东海陆架盆地南部中生代成盆过程的数值模拟

刘泽, 戴黎明, 李三忠, 马芳芳, 索艳慧, 郭玲莉, 陶建丽, 杨传胜, 张嘉琪

刘泽, 戴黎明, 李三忠, 马芳芳, 索艳慧, 郭玲莉, 陶建丽, 杨传胜, 张嘉琪. 东海陆架盆地南部中生代成盆过程的数值模拟[J]. 海洋地质与第四纪地质, 2017, 37(4): 167-180. DOI: 10.16562/j.cnki.0256-1492.2017.04.011
引用本文: 刘泽, 戴黎明, 李三忠, 马芳芳, 索艳慧, 郭玲莉, 陶建丽, 杨传胜, 张嘉琪. 东海陆架盆地南部中生代成盆过程的数值模拟[J]. 海洋地质与第四纪地质, 2017, 37(4): 167-180. DOI: 10.16562/j.cnki.0256-1492.2017.04.011
LIU Ze, DAI Liming, LI Sanzhong, MA Fangfang, SUO Yanhui, GUO Lingli, TAO Jianli, YANG Chuansheng, ZHANG Jiaqi. NUMERICAL SIMULATION OF MESOZOIC TECTONIC PROCESSES IN THE SOUTHERN PART OF EAST CHINA SEA CONTINENTAL SHELF BASIN[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 167-180. DOI: 10.16562/j.cnki.0256-1492.2017.04.011
Citation: LIU Ze, DAI Liming, LI Sanzhong, MA Fangfang, SUO Yanhui, GUO Lingli, TAO Jianli, YANG Chuansheng, ZHANG Jiaqi. NUMERICAL SIMULATION OF MESOZOIC TECTONIC PROCESSES IN THE SOUTHERN PART OF EAST CHINA SEA CONTINENTAL SHELF BASIN[J]. Marine Geology & Quaternary Geology, 2017, 37(4): 167-180. DOI: 10.16562/j.cnki.0256-1492.2017.04.011

东海陆架盆地南部中生代成盆过程的数值模拟

基金项目: 

国家自然科学基金 41325009

国家重点研发计划项目 2016YFC060100

国家自然科学基金 41402172

国家自然科学基金 41476053

山东省泰山学者特聘教授项目 

鳌山卓越科学家计划 2015ASTP-0S10

国家自然科学基金 41506080

详细信息
    作者简介:

    刘泽(1992—),男,硕士生,主要从事地球动力学数值模拟研究,E-mail: liuzegeo@126.com

    通讯作者:

