基于测井与地震多属性分析神狐海域天然气水合物分布特征

靳佳澎, 王秀娟, 陈端新, 郭依群, 苏丕波, 梁金强, 钱进

靳佳澎, 王秀娟, 陈端新, 郭依群, 苏丕波, 梁金强, 钱进. 基于测井与地震多属性分析神狐海域天然气水合物分布特征[J]. 海洋地质与第四纪地质, 2017, 37(5): 122-130. DOI: 10.16562/j.cnki.0256-1492.2017.05.012
引用本文: 靳佳澎, 王秀娟, 陈端新, 郭依群, 苏丕波, 梁金强, 钱进. 基于测井与地震多属性分析神狐海域天然气水合物分布特征[J]. 海洋地质与第四纪地质, 2017, 37(5): 122-130. DOI: 10.16562/j.cnki.0256-1492.2017.05.012
JIN Jiapeng, WANG Xiujuan, CHEN Duanxin, GUO Yiqun, SU Pibo, LiANG Jinqiang, QIAN Jin. DISTRIBUTION OF GAS HYDRATE IN SHENHU AREA: IDENTIFIED WITH WELL LOG AND SEISMIC MULTI-ATTRIBUTES[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 122-130. DOI: 10.16562/j.cnki.0256-1492.2017.05.012
Citation: JIN Jiapeng, WANG Xiujuan, CHEN Duanxin, GUO Yiqun, SU Pibo, LiANG Jinqiang, QIAN Jin. DISTRIBUTION OF GAS HYDRATE IN SHENHU AREA: IDENTIFIED WITH WELL LOG AND SEISMIC MULTI-ATTRIBUTES[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 122-130. DOI: 10.16562/j.cnki.0256-1492.2017.05.012

基于测井与地震多属性分析神狐海域天然气水合物分布特征

基金项目: 

国家自然科学基金项目 41676041

国家自然科学基金项目 41676040

中国地质调查局南海水合物勘探项目 DD20160211

详细信息
    作者简介:

    靳佳澎(1992—),男,硕士研究生,主要从事天然气水合物储层的地震特征研究,E-mail:jinjiapeng15@163.com

    通讯作者:

    王秀娟(1976—),女,研究员,主要从事地震反演、解释和天然气水合物研究,E-mail:wangxiujuan@qdio.ac.cn

  • 中图分类号: P738

DISTRIBUTION OF GAS HYDRATE IN SHENHU AREA: IDENTIFIED WITH WELL LOG AND SEISMIC MULTI-ATTRIBUTES

  • 摘要: 我国在神狐海域钻探发现了高饱和度天然气水合物,由于该地区受迁移峡谷影响,水合物在空间的分布变化较大。本文把测井数据和地震数据相结合识别了BSR并解释了侵蚀面等层位,沿水合物稳定带底界提取多种属性,并对属性结果进行优化分析。发现振幅类属性对水合物显示较为敏感,不同站位水合物矿体展布特征不同。在W19井和SC-02井水合物矿体呈马蹄状分布,W18井矿体呈斑点状分布,分别位于埋藏水道天然堤的局部高点和水道头部高点上,矿体形态与构造高点形态一致。测井异常指示的水合物层在SC-02井伽马值较高,而W18和W19井水合物层伽马值较低,表明不同站位含水合物层泥质含量不同。而地震解释和属性分析发现水合物层位于一个规模较大的气烟囱构造上部,流体运移是控制该区域水合物成藏的重要条件,气体组成分析表明热成因气为水合物的成藏提供重要气源。
    Abstract: High quality gas hydrate samples have been successfully recovered from the Shenhu area, the northern slope of South China Sea. The spatial distribution of gas hydrate varies greatly owing to the complex fluid movement caused by lateral migration of canyons and gas chimneys. In this paper, we identified the BSR and erosional canyon surface with well logging and seismic data and the extracted multiple seismic attributes along the theoretical base of the gas hydrate stability zone (BGHSZ). It is found that the amplitude type of attributes are sensitive to gas hydrate after optimization of all extractable seismic attributes. Description of gas hydrate bodies suggests that the distribution pattern of gas hydrate changes from site to site. It is horseshoe-shaped at Site W19 and U-shaped and point-shaped at Site W18 respectively, depending upon the topography of the local structural high. Gas hydrate occurrences are inconsistent with lithology according to well log data. It is mainly distributed at the top of a large gas chimney structure. Fluid flow is an essential element for gas hydrate deposition in this area, and thermogenic gas contributes to higher gas hydrate saturation.
  • 图  1   神狐海域海底倾角属性

