南祁连盆地木里冻土区天然气水合物气源分析

张家政, 李胜利, 王明君, 赵广珍, 庞守吉, 张帅, 吴纪修

张家政, 李胜利, 王明君, 赵广珍, 庞守吉, 张帅, 吴纪修. 南祁连盆地木里冻土区天然气水合物气源分析[J]. 海洋地质与第四纪地质, 2017, 37(5): 90-101. DOI: 10.16562/j.cnki.0256-1492.2017.05.009
引用本文: 张家政, 李胜利, 王明君, 赵广珍, 庞守吉, 张帅, 吴纪修. 南祁连盆地木里冻土区天然气水合物气源分析[J]. 海洋地质与第四纪地质, 2017, 37(5): 90-101. DOI: 10.16562/j.cnki.0256-1492.2017.05.009
ZHANG Jiazheng, LI Shengli, WANG Mingjun, ZHAO Guangzhen, PANG Shouji, ZHANG Shuai, WU Jixiu. GAS SOURCE ANALYSIS FOR GAS HYDRATE IN MULI PERMAFROST AREA OF THE SOUTHERN QILIAN BASIN[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 90-101. DOI: 10.16562/j.cnki.0256-1492.2017.05.009
Citation: ZHANG Jiazheng, LI Shengli, WANG Mingjun, ZHAO Guangzhen, PANG Shouji, ZHANG Shuai, WU Jixiu. GAS SOURCE ANALYSIS FOR GAS HYDRATE IN MULI PERMAFROST AREA OF THE SOUTHERN QILIAN BASIN[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 90-101. DOI: 10.16562/j.cnki.0256-1492.2017.05.009

南祁连盆地木里冻土区天然气水合物气源分析

基金项目: 

“青南藏北冻土区天然气水合物调查” DD20160222

天然气水合物资源勘查与试采工程国家专项“陆域水合物资源潜力评价” DD20160226

“南祁连盆地油气资源战略调查” 1211302108021-2

详细信息
    作者简介:

    张家政(1973—),男,博士,高级工程师,主要从事石油地质和天然气水合物研究, E-mail:626687675@qq.com

  • 中图分类号: P736.4

GAS SOURCE ANALYSIS FOR GAS HYDRATE IN MULI PERMAFROST AREA OF THE SOUTHERN QILIAN BASIN

  • 摘要: 南祁连盆地木里冻土区天然气水合物的气体成因或来源存在不同观点,目前还没有统一认识,这直接影响到水合物的资源评价及下一步勘探方向。文章依托前人研究成果及新近钻探木参1井、木参2井及SK-0井资料,对比分析中侏罗统与上三叠统尕勒得寺组两套烃源岩,结合天然气水合物气体组成与碳氢同位素特征进行综合研究,结果表明:南祁连盆地木里冻土区天然气水合物的气体以轻烃为主,具湿气特征,其同位素表现为正碳同位素系列,为有机成因,成气母质主要为腐泥型干酪根的油型气,是热演化程度较低的原油伴生气;少量与微生物成因气有关,与煤层气关系不大。中侏罗统有机质丰度高、类型较好,镜质体反射率Ro在0.48%~1.14%之间,处于生油高峰期,生油过程中原油伴生气为天然气水合物的主要气体来源;上三叠统尕勒得寺组有机质丰度较高、类型较好,但成熟度高,处于生凝析气或裂解气阶段,总体生排烃能力差,从气源对比分析来看对天然气水合物气体来源贡献不大。
    Abstract: There are hot debates on the gas source of gas hydrate in the Muli permafrost area of the Southern Qilian Basin. The understanding of gas source directly affects the gas hydrate resource evaluation and exploration. Based on the previous research results and the newly acquired data from the Wells of Mucan 1, Mucan 2 and SK-0, the authors have made a comparison of the source rocks in the Middle Jurassic and Upper Triassic Galedesi Formation. Comprehensive studies on gas compositions as well as carbon and hydrogen isotopic characteristics were also performed. The results show that the gases in the Muli permafrost area of southern Qilian Basin is mainly composed of light hydrocarbon and characterized by wet gases. The isotopic composition of the gas hydrate, which is characterized by positive carbon isotopic series, indicates that the gas is formed by pyrolysis of organic matter and the parent gas is a kind of sapropelic kerogen oil-based gas with low thermal evolution. It is mainly oil associated gas with a small amount of microbial gas and coal-bed methane. The organic matter in the Middle Jurassic is of high abundance and good type, of which the vitrinite reflectivity Ro is between 0.48% and 1.14%, indicating that it is in the peak period of oil generation. The oil associated gas is the main source of the gas hydrate. The organic matter is also abundant and of good type in the Galedesi Formation of Upper Triassic, but the maturity is too high. It remains in the stages of condensate gas or pyrolytic gas, and the total hydrocarbon generation and discharge are poor. As a source of hydrate gas, its contribution is little.
  • 致谢: 成文过程中得到中国地质调查局油气资源调查中心张君峰教授级高工的指导,在此深表谢意。
  • 图  1   南祁连盆地构造单元划分及木里冻土区井位地质图

