冷泉活动区气泡羽状流数值模型研究

李灿苹, 勾丽敏, 尤加春, 欧触灵

李灿苹, 勾丽敏, 尤加春, 欧触灵. 冷泉活动区气泡羽状流数值模型研究[J]. 海洋地质与第四纪地质, 2017, 37(5): 141-150. DOI: 10.16562/j.cnki.0256-1492.2017.05.014
引用本文: 李灿苹, 勾丽敏, 尤加春, 欧触灵. 冷泉活动区气泡羽状流数值模型研究[J]. 海洋地质与第四纪地质, 2017, 37(5): 141-150. DOI: 10.16562/j.cnki.0256-1492.2017.05.014
LI Canping, GOU Limin, YOU Jiachun, OU Chuling. STUDY ON NUMERICAL MODELS ABOUT BUBBLE PLUMES IN THE COLD SEEPAGE ACTIVE REGION[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 141-150. DOI: 10.16562/j.cnki.0256-1492.2017.05.014
Citation: LI Canping, GOU Limin, YOU Jiachun, OU Chuling. STUDY ON NUMERICAL MODELS ABOUT BUBBLE PLUMES IN THE COLD SEEPAGE ACTIVE REGION[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 141-150. DOI: 10.16562/j.cnki.0256-1492.2017.05.014

冷泉活动区气泡羽状流数值模型研究

基金项目: 

中央高校基本科研业务费专项 2652013122

广东省科技计划项目 2014A010103030

国家自然科学基金项目 41306050

广东省自然科学基金 2015A030313617

详细信息
    作者简介:

    李灿苹(1977—),女,副教授,主要从事天然气水合物地震勘探数值模拟研究,E-mail: canpinglihydx@163.com

    通讯作者:

    勾丽敏(1972—),女,讲师,主要从事地震资料处理及散射波地震勘探研究,E-mail:goulm@163.com

  • 中图分类号: P738

STUDY ON NUMERICAL MODELS ABOUT BUBBLE PLUMES IN THE COLD SEEPAGE ACTIVE REGION

  • 摘要: 羽状流对天然气水合物的识别起到了间接指示作用,为研究冷泉活动区气泡羽状流产生的地震响应,需建立符合实际羽状流特征的模型。为此,参考实际羽状流赋存状态,结合含气泡水体特征,在已建立模型基础上,从羽状流气泡的垂直运移规律、分布特点及羽状流外观特征上对模型进行了改进,先后获得3个羽状流模型,最后的模型Ⅲ更接近实际羽状流赋存特征。通过与实际羽状流的对比,讨论分析了模型Ⅲ的合理性,并得出结论:所建模型体现了实际羽状流气泡的本质特征,并包含了更为复杂的气泡含量变化,可用于进一步深入研究羽状流地震响应特征,也为气泡羽状流的地震识别及天然气水合物的相关研究提供了较好的数值模型。
    Abstract: Bubble plume is an indirect indicator to gas hydrate. In order to study the seismic responses produced by bubble plumes in a cold seepage active region, a model well marching the characteristics of the actual plume needs to be established. Taking the actual occurrence of the bubble plume as a reference and taking bubble water characteristics into account, we improved the vertical distribution pattern of the plume bubbles and the appearance of plume for established models following the principles of vertical migration law. At last, three models are worked out. Testing shows that the Model Ⅲ is more accurate in presenting the actual occurrence characteristics of the plume rather than the Model Ⅰ and Model Ⅱ. Rational discussion is made by comparing the model with the real plume. And it is concluded that the model established well reflects the essential characteristics of the bubbles in plume, and contains more complex changes in bubble content. Therefore, it can be used to further study the seismic response characteristics of plume, and make it possible to identify bubble plumes for research and evaluation of natural gas hydrate deposits.
  • 图  1   我国南海某测区羽状流地震偏移剖面

    (由中国地质大学(北京)刘学伟教授提供)

    Figure  1.   The seismic migration section in some areas of the South China Sea

    (The data is provided by Professor Liu Xuewei from China University of Geosciences in Beijing)

    图  2   羽状流模型建立流程图

    Figure  2.   The flow chart of plume model building up

    图  3   羽状流模型Ⅰ[24]

    a.水体模型;b.羽状流

    Figure  3.   Model Ⅰof plume a.The water body model; b.The plume

    a. The water body model; b. The plume

    图  4   鄂霍次克海冷泉气泡羽状流[10]