    戴黎明(1980—),男,副教授,从事构造地质学及其数值模拟研究,E-mail: dlming.geo@gmail.com

  • 中图分类号: P736.1

NUMERICAL SIMULATION OF MESOZOIC TECTONIC PROCESSES IN THE SOUTHERN PART OF EAST CHINA SEA CONTINENTAL SHELF BASIN

  • 摘要: 采用I2VIS有限差分方法,模拟了东海陆架盆地南部中生代的盆地演化过程。数值模型的构建主要基于研究区域内现有的地震剖面、测井、层析成像等资料获得的中生代地层结构特征。根据模拟结果,对比已知的岩浆侵入特征和断裂组合规律,定量分析了在不同边界条件下,各阶段盆地演化的岩浆断裂及沉积特征,并探讨了影响盆地构造特征的主要因素。得出以下认识:(1)通过改变模型的边界条件发现,层状含水地幔在拉伸环境下,会对地壳结构造成破坏,中生代东海陆架盆地区域性伸展不是盆地演化过程的唯一主控因素。(2)东海陆架盆地中生代的成盆过程及属性与中生代时期上地幔物质流动有着密切关系。(3)中生代的地幔物质流动导致的大规模岩浆事件很可能作用于闽江凹陷之下,由此导致了闽江凹陷的进一步抬升,形成现今的斜坡带,而基隆凹陷进一步沉降,形成凹陷的沉积中心。基于以上结论,认为区域性伸展和上地幔物质流动导致的岩浆上涌两大因素共同控制下,影响了东海陆架盆地南部中生代的演化。
    Abstract: The I2VIS finite difference and mark-in-cell technique is used to simulate the evolution of Mesozoic basins in the southern part of the East China Sea Continental Shelf Basin. The numerical model was constructed based on the existing seismic profiles, drilling and tomographic data of the study area. Based on the simulation results, the magmatic intrusion and sedimentation during the basin evolution are quantitatively analyzed under different boundary conditions, and the main factors affecting the tectonic evolution of the basin are discussed. As the results, following conclusions are obtained: 1) The change of the boundary conditions for the models indicates that the stratified aquifer mantle will destroy the crustal structure under tensile environment, and the regional extension of the Mesozoic East China Sea Continental Shelf Basin is not the only master factor to the basin evolution. 2) Mesozoic basins are closely related to the material flow in upper mantle during the Mesozoic Era. 3) The large-scale magmatic events caused by the Mesozoic mantle flow are likely to affect the Minjiang Depression, leading the Depression turning to uplift, the formation of the present-day slope zone, and further settling of the Jilong Depression to become a depression center. The regional evolution and magma upwelling caused by the upper mantle flow have indeed influenced the evolution of the Mesozoic basin in the southern part of the East China Sea Continental Shelf Basin.
  • 图  1   东海陆架南部盆地构造单元划分[7]

    (黑线D01,D02表示地震剖面位置)

    Figure  1.   Schematic tectonic map of the East China Sea Shelf Basin[7]

    (Black lines D01, D02 represent locations of seismic profiles[7])

    图  2   东海盆地中生代初始模型

    Figure  2.   Initial Mesozoic numerical model for the East China Sea Continental Shelf Basin

    图  3   低温模型盆地演化物质场变化

    Figure  3.   Material field evolution of the low temperature reference model under basin extension

    图  4   高温模型盆地演化物质场变化

    Figure  4.   Material field evolution of the high temperature reference model under basin extension

    图  5   地幔上涌模型盆地演化物质场变化

    Figure  5.   Material field evolution of the mantle upwelling reference model under basin extension

    图  6   平衡剖面与物质场模拟结果对比

    Figure  6.   Comparison between balanced cross-sections and simulation results of material field

    图  7   平衡剖面与体应变场模拟结果对比

    Figure  7.   Comparison between balanced cross-sections and simulation results of bulk strain field

    图  8   纵向S波地震层析剖面图[39, 44]

    Figure  8.   Longitudinal S-wave seismic tomographic profiles[39, 44]

    图  9   东海陆架盆地中生代成盆机制图

    Figure  9.   The Mesozoic basin forming mechanism of the East China Sea Shelf Basin

    表  1   二维数值模拟实验物质参数[28-33]

    Table  1   Material properties used in 2-D numerical experiments

    物质 状态 ρ0/kg·m-3 Cp/J·kg-1·K-1 K/W·-1·K-1 Tsolidus/K Tliquidus/K Hr/μW·m-3 α/K-1 β/MPa 黏滞性流变性质 塑性流变性质
    Sin(FI0) Sin(FII)
    空气 - 1 3.33×106 200 - - 0 0 0 A* 0 0
    - 1 000 3.33×106 200 - - 0 0 0 A* 0 0
    沉积层 固相 2 700 1 000 K1 T1 T3 2.0 3×10-5 1×10-5 B* 0.03 0.03
    部分熔融 2 400
    上地壳 固相 2 700 1 000 K1 T1 T3 1 3×10-5 1×10-5 B* 0.2 0.2
    部分熔融 2 400
    中地壳 固相 2 800 1 000 K1 T1 T3 1 3×10-5 1×10-5 C* 0.2 0.1
    部分熔融 2 500
    下地壳 固相 2 900 1 000 K1 T1 T3 0.5 3×10-5 1×10-5 D* 0.2 0.00
    部分熔融 2 600
    岩石圈地幔 固相 3 300 1 000 K2 T2 T4 0.022 3×10-5 1×10-5 D* 0.6 0.6
    部分熔融 2 700
    含水地幔 固相 3 300 1 000 K2 T2 T4 0.022 3×10-5 1×10-5 E* 0.6 0.6
    部分熔融 2 700
    下载: 导出CSV