    Figure  1.   Tectonic division of southern Qilian Basin and geological map showing well locations in Muli permafrost area

    图  2   研究区有机碳含量分布频率图

    Figure  2.   TOC frequency histogram of the study area

    图  3   研究区烃源岩样品热解氢指数与Tmax交会图

    Figure  3.   The plot of Tmax versus HI of the samples from the study area

    图  4   研究区烃源岩样品有机碳含量(TOC)与生烃潜能(S1+S2)投点

    Figure  4.   Plot of TOC versus hydrocarbon potential (S1+S2) in source rock of the study area

    图  5   研究区气测显示样品甲烷含量与干燥系数交汇图

    Figure  5.   The plot of C1 versus drying coefficient of the gas log samples in the study area

    图  6   研究区天然气水合物气体样品油型气成因鉴别图

    Figure  6.   Genefic identification of hydrocarbon gases from gas hydrate samples in the study are

    图  7   研究区天然气水合物气体样品原油伴生气成因鉴别图

    Figure  7.   Genefic identification of hydrocarbon gases from gas hydrate samples in the study area

    图  8   研究区含水合物岩心气体的δDC1和δ13C1关系图

    Figure  8.   The plot of δDC1 versus δ13C1 for the gas hydrate from core samples in the study area

    图  9   水合物样品气与烃源岩热模拟气δ13C113C2关系图

    (左为温度、右为岩性,部分数据来自文献[37])

    Figure  9.   The plot of δ13C1 versus δ13C2 for the hydrate gas and thermally simulated gases

    (Left-temperature, Right-lithology[37])

    表  1   研究区各类样品气体组分统计表(部分数据来自文献[15-17])

    Table  1   Gas components in the study area[15-17]