    Figure  4.   Cold seepages and bubble plumes discharged from the Okhotsk Sea

    图  5   重构的羽状流模型(模型Ⅱ)[26]

    a. 海水及羽状流;b.羽状流

    Figure  5.   A plume model (Model Ⅱ) was reconstructed a.Seawater and plume; b.The plume

    a. Seawater and plume; b. The plume

    图  6   不同倾斜角度的羽状流水体模型

    Figure  6.   A plume waterbody model (Model Ⅲ) with different angles of inclination

    图  7   模型Ⅲ垂直形状、一个周期的羽状流水体模型

    Figure  7.   The plume water body model (Model Ⅲ): vertical shape and one cycle

    图  8   模型Ⅲ(图 7)第50炮地震记录

    Figure  8.   The seismic record of the 50th shot corresponding to Model Ⅲ in Fig. 7

    图  9   模型Ⅲ(图 7)偏移叠加剖面

    Figure  9.   The migration stacked section corresponding to Model Ⅲ in Fig. 7

    图  10   挪威斯瓦尔巴特群岛气泡羽状流声呐图[37]

    (声呐频率为12 kHz,水平分辨率为20 m,底部红色为海底)

    Figure  10.   Sonar diagram of bubble plume at Svalbard in Norway

    (The sonar frequency is 12 kHz, and The horizontal resolution is 20 m, and the seafloor is in red at the bottom of the diagram)

    表  1   声速表达式(1)中各参数说明

    Table  1   Explanation of parameters in equation (1) of acoustic velocity

    参量 参量含义 取值 单位
    Cm 气液混合物的声波速度 - m/s
    K 液体体积模量 2.34×109 N/m3
    Kb 气体体积模量 1.4×105 N/m3
    ρ 液体密度 1 023 kg/m3
    ρb 气体密度 1.29 kg/m3
    ω 频率 25 KHz
    a 气泡半径 - m
    σ 液体表面张力 0.073 8 N/m3
    R 假定含气泡两相混合区
    为球形时的半径
    1.0 m
    φ 气泡含量(体积分数) - -
    下载: 导出CSV

    表  2   正演模拟采集参数

    Table  2   Acquisition parameters of forward simulation

    测线长度/m 深度/m 网格剖分 震源主频/Hz 炮间距/m 总炮数 炮点深度/m 道间距/m 排列长度/m 最小偏移距/m 记录长度/s 采样率/ms
    1 000 400 1 m×1 m 140 10 101 0 1 1 000 0 1.6 0.2
    下载: 导出CSV
  • [1] 王秀娟, 吴时国, 王吉亮, 等.南海北部神狐海域天然气水合物分解的测井异常[J].地球物理学报, 2013, 56(8): 2799-2807. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201308028

    WANG Xiujuan, WU Shiguo, WANG Jiliang, et al. Anomalous wireline logging data caused by gas hydrate dissociation in the Shenhu area, northern slope of South China Sea[J]. Chinese Journal of Geophysics, 2013, 56(8): 2799-2807. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201308028

    [2] 王吉亮, 王秀娟, 钱进, 等.裂隙充填型天然气水合物的各向异性分析及饱和度估算--以印度东海岸NGHP01-10D井为例[J].地球物理学报, 2013, 56(4): 1312-1320. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201304025

    WANG Jiliang, WANG Xiujuan, QIAN Jin, et al. Anisotropic analysis and saturation estimation of gas hydrate filled in fractures: a case of site NGHP01-10D, offshore eastern India[J]. Chinese Journal of Geophysics, 2013, 56(4): 1312-1320. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201304025

    [3] 郝召兵, 黄为清, 秦静欣, 等.气体水合物密闭采样原位饱和度评估技术研究[J].地球物理学报, 2013, 56(11): 3917-3921. doi: 10.6038/cjg20131133

    HAO Zhaobing, HUANG Weiqing, QIN Jingxin, et al. Estimation technique for gas hydrate saturation of pressure core samples[J]. Chinese Journal of Geophysics, 2013, 56(11): 3917-3921. doi: 10.6038/cjg20131133

    [4] 卢振权, 何家雄, 金春爽, 等.南海北部陆坡气源条件对水合物成藏影响的模拟研究[J].地球物理学报, 2013, 56(1): 188-194. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201301019