    Figure  1.   The seabed dip of research area

    图  2   a:过W18井区域地震剖面;b:过W19和W18井地震剖面

    Figure  2.   a: The regional seismic profile crossing site W18; b: The seismic profile crossing sites W18 and W19

    图  3   W18井、W19井和SC-02井纵波速度、伽马和电阻率测井曲线[36]

    Figure  3.   The well logs of sites W18, W19 and SC-02 showing the P-wave velocity, gamma ray, and resistivity

    图  4   a:侵蚀面层位时间图及埋藏水道;b-e:埋藏水道不同位置的横切地震剖面特征

    Figure  4.   a:Horizon of erosional surface and buried paleo-channel; b-e: The different seismic profiles showing the reflection characteristics of buried paleo-channel

    图  5   a:BGHSZ层位向上30 ms提取弧长属性;b:BGHSZ层位向上30 ms提取最大振幅属性;c:倾角体1 890 ms时间切片;d:RMS属性刻画的水合物分布范围

    Figure  5.   a:The maximum amplitude attribute map extracted for a time window 30 ms above the BGHSZ; b: The arc length attribute map extracted for a time window 30 ms above the BGHSZ; c: 1 890 ms time slide from dip cube; d: The RMS displays the distribution of gas hydrate

    图  6   神狐海域水合物成藏模式

    Figure  6.   Model of gas hydrate accumulation in research area

    图  7   a:过19井地震剖面显示气烟囱等构造;b:RMS属性刻画水合物体分布及水道形态展布

    Figure  7.   a:Seismic profile through Site W19 showing gas chimney structure; b:gas hydrate distribution and morphology of buried channels revealed by RMS amplitude attribute

    图  8   W18和W19井C1/C2比随深度变化

    Figure  8.   Methane and ethane ratio varies with depth at Sites W18 and W19

  • [1]

    Schmuck E A, Paull C K. Evidence for gas accumulation associated with diapirism and gas hydrates at the head of the Cape Fear Slide[J]. Geo-Marine Letters, 1993, 13(3): 145-152. doi: 10.1007/BF01593187

    [2]

    Zhang Z G, Wang Y, Gao L F, et al. Marine gas hydrates: future energy or environmental killer?[J]. Energy Procedia, 2012, 16: 933-938. doi: 10.1016/j.egypro.2012.01.149

    [3]

    Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: prospects and challenges[J]. Applied Energy, 2016, 162: 1633-1652. doi: 10.1016/j.apenergy.2014.12.061

    [4]

    Zhao J F, Song Y C, Lim X L, et al. Opportunities and challenges of gas hydrate policies with consideration of environmental impacts[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 875-885. doi: 10.1016/j.rser.2016.11.269

    [5]

    Zhang G X, Liang J Q, Lu J G, et al. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2015, 67: 356-367. doi: 10.1016/j.marpetgeo.2015.05.021

    [6]

    Buffett B, Archer D. Global inventory of methane clathrate: sensitivity to changes in the deep ocean[J]. Earth and Planetary Science Letters, 2004, 227(3-4): 185-199. doi: 10.1016/j.epsl.2004.09.005

    [7]

    Chen D X, Wang X J, Volker D, et al. Three dimensional seismic studies of deep-water hazard-related features on the northern slope of South China Sea[J]. Marine and Petroleum Geology, 2016, 77: 1125-1139. doi: 10.1016/j.marpetgeo.2016.08.012

    [8]

    Yang S X, Zhang M, Liang J Q, et al. Preliminary results of china's third gas hydrate drilling expedition: a critical step from discovery to development in the South China Sea[J]. Fire in the Ice, 2015, 15(2): 1-21. https://www.resilience.org/stories/2016-08-11/methane-hydrates-the-next-shale-gas/

    [9] 杨胜雄, 梁金强, 陆敬安, 等.南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J].地学前缘, 2017, 24(2): 1-14. http://d.old.wanfangdata.com.cn/Periodical/dxqy201704001

    YANG Shengxiong, LIANG Jinqiang, LU Jing'an, et al. New understandings on the characteristics and controlling factors of gas hydrate reservoirs in the shenhu area on the northern slope of the South China Sea[J]. Earth Science Frontiers, 2017, 24(2): 1-14. http://d.old.wanfangdata.com.cn/Periodical/dxqy201704001

