Geochemistry of sediment pore water from Well GMGS2-09 in the southeastern Pearl River Mouth Basin, South China Sea: An indication of gas hydrate occurrence
-
摘要: 沉积物孔隙水地球化学是天然气水合物勘探与研究的重要手段。为了探究珠江口盆地东南海域GMGS2-09钻孔的沉积物孔隙水地球化学特征及其对埋藏的天然气水合物的指示意义,我们在前人的研究和认知基础上,通过测试该钻孔沉积物孔隙水的氯离子含量、氢氧同位素和阳离子组成来识别天然气水合物的赋存层位。结果表明GMGS2-09钻孔在9~17、47以及100m处存在氯离子浓度的负异常耦合氧同位素的正异常,指示相应的天然气水合物赋存,其中9~17m层位指示结果与实际取样情况完全一致。此外,采用基于水合物晶格的排盐机理推导的经验公式计算显示水合物饱和度在浅表层(17m)最高约为50%,中间以及底层约为20%。Abstract: Geochemistry of pore water of marine sediments playes an important role in gas hydrate research. In order to detect the gas hydrater-bearing layers, geochemical characteristics and their implications for buried gas hydrates are studied with pore water collected from the Site GMGS2-09 in the southeastern part of the Pearl River Mouth Basin. Cations, anions, hydrogen and oxygen isotopic compositions are analyzed and studied upon previous researches. Chloride anomalies coupled with increased δ18O in pore water are observed at the depths of 9~17 meter, in which gas hydrate is recovered, 47 meter and 100 meter, which may indicate the presences of gas hydrate-bearing layers. Besides, gas hydrate saturation calculated indicates that it is 50% in depth of 17 m, and about 20% in depth of 47 m and 100 m.
-
Keywords:
- gas hydrate /
- pore water /
- geochemistry /
- Pearl River Mouth Basin
-
浮游有孔虫壳体元素组成作为重要的海洋环境参数替代性指标,在古海洋学研究中发挥着重要的作用。随着浮游有孔虫壳体元素比值测试技术的快速发展,通过对浮游有孔虫壳体元素比值的分析,取得了一系列重要成果[1-3]。其中,Globigerinoides ruber(白色)和Trilobatus sacculifer壳体作为定量重建地质历史时期表层海水温度和盐度的重要信息载体,得到了广泛的研究和应用[1, 4-5]。然而,在利用G. ruber和T. sacculifer壳体进行测试时,通常忽略G. ruber和T. sacculifer不同形态类型的壳体对重建结果的可能影响。
大部分海洋沉积物样品中G. ruber壳体存在两种形态类型,分别为狭义种(sensu stricto, s.s.)和广义种(sensu lato, s.l.)。根据分类学标准,G. ruber s.s. 壳体的主要形态为:一个近球形房室对称地生长于原有结构上,而形成具有高角度拱形的较大口孔;而G. ruber s.l. 壳体具有相对紧凑的结构特征:一个扁平的房室不对称地生长于原有结构之上,从而形成具有中等角度的拱形和相对较小的口孔[6]。研究发现浮游有孔虫G.ruber壳体的两种形态类型具有不同的稳定同位素组成,且G. ruber s.s.的生活水深浅于G. ruber s.l.,因此两种形态类型的G. ruber壳体记录的海洋环境信息可能存在差异[4, 7-8]。此外,也有研究发现热带和亚热带海区G. ruber s.s.和G. ruber s.l.壳体的元素比值也存在差异[4, 9]。