    表  2   二维数值模拟实验物性参数公式[28-33]

    Table  2   Physical property parameter formula used in 2-D numerical experiments

    物性参数标号 物性参数公式
    K1 [0.64+807/(TK+ 77)]×exp(0.000 04×P)
    K2 [0.73+1 293/(TK+ 77)]×exp(0.000 04×P)
    T1 889+17 900/(P+54)+20 200/(P+54)2, P∠1 200 MPa
    T2 831+0.06×P, P>1 200 MP
    1 394+0.132 899×P-0.000 0051 04×P2
    T3 1 262+ 0.09P
    T4 2 212+0.030 819×(P-10 000)
    下载: 导出CSV

    表  3   二维数值模拟实验黏滞性流变参数[28-33]

    Table  3   Properties of rheology used in 2-D numerical experiments

    物质标号 流变学性质 E/KJ mol-1 V/J MPa-1mol-1 n AD/MPa-ns-1 η0/Pas
    A* 空气/水[34] 0 0 1.0 1.0×10-12 1×1018
    B* 湿石英[35] 154 0 2.3 3.2×10-6 1.97×1019
    C* 斜长石An75[34] 238 0 3.2 3.3×10-4 4.80×1022
    D* 无水橄榄岩[36] 532 8 3.5 2.5×104 3.98×1016
    E* 含水橄榄岩[34] 470 8 4.0 2.5×104 5.01×1016
    下载: 导出CSV
  • [1] 黄汲清, 任纪舜, 姜春发, 等.中国大地构造基本轮廓[J].地质学报, 1977, 51(2): 117-135. http://www.geojournals.cn/dzxb/ch/reader/key_query.aspx

    HUANG Jiqing, REN Jishun, JIANG Chunfa, et al. An outline of the tectonic characteristics of China[J]. Acta Geologica Sinica, 1977, 51(2): 117-135. http://www.geojournals.cn/dzxb/ch/reader/key_query.aspx

    [2] 任纪舜.印支运动及其在中国大地构造演化中的意义[J].中国地质科学院院报, 1984, 9(2): 31-44. doi: 10.1109-TIM.2003.810035/

    REN Jishun. The indosinian orogeny and its significance in the tectonic evolution of China[J]. Bulletin of the Chinese Academy of Geological Sciences, 1984, 9(2): 31-44. doi: 10.1109-TIM.2003.810035/

    [3] 李三忠, 余珊, 赵淑娟, 等.东亚大陆边缘的板块重建与构造转换[J].海洋地质与第四纪地质, 2013, 33(3): 65-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201303008

    LI Sanzhong, YU Shan, ZHAO Shujuan, et al. Tectonic transition and plate reconstructions of the East Asian continental margin[J]. Marine Geology and Quaternary Geology, 2013, 33(3): 65-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201303008

    [4] 刘金水, 廖宗廷, 贾健谊, 等.东海陆架盆地地质结构及构造演化[J].上海地质, 2003, 24(3): 1-6. doi: 10.3969/j.issn.2095-1329.2003.03.001

    LIU Jinshui, LIAO Zongting, JIA Jianyi, et al. The geological structure and tectonicevolution of the East China Sea Shelf Basin[J].Shanghai Geology, 2003, 24(3): 1-6. doi: 10.3969/j.issn.2095-1329.2003.03.001

    [5] 杨传胜, 李刚, 杨长清, 等.东海陆架盆地及其邻域岩浆岩时空分布特征[J].海洋地质与第四纪地质, 2012, 32(3): 125-133. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201203016

    YANG Chuansheng, LI Gang, YANG Changqing, et al. Temporal and spatial distribution of the igneous rocks inthe East China Sea Shelf Basin and its adjacent regions[J]. Marine Geology and Quaternary Geology, 2012, 32(3): 125-133. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201203016