    [10] 吴能友, 梁金强, 王宏斌, 等.海洋天然气水合物成藏系统研究进展[J].现代地质, 2008, 22(3): 356-362. doi: 10.3969/j.issn.1000-8527.2008.03.003

    WU Nengyou, LIANG Jinqiang, WANG Hongbin, et al. Marine gas hydrate system: state of the art[J]. Geoscience, 2008, 22(3): 356-362. doi: 10.3969/j.issn.1000-8527.2008.03.003

    [11] 吴能友, 杨胜雄, 王宏斌, 等.南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J].地球物理学报, 2009, 52(6): 1641-1650. doi: 10.3969/j.issn.0001-5733.2009.06.027

    WU Nengyou, YANG Shengxiong, WANG Hongbin, et al. Gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu Area, Northern South China Sea[J]. Chinese Journal of Geophysics, 2009, 52(6): 1641-1650. doi: 10.3969/j.issn.0001-5733.2009.06.027

    [12] 乔少华, 苏明, 杨睿, 等.运聚体系-天然气水合物不均匀性分布的关键控制因素初[J].新能源进展, 2013, 1(3): 245-256. doi: 10.3969/j.issn.2095-560X.2013.03.008

    QIAO Shaohua, SU Ming, YANG Rui, et al. Migration and accumulation system: the key control factors of heterogeneous distribution of gas hydrate[J]. Advances in New and Renewable Energy, 2013, 1(3): 245-256. doi: 10.3969/j.issn.2095-560X.2013.03.008

    [13]

    Wang X J, Qiang J, Collett T S, et al. Characterization of gas hydrate distribution using conventional 3D seismic data in the Pearl River Mouth Basin, South China Sea[J]. Interpretation, 2016, 4(1): SA25-SA37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fe89cb6824f1ebc15420e0ac14562181

    [14]

    Hui G G, Li S Z, Guo L L, et al. Source and accumulation of gas hydrate in the northern margin of the South China Sea[J]. Marine and Petroleum Geology, 2016, 69: 127-145. doi: 10.1016/j.marpetgeo.2015.10.009

    [15]

    Horozal S, Kim G Y, Bahk J J, et al. Core and sediment physical property correlation of the second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) results in the East Sea (Japan sea)[J]. Marine and Petroleum Geology, 2015, 59: 535-562. doi: 10.1016/j.marpetgeo.2014.09.019

    [16]

    Collett T S, Boswell R, Cochran J R, et al. Geologic implications of gas hydrates in the offshore of India: results of the national gas hydrate program expedition 01[J]. Marine and Petroleum Geology, 2014, 58: 3-28. doi: 10.1016/j.marpetgeo.2014.07.021

    [17]

    Boswell R, Collett T S, Frye M, et al. Subsurface gas hydrates in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 4-30. doi: 10.1016/j.marpetgeo.2011.10.003

    [18]

    Ruppel C, Boswell R, Jones E. Scientific results from gulf of mexico gas hydrates joint industry project leg 1 drilling: introduction and overview[J]. Marine and Petroleum Geology, 2008, 25(9): 819-829. doi: 10.1016/j.marpetgeo.2008.02.007

    [19]

    Kumar P, Collett T S, Boswell R, et al. Geologic implications of gas hydrates in the offshore of India: Krishna-Godavari Basin, Mahanadi Basin, Andaman Sea, Kerala-Konkan Basin[J]. Marine and Petroleum Geology, 2014, 58: 29-98. doi: 10.1016/j.marpetgeo.2014.07.031

    [20]

    Bahk J J, Kim G Y, Chun J H, et al. Characterization of gas hydrate reservoirs by integration of core and log data in the Ulleung Basin, East Sea[J]. Marine and Petroleum Geology, 2013, 47: 30-42. doi: 10.1016/j.marpetgeo.2013.05.007

    [21]

    Lee M W, Collett T S. Scale-dependent gas hydrate saturation estimates in sand reservoirs in the Ulleung Basin, East Sea of Korea[J]. Marine and Petroleum Geology, 2013, 47: 195-203. doi: 10.1016/j.marpetgeo.2012.09.004

    [22]

