胡高伟. 水合物储层工程地质参数评价系统研发与功能验证. 海洋地质与第四纪地质. 2020(05): 192-200 . 本站查看
其他类型引用(2)