    [6] 戴黎明, 李三忠, 楼达, 等.亚洲大陆主要活动块体的现今构造应力数值模拟[J].吉林大学学报:地球科学版, 2013, 43(2): 469-483. http://xuebao.jlu.edu.cn/dxb/CN/article/advancedSearchResult.do

    DAI Liming, LI Sanzhong, LOU Da, et al. Numerical modeling of present-day structural stress of major active blocks in the Asian continent[J]. Journal of Jilin University: Earth Science Edition, 2013, 43(2): 469-483. http://xuebao.jlu.edu.cn/dxb/CN/article/advancedSearchResult.do

    [7] 索艳慧, 李三忠, 戴黎明, 等.东亚及其大陆边缘新生代构造迁移与盆地演化[J].岩石学报, 2012, 28(8): 2602-2618. http://www.ysxb.ac.cn/ysxb/ch/reader/key_query.aspx

    SUO Yanhui, LI Sanzhong, DAI Liming, et al. Cenozoic tectonic migration and basin evolution in East Asia and its continental margins[J]. Acta Petrologica Sinica, 2012, 28(8): 2602-2618. http://www.ysxb.ac.cn/ysxb/ch/reader/key_query.aspx

    [8]

    Suo YH, Li SZ, Yu S, et al. Cenozoic tectonic jumping and implications for hydrocarbon accumulation in basins in the East Asia Continental Margin[J]. Journal of Asian Earth Sciences, 2014, 88: 28-40. doi: 10.1016/j.jseaes.2014.02.019

    [9]

    Suo Y H, Li S Z, Zhao S J, et al. Continental margin basins in East Asia: Tectonic implications of the Meso-Cenozoic East China Sea pull-apart basins[J]. Geological Journal, 2015, 50(2): 139-156. doi: 10.1002/gj.2535

    [10]

    Dai L M, Li S Z, Lou D, et al. Numerical modeling of Late Miocene tectonic inversion in the Xihu Sag, East China Sea Shelf Basin, China[J]. Journal of Asian Earth Sciences, 2014, 86:25-37. doi: 10.1016/j.jseaes.2013.09.033

    [11] 郑求根, 周祖翼, 蔡立国, 等.东海陆架盆地中新生代构造背景及演化[J].石油与天然气地质, 2005, 26(2): 197-201. doi: 10.3321/j.issn:0253-9985.2005.02.012

    ZHENG Qiugen, ZHOU Zuyi, CAI Liguo, et al. Meso-Cenozoic tectonic setting and evolution of East China Sea shelf basin[J]. Oil & Gas Geology, 2005, 26(2): 197-201. doi: 10.3321/j.issn:0253-9985.2005.02.012

    [12] 姜亮.东海陆架盆地油气资源勘探现状及含油气远景[J].中国海上油气(地质), 2003, 17(1): 3-8. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-dz200301001

    JIANG Liang. Exploration status and perspective of petroleum resources in East China Sea Shelf Basin[J]. China Offshore Oil and Gas(Geology), 2003, 17(1): 3-8. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-dz200301001

    [13] 何家雄, 张伟, 颜文, 等.中国近海盆地幕式构造演化及成盆类型与油气富集规律[J].海洋地质与第四纪地质, 2014, 34(2): 121-134. http://d.old.wanfangdata.com.cn/Conference/8281257

    HE Jiaxiong, ZHANG Wei, YAN Wen, et al. Episodic tectonic evolution, basin types and hydrocarbon accumulation in Chinese marginal basins[J]. Marine Geology and Quaternary Geology, 2014, 34(2): 121-134. http://d.old.wanfangdata.com.cn/Conference/8281257

    [14] 梁若冰.东海陆架盆地南部中生界分布浅析[J].海洋石油, 2012, 32(3): 18-22. doi: 10.3969/j.issn.1008-2336.2012.03.018

    LIANG Ruobing. Thedistribution of Mesozoic in the Southern part of East China Sea Shelf Basin[J]. Offshore Oil, 2012, 32(3): 18-22. doi: 10.3969/j.issn.1008-2336.2012.03.018

    [15] 郭真.东海陆架盆地演化中重要地质现象及其动力学背景分析[D].西北大学博士学位论文, 2015.