T. sacculifer作为另外一个重要的浮游有孔虫混合层水种,其壳体在古海洋学研究中也得到了广泛的应用[10-11]。尽管从分类学角度来看,T. sacculifer的分类更加复杂,但其在形态方面的主要区分依据为是否具有最后一个似袋状房室[12]。因此,T. sacculifer从形态学上可以分为T. sacculifer(with sac)和T. sacculifer(without sac)。Elderfield等[11]和 Anand等[13]通过对取自大西洋的沉积岩芯以及沉积物捕获器样品的分析,发现T. sacculifer(with sac)和T. sacculifer(without sac)壳体的元素比值同样存在一定的差异。
已有研究表明有孔虫壳体的Sr/Ca比值在第四纪以来存在着明显的冰期-间冰期变化特征,可能是指示海水Sr/Ca水平的潜在替代性指标[14-15]。此外,有孔虫壳体Sr/Ca比值的变化可能可以指示第四纪冰期旋回中的海平面变化[16]。也有研究发现浮游有孔虫壳体的Sr/Ca受海水温度和盐度等因素的影响[17]。因此,有孔虫壳体Sr/Ca是古海洋学研究的潜在指标之一。本文通过西菲律宾海MD06-3047B岩芯中G. ruber s.s.和G. ruber s.l.以及T. sacculifer
(with sac)和T. sacculifer(without sac)壳体Sr/Ca比值的测试分析,探讨它们之间是否存在着显著性差异,并分析不同形态类型壳体Sr/Ca比的影响因素,为未来利用两个浮游有孔虫表层水种在该区域开展古海洋学工作提供借鉴。 1. 材料与方法
1.1 研究材料
MD06-3047B岩芯(17º00.44′N、124º47.93′E)位于吕宋岛以东约240 km的西菲律宾海本哈姆高原(图1a),水深2510 m。该沉积岩芯沉积连续, 没有发现明显的沉积间断以及浊流沉积层,沉积柱状样主要由黄色粉砂质泥组成。根据前人研究,西菲律宾海现代碳酸盐溶跃面深度约为3400 m [18],MD06-3047B孔位于海区溶跃面深度之上,因此该沉积物岩芯中有孔虫保存程度较好[19]。在本次研究中,我们选取钻孔岩芯上部60 cm,按4 cm间隔取样,取得15个层位的样品。每个层位样品分别挑选30~50枚粒径范围为250~300 μm的G. ruber s.s.、G. ruber s.l.、T. sacculifer(with sac)和T. sacculifer
(without sac)壳体(图2)。并对这59个有孔虫样品(G. ruber s.s.有一层位缺失)进行Sr/Ca比值测试。尽管G. ruber和T. sacculifer的生活水深存在差异,但两者的平均钙化深度均位于混合层内[7, 13],该层内海水温度和盐度随深度的变化较小(图1b)。 1.2 壳体元素测试
有孔虫壳体的清洗主要依据Barker等[21]的方法。首先,将有孔虫壳体在显微镜下压碎,保证每个房室均被打开;分别对每一个有孔虫样品用去离子水进行超声清洗5次、乙醇(优级纯)超声清洗2 次、去离子水清洗2 次,用以去除黏土等;用加热的H2O2缓冲溶液进行氧化处理,并用去离子水进行清洗,以去除有机质等;在镜下剔出非有孔虫壳体碎片的杂物(暗色矿物、絮尘等);转移并进行淋洗保存等待上机测试。元素测试在中国科学院海洋研究所电感耦合等离子发射光谱仪(ICP-OES)上进行。通过对标准溶液(Sr/Ca=1.20 mmol/mol)进行45次重复测试分析,得到Sr/Ca测试的标准偏差为1.1% (1σ)。
1.3 统计分析
为了从统计学角度分析G.ruber和T. sacculifer
不同形态类型壳体的Sr/Ca比值差异,我们依照Antonarakou等[8]的方法,对MD06-3047B岩芯中上述4类有孔虫壳体的Sr/Ca测试结果进行韦尔奇检验。首先,假设相比较的两组数据均值结果相当,如果G.ruber s.s.和G. ruber s.l.或T. sacculifer (with sac)和T. sacculifer(without sac)壳体的Sr/Ca结果相当,即接受虚假设(H=H0),说明G.ruber或T. sacculifer不同形态类型的Sr/Ca比值的差异不大;相反,如果对比结果存在显著差异,即拒绝虚假设(H=Ha),说明不同形态类型壳体的Sr/Ca存在显著差异。 2. 壳体Sr/Ca结果