    LU Zhenquan, HE Jiaxiong, JIN Chunshuang, et al. A study of modeling the effects of gas sources on gas hydrate formation in the northern slope of South China Sea[J]. Chinese Journal of Geophysics, 2013, 56(1): 188-194. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201301019

    [5] 张永勤.国外天然气水合物勘探现状及我国水合物勘探进展[J].探矿工程(岩土钻掘工程), 2010, 37(10): 1-8. doi: 10.3969/j.issn.1672-7428.2010.10.001

    ZHANG Yongqin. Exploration current status of the gas hydrate abroad and the progress of the gas hydrate in China[J]. Exploration Engineering (Rock and Soil Drilling and Tunneling), 2010, 37(10): 1-8. doi: 10.3969/j.issn.1672-7428.2010.10.001

    [6] 姚伯初, 杨木壮, 吴时国, 等.中国海域的天然气水合物资源[J].现代地质, 2008, 22(3): 333-341. doi: 10.3969/j.issn.1000-8527.2008.03.001

    YAO Bochu, YANG Muzhuang, WU Shiguo, et al. The gas hydrate resources in the China Seas[J]. Geoscience, 2008, 22(3): 333-341. doi: 10.3969/j.issn.1000-8527.2008.03.001

    [7] 祝有海, 张永勤, 文怀军, 等.青海祁连山冻土区发现天然气水合物[J].地质学报, 2009, 83(11): 1762-1771. doi: 10.3321/j.issn:0001-5717.2009.11.018

    ZHU Youhai, ZHANG Yongqin, WEN Huaijun, et al. Gas hydrates in the Qilian Mountain permafrost, Qinghai, northwest China[J]. Acta Geologica Sinica, 2009, 83(11): 1762-1771. doi: 10.3321/j.issn:0001-5717.2009.11.018

    [8]

    Sauter E J, Muyakshin S I, Charlou J L, et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles[J]. Earth and Planetary Science Letters, 2006, 243(3-4): 354-365. doi: 10.1016/j.epsl.2006.01.041

    [9]

    Shipboard Scientific Party. Preliminary report, drilling gas hydrates on hydrate ridge, Cascadia continental margin[R]. College Station, TX: ODP, 2002.

    [10] 栾锡武, 刘鸿, 岳保静, 等.海底冷泉在旁扫声纳图像上的识别[J].现代地质, 2010, 24(3): 474-480. doi: 10.3969/j.issn.1000-8527.2010.03.009

    LUAN Xiwu, LIU Hong, YUE Baojing, et al. Characteristics of cold seepage on side scan sonar sonogram[J]. Geoscience, 2010, 24(3): 474-480. doi: 10.3969/j.issn.1000-8527.2010.03.009

    [11]

    Sassen R, Losh S L, Cathles Ⅲ L, et al. Massive vein-filling gas hydrate: relation to ongoing gas migration from the deep subsurface in the Gulf of Mexico[J]. Marine and Petroleum Geology, 2001, 18(5): 551-560. doi: 10.1016/S0264-8172(01)00014-9

    [12] Matsumoto R.日本海东缘海洋天然气水合物矿藏之上的甲烷羽状流--地下甲烷运移到浅水的可能机制[J].龚建明译.海洋地质动态, 2006, 22(5): 33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt200605009

    MATSUMOTO R. Methane plumes over a marine gas hydrate system in the eastern margin of Japan Sea[J]. GONG Jianming, trans. Marine Geology Letters, 2006, 22(5): 33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt200605009

    [13]

    Freire A F M, Matsumoto R, Santos L A. Structural-stratigraphic control on the Umitaka Spur gas hydrates of Joetsu Basin in the eastern margin of Japan Sea[J]. Marine and Petroleum Geology, 2011, 28(10): 1967-1978. doi: 10.1016/j.marpetgeo.2010.10.004

    [14]

    Charlou J L, Donval J P, Zitter T, et al. Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2003, 50(8): 941-958. doi: 10.1016/S0967-0637(03)00093-1

    [15]

    Greinert J, Artemov Y, Egorov V, et al. 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: hydroacoustic characteristics and temporal variability[J]. Earth and Planetary Science Letters, 2006, 244(1-2): 1-15. doi: 10.1016/j.epsl.2006.02.011

    [16] 李灿苹, 刘学伟, 赵罗臣.天然气水合物冷泉和气泡羽状流研究进展[J].地球物理学进展, 2013, 28(2): 1048-1056. http://d.old.wanfangdata.com.cn/Periodical/dqwlxjz201302059