    井名 样品 深度
    /m
    甲烷
    /%
    乙烷
    /%
    丙烷
    /%
    C1/
    (C2+C3)
    DK9 煤层气(J2m) 56 99.4 0.6 0.0 160.4
    DK9 煤层气(J2m) 63 99.2 0.7 0.0 132.0
    DK9 煤层气(J2m) 81 98.7 1.3 0.0 77.7
    DK9 煤层气(J2m) 112 99.6 0.4 0.0 243.6
    DK9 煤层气(J2m) 118 99.5 0.5 0.0 209.7
    DK9 煤层气(J2m) 586 98.4 1.5 0.1 62.9
    DK12 煤层气(J2m) 216 98.1 0.7 0.1 116.1
    木参1 煤层气(J2m) 1 149 94.7 4.6 0.5 18.4
    木参1 煤层气(J2m) 1 207 97.8 2.1 0.2 43.6
    木参1 煤层气(J2m) 1 237 96.3 3.4 0.1 27.1
    木参1 煤层气(J2m) 1 281 95.8 4.1 0.2 22.6
    木参1 煤层气(J2m) 1 406 97.6 2.3 0.1 40.9
    DK11 煤层气(J2m) 234 93.6 6.3 0.0 14.7
    DK11 煤层气(J2m) 331 94.5 5.1 0.1 18.2
    DK11 煤层气(J2m) 335 94.7 4.8 0.1 19.2
    DK11 煤层气(J2m) 338 94.7 4.8 0.1 19.5
    DK11 煤层气(J2m) 357 95.1 3.6 0.2 25.5
    DK11 煤层气(J2m) 427 98.9 0.6 0.3 105.7
    DK11 煤层气(J2m) 434 99.5 0.3 0.1 263.1
    DK12 煤层气(J2m) 587 98.5 0.7 0.1 125.4
    DK12 煤层气(J2m) 174 99.5 0.1 0.0 518.5
    DK10 浅层气(J2m) 50 99.6 0.4 0.0 224.1
    DK10 浅层气(J2m) 51 99.6 0.4 0.0 242.6
    DK10 浅层气(J2m) 52 99.6 0.4 0.0 230.5
    DK10 浅层气(J2m) 53 99.6 0.4 0.0 271.8
    木参1 泥页岩气(T3g) 1 678 99.7 0.0 0.0 108 522.6
    木参1 泥页岩气(T3g) 1 694 99.7 0.0 0.0 84 346.3
    木参1 泥页岩气(T3g) 1 740 99.7 0.0 0.0 165 218.9
    木参1 泥页岩气(T3g) 1 769 99.6 0.0 0.0 101 410.4
    木参1 泥页岩气(T3g) 1 795 99.6 0.0 0.0 80 339.4
    木参1 泥页岩气(T3g) 1 825 99.7 0.0 0.0 99 519.5
    DK9 油浸气(J2m) 364 77.7 6.1 11.5 4.4
    DK9 油浸气(J3m) 366 74.3 7.1 10.8 4.1
    DK9 水合物气(录井) 188 87.5 4.1 7.3 7.7
    DK9 水合物气(录井) 192 82.1 10.8 6.3 4.8
    DK9 水合物气(录井) 197 83.2 8.2 7.4 5.3
    DK9 水合物气(录井) 259 73.6 9.0 12.8 3.4
    DK9 水合物气(录井) 271 74.2 8.9 13.0 3.4
    DK9 水合物气(录井) 300 81.9 8.5 6.8 5.4
    DK12 水合物气(录井) 339 68.1 12.5 12.8 2.7
    DK12 水合物气(录井) 558 88.8 4.5 3.3 11.3
    DK12 水合物气(录井) 560 87.7 4.8 3.5 10.6
    DK8-19 水合物(实验室) 116.0 62.9 8.0 23.7 2.0
    DK8-19 水合物(实验室) 120.0 57.3 13.9 20.1 1.7
    DK8-19 水合物(实验室) 126.1 64.7 8.8 22.5 2.1
    DK8-19 水合物(实验室) 129.2 78.9 7.7 7.6 5.2
    DK8-19 水合物(实验室) 143.9 63.6 10.0 21.2 2.0
    DK8-19 水合物(实验室) 182.0 65.3 9.2 21.4 2.1
    DK10-17 水合物(实验室) 487.3 62.0 14.9 16.9 2.0
    DK11-14 水合物(实验室) 293.4 35.8 3.8 12.5 2.2
    DK11-14 水合物(实验室) 322.2 61.3 6.8 25.2 1.9
    DK12-13 水合物(实验室) 202.8 65.8 6.3 2.4
    DK12-13 水合物(实验室) 203.3 85.3 3.9 7.5 7.5
    DK12-13 水合物(实验室) 204.8 65.3 5.7 22.0 2.4
    DK12-13 水合物(实验室) 262.9 62.1 9.4 22.4 2.0
    DK12-13 水合物(实验室) 295.6 81.4 6.2 10.4 4.9
    DK12-13 水合物(实验室) 302.5 61.3 8.4 25.3 1.8
    DK12-13 水合物(实验室) 312.6 64.3 9.8 21.2 2.1
    DK12-13 水合物(实验室) 316.9 67.3 9.9 15.7 2.6
    DK13-11 水合物(实验室) 267.2 66.4 6.5 21.3 2.4
    DK2 水合物(实验室) 149.0 34.9 6.6 21.2 1.3
    DK2 水合物(实验室) 253.0 62.6 8.6 22.4 2.0
    DK2 水合物(实验室) 266.8 62.5 8.7 20.7 2.1
    DK2 水合物(实验室) 336.0 63.0 9.2 21.0 2.1
    DK2 水合物(实验室) 363.0 59.0 8.9 19.8 2.1
    DK2 水合物(实验室) 372.6 62.5 8.9 21.2 2.1
    DK3 水合物(实验室) 142.0 52.2 8.7 16.6 2.1
    DK3 水合物(实验室) 395.0 87.0 2.9 0.5 26.0
    下载: 导出CSV