MD06-3047B孔的年龄框架由Jia等建立[19],主要依据全球大洋底栖有孔虫氧同位素堆叠曲线[22],并辅以粉红色G. ruber末现面(~120 ka)作为参考点[23]而确立。本次研究的样品时间跨度约48 ka,覆盖了MIS 3-1。图3所示为MD06-3047B孔MIS 3期以来的G.ruber s.s. 和G. ruber s.l. 以及T. sacculifer(with sac)和T. sacculifer(without sac)壳体的Sr/Ca比值。48 ka以来 G.ruber s.s.和G. ruber s.l.壳体的Sr/Ca整体上具有相同的变化趋势,其差值变化范围为−0.006~0.022 mmol/mol,平均差值约0.006 mmol/mol。G. ruber(白色)的两种形态类型壳体的Sr/Ca比值并没有表现出明显的阶段性高低变化规律,但G.ruber s.l.壳体Sr/Ca波动幅度相对较大。T. sacculifer(with sac)和T. sacculifer(without sac)壳体Sr/Ca比值存在差异,整体上T. sacculifer(with sac)壳体的Sr/Ca比值相对较高,两者的差值变化范围为−0.008~0.034 mmol/mol,平均约0.017mmol/mol。
图 3 MD06-3047B孔G. ruber s.s.、G. ruber s.l.、T. sacculifer(with sac)和T. sacculifer(without sac)壳体的Sr/Ca比值,以及G. ruber和T. sacculifer不同形态类型壳体Sr/Ca差值Figure 3. Shell Sr/Ca of G. ruber s.s., G. ruber s.l., T. sacculifer (with sac), and T. sacculifer (without sac) from Core MD06-3047B, and the difference in shell Sr/Ca between morphotypes of the species3. 讨论
3.1 G.ruber和T. sacculifer 不同形态类型壳体Sr/Ca差异
如图3所示,G.ruber s.s.和G. ruber s.l.壳体Sr/Ca变化趋势较为一致,平均差值仅约0.006 mmol/mol,小于Sr/ Ca比值的测试误差(± 0.011 mmol/mol)。T. sacculifer(with sac)和T. sacculifer(without sac)壳Sr/Ca平均差值为约0.017 mmol/mol,大于测试误差(± 0.011 mmol/mol)。同时,统计学韦尔奇检验结果也显示G.ruber s.s.和G. ruber s.l. 壳体Sr/Ca平均值差异结果不具有显著差异;而T. sacculifer(with sac)和T. sacculifer(without sac)壳Sr/Ca平均值差异显著(p<0.05,表1)。综上,我们判断在MD06-3047B站位的附近海区G. ruber不同形态类型壳体Sr/ Ca比值的差异较小;而T. sacculifer不同形态类型壳体Sr/Ca的差异较大。因此,在西菲律宾海区对浮游有孔虫表层水种Sr/Ca比值进行测试分析时,如在样品量不足的情况下,可以选择G. ruber的不同形态类型壳体,但需要尽量选择T. sacculifer(with sac)或T. sacculifer
(without sac)的单一形态类型壳体,以免造成结果偏差。 表 1 MD06-3047B孔G. ruber s.s.和G. ruber s.l.以及T. sacculifer(with sac)和T. sacculifer(without sac)壳体Sr/Ca平均值(mmol/mol)以及韦尔奇检验结果(p<0.05)Table 1. Mean shell Sr/Ca (mmol/mol) of G. ruber s.s., G. ruber s.l., T. sacculifer (with sac), and T. sacculifer (without sac) of Core MD06-3047B with the results of the Welch’s t-test at p<0.05 levelSr/Ca Sr/Ca G.ruber s.s. 1.393 G.sacculifer (without sac) 1.383 G.ruber s.l. 1.387 G.sacculifer (with sac) 1.401 H H0 H Ha 注:其中H = H0表示接受虚假设,H = Ha表示拒绝虚假设。 3.2 不同形态类型壳体Sr/Ca差异的影响因素
浮游有孔虫壳体Sr/Ca主要受到海水Sr/Ca、海水温度、盐度和溶解作用等因素的影响[17, 24-27]。根据前人关于海水Sr/Ca的冰期-间冰期变化特征的研究可知,海水Sr/Ca在冰期时高,而在间冰期时低[28-29]。这一特征与我们的结果并不完全一致(图4),特别是MIS 3期的Sr/Ca整体低于MIS 1期。此外,不同形态类型壳体的Sr/Ca变化并没有表现出完全一致的变化,也说明其他因素在其中发挥作用。因此,海水Sr/Ca可能不是影响研究区浮游有孔虫壳体Sr/Ca变化特征的唯一因素。有研究表明,G.ruber