    LI Canping, LIU Xuewei, ZHAO Luochen. Progress on cold seeps and bubble plumes produced by gas hydrate[J]. Progress in Geophysics, 2013, 28(2): 1048-1056. http://d.old.wanfangdata.com.cn/Periodical/dqwlxjz201302059

    [17]

    Heeschen K U, Tréhu A M, Collier R W, et al. Distribution and height of methane bubble plumes on the Cascadia Margin characterized by acoustic imaging[J]. Geophysical Research Letters, 2003, 30(12): 1643. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2003GL016974

    [18]

    Tryon M D, Brown K M, Torres M E. Fluid and chemical flux in and out of sediments hosting methane hydrate deposits on hydrate ridge, OR, Ⅱ: hydrological processes[J]. Earth and Planetary Science Letters, 2002, 201(3-4): 541-557. doi: 10.1016/S0012-821X(02)00732-X

    [19]

    Tryon M D, Brown K M. Fluid and chemical cycling at Bush Hill: implications for gas-and hydrate-rich environments[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(12): Q12004. http://cn.bing.com/academic/profile?id=32f8d2e456ac894e8aee807516521e6b&encoded=0&v=paper_preview&mkt=zh-cn

    [20] 邸鹏飞, 冯东, 高立宝, 等.海底冷泉流体渗漏的原位观测技术及冷泉活动特征[J].地球物理学进展, 2008, 23(5): 1592-1602. http://d.old.wanfangdata.com.cn/Periodical/dqwlxjz200805036

    DI Pengfei, FENG Dong, GAO Libao, et al. In situ measurement of fluid flow and signatures of seep activity at marine seep sites[J]. Progress in Geophysics, 2008, 23(5): 1592-1602. http://d.old.wanfangdata.com.cn/Periodical/dqwlxjz200805036

    [21] 刘善琪, 尹凤玲, 朱伯靖, 等.冷泉形成的数值模拟研究[J].地球物理学报, 2015, 58(5): 1731-1741. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201505023

    LIU Shanqi, YIN Fengling, ZHU Bojing, et al. Numerical simulation on the formation of cold seepage[J]. Chinese Journal of Geophysics, 2015, 58(5): 1731-1741. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201505023

    [22] 吴如山, [美]安艺敬一.地震波的散射与衰减[M].李裕澈, 卢寿德译.北京: 地震出版社, 1993: 1-5.

    WU Rushan, AKI K. Scattering and Attenuation of Seismic Waves[M]. LI Yuche, LU Shoude, trans. Beijing: Seismic Press, 1993: 1-5.

    [23]

    You J C, Li C P, Cheng L F, et al. Numerical simulation of methane plumes based on effective medium theory[J]. Arabian Journal of Geosciences, 2015, 8(11): 9089-9100. doi: 10.1007/s12517-015-1916-2

    [24] 李灿苹, 刘学伟, 勾丽敏, 等.冷泉活动区天然气水合物上覆水体中气泡羽状流的数值模拟[J].中国科学:地球科学, 2013, 43(3): 391-399. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201303007

    LI Canping, LIU Xuewei, GOU Limin, et al. Numerical simulation of bubble plumes in overlying water of gas hydrate in the cold seepage active region[J]. Science China: Earth Sciences, 2013, 56(4): 579-587. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201303007

    [25]

    Li C P, Gou L M, You J C, et al. Further studies on the numerical simulation of bubble plumes in the cold seepage active region[J]. Acta Oceanologica Sinica, 2016, 35(1): 118-124, doi: 10.1007/s13131-016-0803-3.

    [26]

    Hu L, Yvon-Lewis S A, Kessler J D, et al. Methane fluxes to the atmosphere from deepwater hydrocarbon seeps in the northern Gulf of Mexico[J]. Journal of Geophysical Research: Oceans, 2012, 117(C1): C01009. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2011JC007208

    [27] 刘海军, 安宇.空化单气泡外围压强分布[J].物理学报, 2004, 53(5): 1406-1411. doi: 10.3321/j.issn:1000-3290.2004.05.027

    LIU Haijun, AN Yu. Pressure distribution outside a single cavitation bubble[J]. Acta Physica Sinica, 2004, 53(5): 1406-1412. doi: 10.3321/j.issn:1000-3290.2004.05.027