    表  2   研究区岩心中天然气水合物分解气的碳氢同位素组成(数据来自文献[15-17])

    Table  2   Hydrocarbon isotopic compositions of hydrate gases in the study area[15-17]

    井名 井深/m δ13/‰(VPDB) δD/‰(VSMOW)
    δ13C1/‰ δ13C2/‰ δ13C3/‰ CO2/‰ C1/‰ C2/‰ C3/‰
    DK1 134 -50.5 -35.8 -31.9 -18 -262 -240
    DK1 143 -39.5 -32.7 -30.8 -18 -266
    DK1 143 -47.4 -35 -31.8 -17 -268 -254
    DK2 149 -49 -33.4 -31.1 2.3 -227 -236 -198
    DK2 253 -48.4 -38.2 -33.8 -24.9 -272 -265 -240
    DK2 266.8 -49.3 -38.6 -34.7 -14.8 -285 -276 -247
    DK2 336 -48.7 -38.2 -33.9 -27.9 -266 -276 -243
    DK2 363 -48.8 -38.3 -33.8 -19.3 -279 -271 -244
    DK2 372.6 -48.4 -38.2 -34.1 -18.6 -271 -271 -228
    DK3 142 -48.1 -34.1 -30.9 -9.2 -245 -249 -200
    DK3 395 -52.6 -30.7 -21.2 16.7 -255 nd nd
    DK8-19 116 -58.04 -37.88 -34.04 -17.7 -264 -274 -246
    DK8-19 120 -53.82 -37.1 -33.67 -20.34 -249 -271 -246
    DK8-19 126.1 -52.49 -37.43 -34.15 -20.45 -233 -276 -247
    DK8-19 129.2 -50.38 -34.64 -33.86 -25.52 -225 -266 -248
    DK8-19 143.9 -52.54 -37.42 -34.32 -18.9 -246 -276 -253
    DK8-19 182 -51.67 -37.34 -34.38 -24.38 -237 -274 -252
    DK10-17 487.3 -50.54 -32.85 -29.64 -17.28 -235 -228 -179
    DK11-14 293.4 -46.6 -34.3 -30.7 -10.2 -234 -274 -228
    DK11-14 322.2 -48.35 -35.35 -31.26 -13.05 -232 -267 -215
    DK12-13 202.8 -50.5 -32.2 -30 -12.3 -256 -246 -219
    DK12-13 204.8 -49.4 -31.7 -29.7 -13.9 -255 -237 -236
    DK12-13 262.9 -46.6 -35.5 -31.4 -11 -266 -267 -229
    DK12-13 295.6 -45.84 -35.47 -30.87 -15.63 -270 -271 -231
    DK12-13 302.5 -47.5 -37.2 -31.9 -13.9 -276 -285 -237
    DK12-13 312.6 -47.8 -37.4 -32.3 -12.7 -277 -284 -246
    DK12-13 316.9 -46.6 -37.5 -32.5 -9.4 -276 -284 -247
    DK13-11 267.2 -52.46 -38.97 -33.63 -12.42 -242 -262 -210
    下载: 导出CSV
  • [1]