壳体Sr/Ca可能受到海水温度和盐度的影响,而受pH的影响较小[26],随着海水温度和盐度的升高,G.ruber壳体Sr/Ca呈增大趋势。T. sacculifer壳体Sr/Ca同样受到温度和盐度的影响[27],海水温度升高,T. sacculifer壳体Sr/Ca越大,而盐度越高,Sr/Ca越小。 如图3和图4所示,同一粒径范围下,MIS 3期以来G. ruber两种形态类型的壳体Sr/ Ca十分相似,说明两者的变化可能受到相同影响因素的控制。而T. sacculifer(with sac)和T. sacculifer(without sac)壳体Sr/Ca存在显著差异(本文3.1节),可能指示二者受不同因素的影响。进一步将G.ruber s.s.、G. ruber s.l.、T. sacculifer(with sac)和T. sacculifer(without sac)壳体Sr/Ca进行对比可发现(图4),G.ruber s.s.、G. ruber s.l.和T. sacculifer(without sac)壳体Sr/Ca呈现较为一致的变化趋势,并两两进行线性相关分析,发现三组记录之间具有较好的相关性,因此这两个种的3种形态类型壳体Sr/Ca的记录可能受到相同因素的影响。为方便分析,将这三组记录进行堆叠平均(Sr/Castack),并与同站位48 ka以来的表层海水温度和盐度等古海洋学记录[19]进行对比和线性相关分析。结果显示Sr/Castack与表层海水温度呈现线性正相关(图5a),从整体趋势上,G.ruber s.s.、G. ruber s.l.和T. sacculifer (without sac)的Sr/Ca的增大对应表层海水温度的升高(图4)。而Sr/Castack与表层海水盐度替代性指标(δ18Osw-ice)之间不具有明显的相关性(图5b),并且G.ruber s.s.、G. ruber s.l.和T. sacculifer(without sac)壳体Sr/Ca与表层海水盐度的变化趋势也存在较大差异(图4)。因此,研究区G.ruber s.s.、G. ruber s.l.和T. sacculifer(without sac)壳体的Sr/Ca变化可能主要受到表层海水温度的影响,而受到盐度的影响较小。其中,Sr/Ca的高值并未完全出现在MIS 1期,而整体出现在末次冰消期,即MIS 2期向MIS 1期的过渡阶段(图4)。这可能是由于太平洋区域存在显著的末次冰消期表层海水温度显著增暖的特征[30]。此外,MD06-3047B孔年龄框架由底栖有孔虫氧同位素建立,而根据前人工作,研究区SST在变化特征上超前于底栖有孔虫氧同位素的变化[31]。
图 5 MD06-3047B孔浮游有孔虫表层水种Sr/Ca与表层海水温度和盐度记录[19]的线性相关分析SST为表层海水温度,δ18Osw-ice为表层海水盐度替代性指标(高值指示高盐),Sr/Castack为G.ruber s.s.、G. ruber s.l.和T. sacculifer(without sac)壳体Sr/Ca记录的堆叠结果。Figure 5. Linear correlation of shell Sr/Ca ratio of planktonic surface-water-dwelling foraminifer species and sea surface temperature and salinity[19] from Core MD06-3047BSST: sea surface temperature, δ18Osw-ice: the proxy of sea surface salinity (high δ18Osw-ice means higher salinity), Sr/Castack: the stack of Sr/Ca records of G.ruber s.s., G. ruber s.l., and T. sacculifer (without sac).由于T. sacculifer(with sac)壳体Sr/Ca与G.ruber s.s.、G. ruber s.l.和T. sacculifer(without sac)的变化趋势存在明显差异(图4),故将其单独进行分析。如图5c和图5d所示,T. sacculifer (with sac)壳体Sr/Ca与表层海水温度记录无显著相关性,而与表层海水盐度呈反相关。因此,T. sacculifer(with sac)壳体的Sr/Ca可能主要受表层海水盐度的影响,这一关系与Dissard等的研究结果一致[27]。