    GUO Zhen. Evolutionary important geological phenomena and its dynamics background in East China Sea Shelf Basin[D]. Doctor Dissertation of Northwest University, 2015.

    [16] 冯晓杰, 蔡东升, 王春修, 等.东海陆架盆地中新生代构造演化特征[J].中国海上油气:地质, 2003, 17(1):33-37. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-dz200301007

    FENG Xiaojie, CAI Dongsheng, WANGChunxiu. The Meso-Cenozoic tectonic evolution in East China Sea Shelf Basin [J]. China Offshore Oil and Gas (Geology), 2003, 17(1):33-37. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-dz200301007

    [17] 毛建仁.中国东南大陆中、新生代岩浆作用与壳幔演化动力学[J].火山地质与矿产, 1994, 15(2): 1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400214552

    MAO Jianren. The Mesozoic-Canozoic magmatism and Geodynamicsof crustal and mantle evolution in southeast China continent[J]. Volcanology & Mineral Resources, 1994, 15(2): 1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400214552

    [18] 蔡学林, 朱介寿, 曹家敏, 等.东亚西太平洋岩石圈三维结构及其地幔动力学[J].地学前缘, 2007, 14(3): 21-38. doi: 10.3321/j.issn:1005-2321.2007.03.002

    CAI Xuelin, ZHU Jieshou, CAO Jiamin, et al. Three-dimensional tectonics of lithosphere and mantle dynamics of East AsiaWest Pacific[J]. Earth Science Frontiers, 2007, 14(3): 21-38. doi: 10.3321/j.issn:1005-2321.2007.03.002

    [19] 孙卫东, 凌明星, 汪方跃, 等.太平洋板块俯冲与中国东部中生代地质事件[J].矿物岩石地球化学通报, 2008, 27(3): 218-225. doi: 10.3969/j.issn.1007-2802.2008.03.002

    SUN Weidong, LING Mingxing, WANG Fangyue, et al. Pacific plate subduction and Mesozoic geological event in eastern China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(3): 218-225. doi: 10.3969/j.issn.1007-2802.2008.03.002

    [20] 张少武, 李春峰.磁异常三维解析信号所揭示的中国东部及邻近海域岩浆岩特征[J].物探与化探, 2011, 35(3): 290-297. http://www.wutanyuhuatan.com/CN/article/searchArticleResult.do

    ZHANG Shaowu, LI Chunfeng. Magnetic activities in eastern china and adjacent seas revealed by 3D analytic signals of magnetic data[J]. Geophysical and Geochemical Exploration, 2011, 35(3): 290-297. http://www.wutanyuhuatan.com/CN/article/searchArticleResult.do

    [21] 毛建仁, 邢光福, 杨祝良, 等.中国东南大陆中生代构造岩浆事件与大陆地壳生长[C]//中国矿物岩石地球化学学会第九届学术年会论文摘要集.宁波: 中国矿物岩石地球化学学会, 2003.

    MAO Jianren, XING Guangfu, YANG Zhuliang, et al. Chinese Mesozoic tectonic magmatic events and continental crustal growth in the southeastern China[C]. Ningbo, 2003.

    [22] 李廷栋, 莫杰.中国滨太平洋构造域构造格架和东海地质演化[J].海洋地质与第四纪地质, 2002, 22(4):1-6. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200204001

    LI Tingdong, MO Jie. Tectonic framework of the west circum-pacific tectonic tract and the geological evolution of the East China Sea [J]. Marine Geology and Quaternary Geology, 2002, 22(4):1-6. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200204001

    [23] 张旗.中国东部中生代岩浆活动与太平洋板块向西俯冲有关吗?[J].岩石矿物学杂志, 2013, 32(1): 113-128. doi: 10.3969/j.issn.1000-6524.2013.01.010