    Kvenvolden K A. A review of the geochemistry of methane in natural gas hydrate[J]. Organic Geochemistry, 1995, 23(11-12): 997-1008. doi: 10.1016/0146-6380(96)00002-2

    [2] 史斗, 郑军卫.世界天然气水合物研究开发现状和前景[J].地球科学进展, 1999, 14(4): 330-339. doi: 10.3321/j.issn:1001-8166.1999.04.004

    SHI Dou, ZHENG Junwei. The status and prospects of research and exploitation of natural gas hydrate in the world[J]. Advance in Earth Sciences, 1999, 14(4): 330-339. doi: 10.3321/j.issn:1001-8166.1999.04.004

    [3] 祝有海, 张永勤, 文怀军, 等.青海祁连山冻土区发现天然气水合物[J].地质学报, 2009, 83(11): 1762-1771. doi: 10.3321/j.issn:0001-5717.2009.11.018

    ZHU Youhai, ZHANG Yongqin, WEN Huaijun, et al. Gas hydrates in the Qilian mountain permafrost, Qinghai, Northwest China[J]. Acta Geologica Sinica, 2009, 83(11): 1762-1771. doi: 10.3321/j.issn:0001-5717.2009.11.018

    [4] 张洪涛, 祝有海.中国冻土区天然气水合物调查研究[J].地质通报, 2011, 30(12): 1809-1815. doi: 10.3969/j.issn.1671-2552.2011.12.001

    ZHANG Hongtao, ZHU Youhai. Survey and research on gas hydrate in permafrost region of China[J]. Geological Bulletin of China, 2011, 30(12): 1809-1815. doi: 10.3969/j.issn.1671-2552.2011.12.001

    [5]

    Collett T S. Energy resource potential of natural gas hydrates[J]. AAPG Bulletin, 2002, 86(11): 1971-1992. http://d.old.wanfangdata.com.cn/Conference/8639906

    [6]

    Makogon Y F, Holditch S A, Makogon T Y. Natural gas hydrates-a potential energy source for the 21st Century[J]. Journal of Petroleum Science and Engineering, 2007, 56(1-3): 14-31. doi: 10.1016/j.petrol.2005.10.009

    [7] 周幼吾, 郭东信, 邱国庆, 等.中国冻土[M].北京:科学出版社, 2000: 329-353.

    ZHOU Youwu, GUO Dongxin, QIU Guoqing, et al. Geocryology in China[M]. Beijing: Science Press, 2000: 329-353.

    [8] 贾承造.论非常规油气对经典石油天然气地质学理论的突破及意义[J].石油勘探与开发, 2017, 44(1): 1-11. http://d.old.wanfangdata.com.cn/Periodical/syktykf201701001

    JIA Chengzao. Breakthrough and significance of unconventional oil and gas to classical petroleum geological theory[J]. Petroleum Exploration and Development, 2017, 44(1): 1-11. http://d.old.wanfangdata.com.cn/Periodical/syktykf201701001

    [9] 祝有海, 刘亚玲, 张永勤.祁连山多年冻土区天然气水合物的形成条件[J].地质通报, 2006, 25(1-2): 58-63. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200601010

    ZHU Youhai, LIU Yaling, ZHANG Yongqin. Formation conditions of gas hydrates in permafrost of the Qilian Mountains, Northwest China[J]. Geological Bulletin of China, 2006, 25(1-2): 58-63. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200601010

    [10] 曹代勇, 王丹, 李靖, 等.青海祁连山冻土区木里煤田天然气水合物气源分析[J].煤炭学报, 2012, 37(8): 1364-1368. http://d.old.wanfangdata.com.cn/Periodical/mtxb201208023

    CAO Daiyong, WANG Dan, LI Jing, et al. Gas source analysis of natural gas hydrate of Muli coalfield in Qilian Mountain Permafrost, Qinghai Province, China[J]. Journal of China Coal Society, 2012, 37(8): 1364-1368. http://d.old.wanfangdata.com.cn/Periodical/mtxb201208023