4. 结论
通过对西太平洋暖池北部边缘海区MD06-3047B孔中浮游有孔虫表层水种G.ruber(G.ruber s.s.与G. ruber s.l.)和T. sacculifer(T. sacculifer(with sac)与T. sacculifer(without sac))壳体的Sr/ Ca进行分析,发现MIS 3期以来,G. ruber不同形态类型壳体的Sr/ Ca差异较小;而T. sacculifer不同形态类型壳体的Sr/ Ca相差较大。因此,在利用G. ruber和T. sacculifer 壳体的Sr/Ca结果重建古海洋信息的过程中,如在样品量有限的条件下,可以选择G. ruber壳体不同形态类型进行测试,但应尽量选择T. sacculifer单一形态类型壳体。不同形态类型壳体Sr/Ca与海水温度和盐度古海洋学记录对比显示,研究区G.ruber s.s.、G. ruber s.l.和T. sacculifer(without sac)壳体Sr/Ca可能主要受海水温度的影响;T. sacculifer(with sac)壳体Sr/Ca主要受到盐度的影响。
致谢:感谢中法合作MARCO POLO 2航次的全体工作人员在取样过程中提供的帮助。
-
-
[1] Kvenvolden K A. Gas hydrates-geological perspective and global change[J]. Reviews of Geophysics, 1993, 31(2): 173-173. doi: 10.1029/93RG00268
[2] Hesse R. Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface: What have we learned in the past decade?[J]. Earth-Science Reviews, 2003, 61(1): 149-179. http://www.sciencedirect.com/science/article/pii/S0012825202001174
[3] Boswell R, Collett T S. Current perspectives on gas hydrate resources[J]. Energy and Environmental Science, 2011, 4(4): 1206-1215. doi: 10.1039/C0EE00203H
[4] Chong Z R, Yang S H B, Ba P, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges[J]. Applied Energy, 2016, 162: 1633-1652. doi: 10.1016/j.apenergy.2014.12.061
[5] Mitchell J F. The "greenhouse" effect and climate change[J]. Reviews of Geophysics, 1989, 27(1): 115-139. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_733ecfb1f71e310b64f2e409cb5d33cc
[6] Ruppel C. Methane hydrates and contemporary climate change[J]. Nature Education Knowledge, 2011, 3(10): 29. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ029384431/
[7] Wallmann K J, Dallimore S, Biastoch A, et al. Assessment of the Sensitivity and Response of Methane Gas Hydrate to Global Climate Change[J]. New Phytologist, 2014, 191(2): 376-390.
[8] Brown P J. Sanders R, McDonagh E, et al. Impacts and effects of ocean warming on carbon management including methane hydrates[R]. Explaining ocean warming: Causes, scale, effects and consequences, 2016, IUCN: 373-388.