    [28] 姚文苇.气泡对声传播影响的研究[J].陕西教育学院学报, 2008, 24(1): 107-109. http://d.old.wanfangdata.com.cn/Periodical/shanxjyxyxb200801028

    YAO Wenwei. Effect of bubble on propagation of acoustic wave[J]. Journal of Shaanxi Institute of Education, 2008, 24(1): 107-109. http://d.old.wanfangdata.com.cn/Periodical/shanxjyxyxb200801028

    [29] 徐麦容, 刘成云.水中浮升气泡的半径和速度变化[J].大学物理, 2008, 27(11): 14-17. doi: 10.3969/j.issn.1000-0712.2008.11.005

    XU Mairong, LIU Chengyun. The change of radius and velocity of the rising bubble in water[J]. College Physics, 2008, 27(11): 14-17. doi: 10.3969/j.issn.1000-0712.2008.11.005

    [30] 刘伯胜, 雷家熠.水声学原理[M]. 2版.哈尔滨:哈尔滨工程大学出版社, 2010: 6-15.

    LIU Bosheng, LEI Jiayi. The Principle of Acoustics[M]. 2nd ed. Harbin: Harbin Engineering University Press, 2010: 6-15.

    [31] 李灿苹, 刘学伟, 杨丽, 等.气泡半径和含量对含气泡海水声波速度的影响[J].现代地质, 2010, 24(3): 528-533. doi: 10.3969/j.issn.1000-8527.2010.03.017

    LI Canping, LIU Xuewei, YANG Li, et al. Study on the bubble radius and content effect on the acoustic velocity of seawater with bubbles[J]. Geoscience, 2010, 24(3): 528-533. doi: 10.3969/j.issn.1000-8527.2010.03.017

    [32] 李灿苹, 王南萍, 李志宏. Von Karman型自相关函数模拟随机介质[J].物探与化探, 2010, 34(1): 98-102. http://d.old.wanfangdata.com.cn/Periodical/wtyht201001021

    LI Canping, WANG Nanping, LI Zhihong, et al. The application of Von Karman type autocorrelation function to modeling random media[J]. Geophysical and Geochemical Exploration, 2010, 34(1): 98-102. http://d.old.wanfangdata.com.cn/Periodical/wtyht201001021

    [33] 鞠花, 陈刚, 李国栋.静水中气泡上升运动特性的数值模拟研究[J].西安理工大学学报, 2011, 27(3): 344-349. doi: 10.3969/j.issn.1006-4710.2011.03.019

    JU Hua, CHEN Gang, LI Guodong. Research on numerical simulation of motion behaviors of single bubble rising in still water[J]. Journal of Xi'an University of Technology, 2011, 27(3): 344-349. doi: 10.3969/j.issn.1006-4710.2011.03.019

    [34] 袁文俊, 尚亚东, 黄勇, 等.某些常微分方程的亚纯解表示与应用[J].中国科学:数学, 2013, 43(6): 563-575. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ca201306004

    YUAN Wenjun, SHANG Yadong, HUANG Yong, et al. The representation of meromorphic solutions to certain ordinary differential equations and its applications[J]. Scientia Sinica (Mathematica), 2013, 43(6): 563-575. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ca201306004

    [35] 夏洁, 庞兆君, 金栋平.面内弹性绳系卫星系统的内共振[J].振动工程学报, 2012, 25(3): 232-237. doi: 10.3969/j.issn.1004-4523.2012.03.002

    XIA Jie, PANG Zhaojun, JIN Dongping. Inner resonance of an in-plane elastic tethered satellite system[J]. Journal of Vibration Engineering, 2012, 25(3): 232-237. doi: 10.3969/j.issn.1004-4523.2012.03.002

    [36] 张志涌.精通MATLAB R2011a[M].北京:北京航空航天大学出版社, 2011: 10-30.

    ZHANG Zhiyong. Mastering MATLAB R2011a[M]. Beijing: Beihang University Press, 2011: 10-30.

    [37]

    Westbrook G K, Thatcher K E, Rohling E J, et al. Escape of methane gas from the seabed along the West Spitsbergen continental margin[J]. Geophysical Research Letters, 2009, 36(15): L15608. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2009GL039191

图(10)  /  表(2)
计量
  • 文章访问数:  2504
  • HTML全文浏览量:  594
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-31
  • 修回日期:  2017-07-02
  • 刊出日期:  2017-10-27

目录

    /

    返回文章
    返回