    [11] 王佟, 刘天绩, 邵龙义, 等.青海木里煤田天然气水合物特征与成因[J].煤田地质与勘探, 2009, 37(6): 26-30. doi: 10.3969/j.issn.1001-1986.2009.06.007

    WANG Tong, LIU Tianji, SHAO Longyi, et al. Characteristics and origins of the gas hydrates in the Muli coalfield of Qinghai[J]. Coal and Geology Exploration, 2009, 37(6): 26-30. doi: 10.3969/j.issn.1001-1986.2009.06.007

    [12] 卢振权, 祝有海, 张永勤, 等.青海祁连山冻土区天然气水合物的气体成因研究[J].现代地质, 2010, 24(3): 581-588. doi: 10.3969/j.issn.1000-8527.2010.03.024

    LU Zhenquan, ZHU Youhai, ZHANG Yongqin, et al. Study on genesis of gases from gas hydrate in the Qilian Mountain Permafrost, Qinghai[J]. Geoscience, 2010, 24(3): 581-588. doi: 10.3969/j.issn.1000-8527.2010.03.024

    [13] 黄霞, 祝有海, 王平康, 等.祁连山冻土区天然气水合物烃类气体组分的特征和成因[J].地质通报, 2011, 30(12): 1851-1856. doi: 10.3969/j.issn.1671-2552.2011.12.006

    HUANG Xia, ZHU Youhai, WANG Pingkang, et al. Hydrocarbon gas composition and origin of core gas from the gas hydrate reservoir in Qilian Mountain permafrost[J]. Geological Bulletin of China, 2011, 30(12): 1851-1856. doi: 10.3969/j.issn.1671-2552.2011.12.006

    [14] 翟刚毅, 卢振权, 卢海龙, 等.祁连山冻土区天然气水合物成矿系统[J].矿物岩石, 2014, 34(4): 79-92. http://d.old.wanfangdata.com.cn/Periodical/kwys201404010

    ZHAI Gangyi, LU Zhenquan, LU Hailong, et al. Gas hydrate geological system in the Qilian Mountain permafrost[J]. Journal of Mineralogy and Petrology, 2014, 34(4): 79-92. http://d.old.wanfangdata.com.cn/Periodical/kwys201404010

    [15] 黄霞, 刘晖, 张家政, 等.祁连山冻土区天然气水合物烃类气体成因及其意义[J].地质科学, 2016, 51(3): 934-945. http://d.old.wanfangdata.com.cn/Periodical/dzkx201603018

    HUANG Xia, LIU Hui, ZHANG Jiazheng, et al. Genetic-type and its significance of hydrocarbon gases from permafrost-associated gas hydrate in Qilian Mountain[J]. Chinese Journal of Geology, 2016, 51(3): 934-945. http://d.old.wanfangdata.com.cn/Periodical/dzkx201603018

    [16] 刘昌岭, 贺行良, 孟庆国, 等.祁连山冻土区天然气水合物分解气碳氢同位素组成特征[J].岩矿测试, 2012, 31(3): 489-494. doi: 10.3969/j.issn.0254-5357.2012.03.020

    LIU Changling, HE Xingliang, MENG Qingguo, et al. Carbon and hydrogen isotopic compositions characteristics of the released gas from natural gas hydrates in the Qilian Mountain Permafrost[J]. Rock and Mineral Analysis, 2012, 31(3): 489-494. doi: 10.3969/j.issn.0254-5357.2012.03.020

    [17] 贺行良, 刘昌岭, 孟庆国, 等.青海聚乎更钻探区含水合物岩心气体组成及其指示意义[J].现代地质, 2015, 29(5): 1194-1200. doi: 10.3969/j.issn.1000-8527.2015.05.024

    HE Xingliang, LIU Changling, MENG Qingguo, et al. Gas composition of hydrate-bearing cores in Juhugeng drilling area in Qinghai and its indicative significance[J]. Geoscience, 2015, 29(5): 1194-1200. doi: 10.3969/j.issn.1000-8527.2015.05.024