[9] Borowski W S, Paull C K, Ussler W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate[J]. Geology, 1996, 24(7): 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2
[10] Borowski W S, Paull C K, Ussler W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates[J]. Marine Geology, 1999, 159(1): 131-154. https://www.onacademic.com/detail/journal_1000034148296210_469e.html
[11] Milkov A V, Claypool G E, Lee Y J, et al. In situ methane concentrations at Hydrate Ridge, offshore Oregon: New constraints on the global gas hydrate inventory from an active margin[J]. Geology, 2003, 31(10): 833-836. doi: 10.1130/G19689.1
[12] Torres M, Wallmann K, Tréhu A, et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon[J]. Earth and Planetary Science Letters, 2004, 226(1): 225-241. doi: 10.1016-j.epsl.2005.05.044/
[13] Tomaru H, Torres M E, Matsumoto R, et al. Effect of massive gas hydrate formation on the water isotopic fractionation of the gas hydrate system at Hydrate Ridge, Cascadia margin, offshore Oregon[J]. Geochemistry Geophysics Geosystems, 2006, 7(10). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2005GC001207
[14] Kim J H, Torres M E, Hong W L, et al. Pore fluid chemistry from the second gas hydrate drilling expedition in the Ulleung Basin (UBGH2): Source, mechanisms and consequences of fluid freshening in the central part of the Ulleung Basin, East Sea[J]. Marine and Petroleum Geology, 2013, 47(47): 99-112. http://www.sciencedirect.com/science/article/pii/S0264817213000056
[15] 杨涛, 叶鸿, 赖亦君.南海北部陆坡天然气水合物的沉积物孔隙水地球化学研究进展[J].海洋地质与第四纪地质, 2017, 37(5):48-58. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=86191583-ebd6-4ca4-bf79-024ff81d7dc7 YANG Tao, YE Hong, LAI Yijun. Pore water geochemistry of the gas hydrate bearing zone on northern slope of the South China Sea[J]. Marine Geology and Quaternary Geology, 2017, 37(5):48-58. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=86191583-ebd6-4ca4-bf79-024ff81d7dc7
[16] Jiang S Y, Yang T, Ge L, et al. Geochemistry of pore waters from the Xisha Trough, northern South China Sea and their implications for gas hydrates[J]. Journal of Oceanography, 2008, 64(3): 459-470. doi: 10.1007/s10872-008-0039-8
[17] Wu N Y, Zhang H Q, Yang S X et al. Gas hydrate system of Shenhu area, northern South China Sea: geochemical results[J]. Journal of Geological Research, 2011, 2011:370298.
[18] Zhang G X, Liang J Q, Lu J A, et al. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2015, 67: 356-367. doi: 10.1016/j.marpetgeo.2015.05.021
[19] Luo M, Chen L, Wang S, et al. Pockmark activity inferred from pore water geochemistry in shallow sediments of the pockmark field in southwestern Xisha Uplift, northwestern South China Sea[J]. Marine and Petroleum Geology, 2013, 48: 247-259. doi: 10.1016/j.marpetgeo.2013.08.018
[20] Hu Y, Feng D, Liang Q, et al. Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea[J]. Deep Sea Research Part Ⅱ Topical Studies in Oceanography, 2015, 122: 84-94. doi: 10.1016/j.dsr2.2015.06.012
[21] Ye H, Yang T, Zhu G R, et al. Pore water geochemistry in shallow sediments from the northeastern continental slope of the South China Sea[J]. Marine and Petroleum Geology, 2016, 75: 68-82. doi: 10.1016/j.marpetgeo.2016.03.010
[22] Yang T, Jiang S Y, Yang J H, et al. Dissolved inorganic carbon (DIC) and its carbon isotopic composition in sediment pore waters from the Shenhu area, northern South China Sea[J]. Journal of Oceanography, 2008, 64(2): 303-310. doi: 10.1007/s10872-008-0024-2
[23] Yang T, Jiang S Y, Ge L, et al. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence[J]. Chinese Science Bulletin, 2010, 55(8): 752-760. doi: 10.1007/s11434-009-0312-2
[24] Cao C, Lei H. Geochemical characteristics of pore water in shallow sediments from north continental slope of South China Sea and their significance for natural gas hydrate occurrence[M]. Procedia Environmental Sciences, 2012, 12: 1017-1023.