    ZHANG Qi. Is the Mesozoic magmatism in eastern China related to the westward subduction of the Pacific plate?[J]. Acta Petrologica et Mineralogica, 2013, 32(1): 113-128. doi: 10.3969/j.issn.1000-6524.2013.01.010

    [24] 石广仁, 郭秋麟, 米石云, 等.盆地综合模拟系统BASIMS[J].石油学报, 1996, 17(1): 1-9. doi: 10.7623/syxb199601001

    SHI Guangren, GUO Qiulin, MI Shiyun, et al. Basin integrated modeling system "BASIMS"[J]. Acta Petroei Sinica, 1996, 17(1): 1-9. doi: 10.7623/syxb199601001

    [25]

    Gerya T V, Burg J P. Intrusion of ultramafic magmatic bodies into the continental crust: Numerical simulation[J]. Physics of the Earth and Planetary Interiors, 2007, 160(2): 124-142. doi: 10.1016/j.pepi.2006.10.004

    [26]

    Vogt K, Gerya T V, Castro A. Crustal growth at active continental margins: Numerical modeling[J]. Physics of the Earth and Planetary Interiors, 2012, 192-193: 1-20. doi: 10.1016/j.pepi.2011.12.003

    [27] 李忠海, Di Leo J, Neil R.大洋俯冲带的地幔变形和地震波各向异性的数值模拟[C]//2014年中国地球科学联合学术年会论文集.北京: 中国地球物理学会, 中国地质学会, 2014.

    LI Zhonghai, Di Leo J, Neil R. Numerical simulation of mantle deformation and seismic wave anisotropy in ocean subduction zone[C]. Beijing: Chinese Geophysical Society, Geological Society of China, 2014.

    [28]

    Li Z H, Liu M, Gerya T. Lithosphere delamination in continental collisional orogens: A systematic numerical study[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(7): 5186-5211. doi: 10.1002/2016JB013106

    [29]

    Li Z H. A review on the numerical geodynamic modeling of continental subduction, collision and exhumation[J]. Science China Earth Sciences, 2014, 57(1): 47-69. doi: 10.1007/s11430-013-4696-0

    [30]

    Li Z H, Xu Z Q, Gerya T, et al. Collision of continental corner from 3-D numerical modeling[J].Earth and Planetary Science Letters, 2013, 380: 98-111. doi: 10.1016/j.epsl.2013.08.034

    [31]

    Li Z H, Gerya T V, Burg J P. Influence of tectonic overpressure on P-T paths of HP-UHP rocks in continental collision zones: Thermomechanical modelling[J]. Journal of Metamorphic Geology, 2010, 28(3): 227-247. doi: 10.1111/j.1525-1314.2009.00864.x

    [32]

    Li Z H, Xu Z Q, Gerya T V. Flat versus steep subduction: Contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones[J]. Earth and Planetary Science Letters, 2011, 301(1-2): 65-77. doi: 10.1016/j.epsl.2010.10.014

    [33]

    Li Z H, Gerya T V. Polyphase formation and exhumation of high-to ultrahigh-pressure rocks in continental subduction zone: Numerical modeling and application to the Sulu ultrahigh-pressure terrane in eastern China[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B9): B09406. doi: 10.1029-2008JB005935/

    [34] 侯方辉.东海陆架盆地南部中生代地层分布及构造特征研究[D].中国海洋大学博士学位论文, 2014.

    HOU Fanghui. Research on the distribution and tectonic characteristics of the Mesozoic strata of the East China Sea Shelf Basin[D]. Doctor Dissertation of Ocean University of China, 2014.

    [35] 高德章.东海陆架盆地岩石密度与磁性[J].上海地质, 1995(2): 38-45.

    GAO Dezhang. Density and magnetic of rocks in the East Sea Shelf Basin[J]. Shanghai Geology, 1995(2): 38-45.