    [18] 潘语录, 田贵发, 栾安辉, 等.测井方法在青海木里煤田冻土研究中的应用[J].中国煤炭地质, 2008, 20(12): 7-9, 23. doi: 10.3969/j.issn.1674-1803.2008.12.003

    PAN Yulu, TIAN Guifa, LUAN Anhui, et al. Application of well logging in frozen earth researches in Muli coalfield, Qinghai[J]. Coal Geology of China, 2008, 20(12): 7-9, 23. doi: 10.3969/j.issn.1674-1803.2008.12.003

    [19] 文怀军, 鲁静, 尚潞君, 等.青海聚乎更矿区侏罗纪含煤岩系层序地层研究[J].中国煤田地质, 2006, 18(5): 19-21. doi: 10.3969/j.issn.1674-1803.2006.05.007

    WEN Huaijun, LU Jing, SHANG Lujun, et al. A sequence stratigraphic discussion of the Jurassic coal measures in the Juhugeng coalmine area in Qinghai Province[J]. Coal Geology of China, 2006, 18(5): 19-21. doi: 10.3969/j.issn.1674-1803.2006.05.007

    [20] 青海省地质矿产局.青海省区域地质志[M].北京:地质出版社, 1991.

    Geology and Mineral Resources Bureau of Qinghai Province. Geological Records of Qinghai Province[M]. Beijing: Geological Publishing House, 1991.

    [21]

    Hunt J M. Generation of gas and oil from coal and other terrestrial organic matter[J]. Organic Geochemistry, 1991, 17(6): 673-680. doi: 10.1016/0146-6380(91)90011-8

    [22] TISSOT B P, WELTE D H石油形成和分布[M].徐永元译. 2版.北京: 石油工业出版社, 1989.

    TISSOT B P, WELTE D H. Petroleum Formation and Occurrence[M]. XU Yongyuan, Trans. 2nd ed. Beijing: Petroleum Industry Press, 1989.

    [23]

    van Krevelen D W. Development of coal research-a review[J]. Fuel, 1982, 61(9): 786-790. doi: 10.1016/0016-2361(82)90304-0

    [24] 梁世友, 李凤丽, 付洁, 等.北黄海盆地中生界烃源岩评价[J].石油实验地质, 2009, 31(3): 249-252. doi: 10.3969/j.issn.1001-6112.2009.03.008

    LIANG Shiyou, LI Fengli, FU Jie, et al. Evaluation of Meso-Cenozoic hydrocarbon source rocks in north Yellow Sea basin[J]. Petroleum Geology and Experiment, 2009, 31(3): 249-252. doi: 10.3969/j.issn.1001-6112.2009.03.008

    [25] 龙华山, 王绪龙, 向才富, 等.准噶尔盆地南缘侏罗系烃源岩评价[J].现代地质, 2013, 27(5): 1070-1080. doi: 10.3969/j.issn.1000-8527.2013.05.009

    LONG Huashan, WANG Xulong, XIANG Caifu, et al. Evaluation on Jurassic hydrocarbon source rock developed in southern margin of Junggar Basin[J]. Geoscience, 2013, 27(5): 1070-1080. doi: 10.3969/j.issn.1000-8527.2013.05.009

    [26]

    Shen P, Xu Y C. Isotopic compositional characteristics of terrigenous natural gases in China[J] Chinese Journal of Geochemistry, 1993, 12(1): 14-24. doi: 10.1007/BF02869041

    [27] 侯读杰, 冯子辉.油气地球化学[M].北京:石油工业出版社, 2011.

    HOU Dujie, FENG Zihui. Oil and Gas Geochemistry[M]. Beijing: Petroleum Industry Press, 2011.