[25] Wu L S, Yang S X, Liang J Q, et al. Variations of pore water sulfate gradients in sediments as indicator for underlying gas hydrate in Shenhu Area, the South China Sea[J]. Science China Earth Sciences, 2013, 56(4): 530-540. doi: 10.1007/s11430-012-4545-6
[26] Luo M, Chen L, Tong H, et al. Gas hydrate occurrence inferred from dissolved Cl-concentration and δ18O values of pore water and dissolved sulfate in the shallow sediments of the pockmark filed in the southwestern Xisha uplift, northern South China Sea[J]. Energies, 2014, 7(6): 3886-3899. doi: 10.3390/en7063886
[27] Feng D, Cheng M, Kiel S, et al. Using Bathymodiolus tissue stable carbon, nitrogen and sulfur isotopes to infer biogeochemical process at a cold seep in the South China Sea[J]. Deep-Sea Research Part Ⅰ-Oceanographic Research Papers, 2015, 104: 52-59. doi: 10.1016/j.dsr.2015.06.011
[28] Lin Z, Sun X, Lu Y, et al. Stable isotope patterns of coexisting pyrite and gypsum indicating variable methane flow at a seep site of the Shenhu area, South China Sea[J]. Journal of Asian Earth Sciences, 2016, 123: 213-223. doi: 10.1016/j.jseaes.2016.04.007
[29] 龚跃华, 杨胜雄, 王宏斌, 等.南海北部神狐海域天然气水合物成藏特征[J].现代地质, 2009, 23(2): 210-216. doi: 10.3969/j.issn.1000-8527.2009.02.003 GONG Yuehua, YANG Shengxiong, WANG Hongbin, et al. Gas hydrate reservoir characteristics of Shenhu Area, north slope of the South China Sea[J]. Geoscience, 2009, 23(2): 210-216. doi: 10.3969/j.issn.1000-8527.2009.02.003
[30] 姚伯初.南海的天然气水合物矿藏[J].热带海洋学报, 2001, 20(2): 20-28. doi: 10.3969/j.issn.1009-5470.2001.02.004 YAO Bochu. The gas hydrate in the South China Sea[J]. J. Trop. Oceanogr, 2001, 20(2): 20-28. doi: 10.3969/j.issn.1009-5470.2001.02.004
[31] 陈多福, 李绪宣, 夏斌, 南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J].地球物理学报, 2004, 47(3): 483-489. doi: 10.3321/j.issn:0001-5733.2004.03.018 CHEN Duofu, LI Xuxuan. XIA Bin. Distribution of gas hydrate stable zones and resource prediction in the Qiongdongnan Basin of the South China Sea[J]. Chinese Journal Geophysics, 2004, 47(3): 483-489. doi: 10.3321/j.issn:0001-5733.2004.03.018
[32] 姚伯初.南海天然气水合物的形成和分布[J].海洋地质与第四纪地质. 2005, 25(2): 81-90. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=a561892b-f645-4747-bdd5-c9abe883d163 YAO Bochu. The forming condition and distribution characteristics of the gas hydrate in the South China Sea[J]. Marine Geology and Quaternary Geology, 2005, 25(2): 81-90. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=a561892b-f645-4747-bdd5-c9abe883d163
[33] Jiang S Y, Yang T, Ge L, et al. Geochemical anomaly of pore waters and implications for gas hydrate occurrence in the South China Sea[R]//Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), 2008.
[34] Zhang G X, Chen F, Yang S X, et al. Accumulation and exploration of gas hydrate in deep-sea sediments of northern South China Sea[J]. Chinese Journal of Oceanology and Limnology, 2012, 30: 876-888. doi: 10.1007/s00343-012-1313-6
[35] Yang S X, Ming Z, Liang J Q, et al. Preliminary results of China's third gas hydrate drilling expedition: A critical step from discovery to development in the South China Sea[J]. Fire in the Ice, 2015, 15(2): 1-5.