    Collett T S, Lee M W, Zyrianova M V, et al. Gulf of Mexico gas hydrate joint industry project leg Ⅱ logging-while-drilling data acquisition and analysis[J]. Marine and Petroleum Geology, 2012, 34(1): 41-61. doi: 10.1016/j.marpetgeo.2011.08.003

    [23]

    Lee M W, Collett T S. Pore-and fracture-filling gas hydrate reservoirs in the gulf of Mexico gas hydrate joint industry project leg Ⅱ green canyon 955 H well[J]. Marine and Petroleum Geology, 2012, 34(1): 62-71. doi: 10.1016/j.marpetgeo.2011.08.002

    [24] 杨睿, 吴能友, 雷新华, 等.波阻抗反演在南海北部神狐海域天然气水合物勘探中的应用[J].现代地质, 2010, 24(3): 495-500. doi: 10.3969/j.issn.1000-8527.2010.03.012

    YANG Rui, WU Nengyou, LEI Xinhua, et al. Impedance inversion and its application in gas hydrate exploration in shenhu area, northern South China Sea[J]. Geoscience, 2010, 24(3): 495-500. doi: 10.3969/j.issn.1000-8527.2010.03.012

    [25]

    Kim K J, Yi B Y, Kang N K, et al. Seismic attribute analysis of the indicator for gas hydrate occurrence in the northwest Ulleung Basin, East Sea[J]. Energy Procedia, 2015, 76: 463-469. doi: 10.1016/j.egypro.2015.07.882

    [26]

    Yoo D G, Kang N K, Yi B Y, et al. Occurrence and seismic characteristics of gas hydrate in the Ulleung Basin, East Sea[J]. Marine and Petroleum Geology, 2013, 47: 236-247. doi: 10.1016/j.marpetgeo.2013.07.001

    [27]

    Ryu B J, Collett T S, Riedel M, et al. Scientific results of the second gas hydrate drilling expedition in the ulleung basin (UBGH2)[J]. Marine and Petroleum Geology, 2013, 47: 1-20. doi: 10.1016/j.marpetgeo.2013.07.007

    [28]

    Fraser D R A, Gorman A R, Pecher I A, et al. Gas hydrate accumulations related to focused fluid flow in the Pegasus Basin, southern Hikurangi Margin, New Zealand[J]. Marine and Petroleum Geology, 2016, 77: 399-408. doi: 10.1016/j.marpetgeo.2016.06.025

    [29]

    Zhang Z J, McConnell D R, Han D H. Rock physics-based seismic trace analysis of unconsolidated sediments containing gas hydrate and free gas in Green Canyon 955, Northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 119-133. doi: 10.1016/j.marpetgeo.2011.11.004

    [30]

    Simonetti A, Knapp J H, Sleeper K, et al. Spatial distribution of gas hydrates from high-resolution seismic and core data, Woolsey Mound, Northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2013, 44: 21-33. doi: 10.1016/j.marpetgeo.2013.04.004

    [31]

    Lin C C, Lin A T, Liu C S, et al. Geological controls on BSR occurrences in the incipient arc-continent collision zone off southwest Taiwan[J]. Marine and Petroleum Geology, 2009, 26(7): 1118-1131. doi: 10.1016/j.marpetgeo.2008.11.002

    [32]

    Popescu I, De Batist M, Lericolais G, et al. Multiple bottom-simulating reflections in the Black Sea: potential proxies of past climate conditions[J]. Marine Geology, 2006, 227(3-4): 163-176. doi: 10.1016/j.margeo.2005.12.006

    [33]

    Wang X J, Lee M, Collett T, et al. Gas hydrate identified in sand-rich inferred sedimentary section using downhole logging and seismic data in Shenhu area, South China Sea[J]. Marine and Petroleum Geology, 2014, 51: 298-306. doi: 10.1016/j.marpetgeo.2014.01.002

    [34]

    Wang X J, Collett T S, Lee M W, et al. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea[J]. Marine Geology, 2014, 357: 272-292. doi: 10.1016/j.margeo.2014.09.040

    [35] 陆敬安, 杨胜雄, 吴能友, 等.南海神狐海域天然气水合物地球物理测井评价[J].现代地质, 2008, 22(3): 447-451. doi: 10.3969/j.issn.1000-8527.2008.03.015

    LU Jing'an, YANG Shengxiong, WU Nengyou, et al. Well logging evaluation of gas hydrates in Shenhu area, South China Sea[J]. Geoscience, 2008, 22(3): 447-451. doi: 10.3969/j.issn.1000-8527.2008.03.015

    [36]

    Yang S X, Liang J Q, Lei Y, et al. GMGS4 gas hydrate drilling expedition in the South China Sea[J]. Fire in the Ice, 2017, 17(1): 7-11.