    [28] 戴金星, 秦胜飞, 陶士振, 等.中国天然气工业发展趋势和天然气地学理论重要进展[J].天然气地球科学, 2005, 16(2): 127-142. doi: 10.3969/j.issn.1672-1926.2005.02.001

    DAI Jinxing, QIN Shengfei, TAO Shizhen, et al. Developing trends of natural gas industry and the significant progress on natural gas geological theories in China[J]. Natural Gas Geoscience, 2005, 16(2): 127-142. doi: 10.3969/j.issn.1672-1926.2005.02.001

    [29] 刚文哲, 高岗, 郝石生, 等.论乙烷碳同位素在天然气成因类型研究中的应用[J].石油实验地质, 1997, 19(2): 164-167. http://www.cnki.com.cn/Article/CJFDTotal-SYSD199702010.htm

    GANG Wenzhe, GAO Gang, HAO Shisheng, et al. Carbon isotope of ethane applied in the analyses of genetic types of natural gas[J]. Experimental Petroleum Geology, 1997, 19(2): 164-167. http://www.cnki.com.cn/Article/CJFDTotal-SYSD199702010.htm

    [30]

    Dai J X, Ni Y Y, Zou C N, et al. Stable carbon isotopes of alkane gases from the Xujiahe coal measures and implication for gas-source correlation in the Sichuan Basin, SW China[J]. Organic Geochemistry, 2009, 40(5): 638-646. doi: 10.1016/j.orggeochem.2009.01.012

    [31] 肖芝华, 谢增业, 李志生, 等.川中-川南地区须家河组天然气同位素组成特征[J].地球化学, 2008, 37(3): 245-250. doi: 10.3321/j.issn:0379-1726.2008.03.007

    XIAO Zhihua, XIE Zengye, LI Zhisheng, et al. Isotopic characteristics of natural gas of Xujiahe formation in southern and middle of Sichuan Basin[J]. Geochimica, 2008, 37(3): 245-250. doi: 10.3321/j.issn:0379-1726.2008.03.007

    [32] 戴金星.天然气碳氢同位素特征和各类天然气鉴别[J].天然气地球科学, 1993, 4(2-3): 1-40. http://www.cqvip.com/qk/97226X/199302/1184634.html

    DAI Jinxing. Determination of hydrocarbon isotopic characteristics and natural gas of natural gas[J]. Natural Gas Geoscience, 1993, 4(2-3): 1-40. http://www.cqvip.com/qk/97226X/199302/1184634.html

    [33] 戴金星.各类烷烃气的鉴别[J].中国科学B辑, 1992, 22(2): 185-193. http://www.cqvip.com/qk/88064X/199202/985597.html

    DAI Jinxing. Identification of various alkane gases[J]. Science in China Series B-Chemistry, Life Sciences and Earth Sciences, 1992, 35(10): 1246-1257. http://www.cqvip.com/qk/88064X/199202/985597.html

    [34] 戴金星.戴金星天然气地质和地球化学论文集(卷二)[M].北京:石油工业出版社, 2000.

    DAI Jinxing. Dai Jinxing Proceedings of Natural Gas Geology and Geochemistry (Volume Ⅱ)[M]. Beijing: China Petroleum Industry Press, 2000.

    [35]

    Schoell M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins[J]. Geochimica et Cosmochimica Acta, 1980, 44(5): 649-661. doi: 10.1016/0016-7037(80)90155-6

    [36]

    Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161(1-3): 291-314. doi: 10.1016/S0009-2541(99)00092-3

    [37] 薛小花, 卢振权, 廖泽文, 等.祁连山冻土区含天然气水合物层段岩心热模拟实验研究[J].现代地质, 2013, 27(2): 413-424. doi: 10.3969/j.issn.1000-8527.2013.02.021

    XUE Xiaohua, LU Zhenquan, LIAO Zewen, et al. Study of thermal simulation on cores at gas hydrate-bearing intervals in the Qilian Mountain permafrost[J]. Geoscience, 2013, 27(2): 413-424. doi: 10.3969/j.issn.1000-8527.2013.02.021

图(9)  /  表(2)
计量
  • 文章访问数:  2918
  • HTML全文浏览量:  486
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-02
  • 修回日期:  2017-09-17
  • 刊出日期:  2017-10-27

目录

    /

    返回文章
    返回