[36] Liang Q Y, Hu Y, Feng D, et al. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: Constraints on fluid sources, formation environments, and seepage dynamics[J]. Deep-sea Research Part Ⅰ-Oceanographic Research Papers, 2017, 124: 31-41. doi: 10.1016/j.dsr.2017.04.015
[37] 吴能友, 黄丽, 胡高伟, 等.海域天然气水合物开采的地质控制因素和科学挑战[J].海洋地质与第四纪地质, 2017, 37(5):1-11. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=7ac0922f-09a0-4694-a851-841b8fc0bf7f WU Nengyou, HUANG Li, HU Gaowei, et al. Geological controlling factors and scientific challenges for offshore gas hydrate exploration[J]. Marine Geology and Quaternary Geology, 2017, 37(5):1-11. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=7ac0922f-09a0-4694-a851-841b8fc0bf7f
[38] 张光学, 梁金强, 陆敬安, 等.南海东北部陆坡天然气水合物藏特征[J].天然气工业, 2014, 34(11): 1-10. doi: 10.3787/j.issn.1000-0976.2014.11.001 ZHANG Guangxue, LIANG Jinqiang, LU Jingan, et al. Characteristics of natural gas hydrate reservoirs on the northeastern slope of the South China Sea[J]. Natural Gas Industry, 2014, 34(11): 1-10. doi: 10.3787/j.issn.1000-0976.2014.11.001
[39] Zhang G X, Yang S X, Zhang M, et al. GMGS2 Expedition Investigates Rich and Complex Gas Hydrate Environment in the South China Sea[J]. Fire in the Ice, 2014, 14(1).
[40] 杨涛, 薛紫晨, 杨竞红, 等.南海北部地区海洋沉积物中孔隙水的氢、氧同位素组成特征[J].地球学报, 2003, 24(6):511-514. doi: 10.3321/j.issn:1006-3021.2003.06.005 YANG Tao, XUE Zichen, YANG Jinghong, et al. Oxygen and Hydrogen Isotopic Compositions of Pore Water from Marine Sediments in the Northern South China Sea[J]. Acta Geosicientia Sinica, 2003, 24(6): 511-514. doi: 10.3321/j.issn:1006-3021.2003.06.005
[41] Kastner M, Elderfield H, Martin J B, et al. In Diagenesis and interstitial-water chemistry at the Peruvian continental margin—major constituents and strontium isotopes[C]// Proceedings of the Ocean Drilling Program, Scientific Results, 1990: 413-440.
[42] Ayalon A, Longstaffe F J. Oxygen isotope studies of diagenesis and pore-water evolution in the western canada sedimentary basin: evidence from the upper cretaceous basal belly river sandstone, alberta[J]. Journal of Sedimentary Research, 1988, 58(3): 489-505.
[43] Burns S J. Can diagenetic precipitation of carbonate nodules affect pore-water oxygen isotope ratios?[J]. Journal of Sedimentary Research, 1998, 68(1): 302-305. http://www.researchgate.net/publication/250082522_Can_Diagenetic_Precipitation_of_Carbonate_Nodules_Affect_Pore-Water_Oxygen_Isotope_Ratios
[44] Matsumoto R, Borowski W S, Matsumoto R, et al. Gas hydrate estimates from newly determined oxygen isotopic fractionation (α(GH-IW)) and δ18O anomalies of the interstitial waters: Leg 164, Blake Ridge[C]// Proceedings of the Ocean Drilling Program Scientific Results, 2000, 164: 59-66.
[45] Malinverno A, Kastner M, Torres M E, et al. Gas hydrate occurrence from pore water chlorinity and downhole logs in a transect across the northern Cascadia margin (Integrated Ocean Drilling Program Expedition 311)[J]. Journal of Geophysical Research Solid Earth, 2008, 113(B8). doi: 10.1029-2008JB005702/