    [37] 钟广法.巽他陆架晚新生代地震超覆层序与海平面变化研究[D].同济大学博士学位论文, 2002.

    ZHONG Guangfa. Late cenozoic seismic onlap-offlap sequences and sea level changes on the northern sunda shelf, South China Sea[D]. Doctor Dissertation of Tongji University, 2002.

    [38] 葛黄敏, 李前裕, 钟广法, 等.南海北部第四纪高分辨率地震层序地层与古环境演化[J].海洋地质与第四纪地质, 2012, 32(4): 49-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201204007

    GE Huangmin, LI Qianyu, ZHONG Guangfa, et al. High resolution quaternary seismic sequence stratigraphy and paleoenvironmental evolution in the northern South China Sea[J]. Marine Geology and Quaternary Geology, 2012, 32(4): 49-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201204007

    [39] 张军华, 周振晓, 谭明友, 等.地震切片解释中的几个理论问题[J].石油地球物理勘探, 2007, 42(3): 348-352, 361. doi: 10.3321/j.issn:1000-7210.2007.03.022

    ZHANG Junhua, ZHOU Zhenxiao, TAN Mingyou, et al. Several theoretical issues about interpretation of seismic slices[J]. Oil Geophysical Prospecting, 2007, 42(3): 348-352, 361. doi: 10.3321/j.issn:1000-7210.2007.03.022

    [40]

    Chopra S. Interpreting fractures through 3D seismic discontinuity attributes and their visualization[C]//8th Biennial International Conference & Exposition on Petroleum Geophysics, 2009: 1-13.

    [41]

    Collett T S, Johnson A H, Knapp C C, et al. Natural Gas Hydrates: A Review[M]. Tulsa: AAPG, 2009: 146-219.

    [42]

    Sun Q L, Wu S G, Cartwright J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology, 2012, 315-318(4): 1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ab647482948e848eb254ec0452515a4

    [43] 张辉, 卢海龙, 梁金强, 等.南海北部神狐海域沉积物颗粒对天然气水合物聚集的主要影响[J].科学通报, 2016, 61(3): 388-397. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201603014

    ZHANG Hui, LU Hailong, LIANG Jinqiang, et al. The methane hydrate accumulation controlled compellingly by sediment grain at Shenhu, northern South China Sea[J]. Chinese Science Bulletin, 2016, 61(3): 388-397. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201603014

    [44] 陈芳, 周洋, 苏新, 等.南海神狐海域含水合物层粒度变化及与水合物饱和度的关系[J].海洋地质与第四纪地质, 2011, 31(5): 95-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201105014

    CHEN Fang, ZHOU Yang, SU Xin, et al. Gas hydrate saturation and its relation with grain size of the hydrate-bearing sediments in the Shenhu area of Northern South China Sea[J]. Marine Geology and Quaternary Geology, 2011, 31(5): 95-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201105014

    [45]

    Hunt J K. Identifying and quantifying erosion beneath the deposits of long-runout turbidity currents along their pathway[J]. Marine Geology, 2017, 389(1): 32-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1d08d4cd770a484195b89882e903bb73

    [46]

    Schnyder J, Ruffel A, Deconinck J F, et al. Conjunctive use of spectral gamma-ray logs and clay mineralogy in defining late jurassic-early Cretaceous palaeoclimate change (Dorset, U.K.)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 229(4): 303-320. doi: 10.1016/j.palaeo.2005.06.027

    [47] 沙志彬, 郭依群, 杨木壮, 等.南海北部陆坡区沉积与天然气水合物成藏关系[J].海洋地质与第四纪地质, 2009, 29(5): 89-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200905012

    SHA Zhibin, GUO Yiqun, YANG Muzhuang, et al. Relation between sedimentation and gas hydrate reservoirs in the northern slope of South China Sea[J]. Marine Geology and Quaternary Geology, 2009, 29(5): 89-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200905012

图(8)
计量
  • 文章访问数:  2561
  • HTML全文浏览量:  440
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-29
  • 修回日期:  2017-08-06
  • 刊出日期:  2017-10-27

目录

    /

    返回文章
    返回