    [36]

    Gerya T V, Yuen D A. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties[J]. Physics of the Earth and Planetary Interiors, 2003, 140(4): 293-318. doi: 10.1016/j.pepi.2003.09.006

    [37]

    Faccenda M, Gerya T V, Chakraborty S. Styles of post-subduction collisional orogeny: Influence of convergence velocity, crustal rheology and radiogenic heat production[J]. Lithos, 2008, 103(1-2): 257-287. doi: 10.1016/j.lithos.2007.09.009

    [38] 朱介寿, 曹家敏, 严忠琼, 等.中国及邻区瑞利面波高分辨率层析成像及其地球动力学意义[J].中国地质, 2007, 34(5):759-767. doi: 10.3969/j.issn.1000-3657.2007.05.002

    ZHU Jieshou, CAO Jiamin, YAN Zhongqiong, et al. High-resolution Rayleigh surface wave tomographic imaging of China and adjacent regions and its geodynamic implications[J]. Geology in China, 2007, 34(5):759-767. doi: 10.3969/j.issn.1000-3657.2007.05.002

    [39] 袁学诚.再论岩石圈地幔蘑菇云构造及其深部成因[J].中国地质, 2007, 34(5): 737-758. doi: 10.3969/j.issn.1000-3657.2007.05.001

    YUAN Xuecheng. Mushroom structure of the lithospheric mantle and its genesis at depth: Revisited[J]. Geology in China, 2007, 34(5): 737-758. doi: 10.3969/j.issn.1000-3657.2007.05.001

    [40] 袁学诚, 李善芳, 管烨.瑞雷-泰勒不稳定性与中国东部岩石圈——三论岩石圈地幔蘑菇云构造[J].中国地质, 2012, 39(1): 1-11. doi: 10.3969/j.issn.1000-3657.2012.01.001

    YUAN Xuecheng, LI Shanfang, GUAN Ye. Rayleigh-Taylor instability and lithosphere of eastern China[J].Geology in China, 2012, 39(1): 1-11. doi: 10.3969/j.issn.1000-3657.2012.01.001

    [41] 刘光鼎.中国海地球物理场和地球动力学特征[J].地质学报, 1992, 66(4): 300-314. http://www.geojournals.cn/dzxb/ch/reader/key_query.aspx

    LIU Guangding. Features of geophysical fields and geodynamics of the sea areas of China[J]. Acta Geologica Sinica, 1992, 66(4):300-314. http://www.geojournals.cn/dzxb/ch/reader/key_query.aspx

    [42] 温珍河, 张训华, 姚长新, 等.中国东部海区及邻域地质构造特征与演化[C]//2008年亚洲大陆深部地质作用与浅部地质——成矿响应学术研讨会论文集.乌鲁木齐: 中国地质学会, 2008.

    WEN Zhenhe, ZHANG Xunhua, YAO Changxin, et al. Characteristics and evolution of geological structure in eastern China and its adjacent areas[C]. Urumqi: Geological Society of China, 2008.

    [43] 滕吉文, 张中杰, 胡家富, 等.中国东南大陆及陆缘地带的瑞利波频散与剪切波三维速度结构[J].地球物理学报, 2001, 44(5): 663-677. doi: 10.3321/j.issn:0001-5733.2001.05.010

    TENG Jiwen, ZHANG Zhongjie, HU Jiafu, et al. The Rayleigh wave dispersion and three dimensional velocity structure in continent and its margin of southeast China[J]. Chinese Journal of Geophysics, 2001, 44(5): 663-677. doi: 10.3321/j.issn:0001-5733.2001.05.010

    [44] 刘光鼎.中国海地球物理场特征[J].地球物理学进展, 2002, 17(1):1-12. doi: 10.3969/j.issn.1004-2903.2002.01.001

    LIU Guangding. The characteristics of geophysical fields on the China Seas[J]. Progress in Geophysics, 2002, 17(1):1-12. doi: 10.3969/j.issn.1004-2903.2002.01.001

    [45] 毛建仁, 陶奎元, 邢光福, 等.中国东南大陆边缘中新生代地幔柱活动的岩石学记录[J].地球学报, 1999, 20(3): 253-258. doi: 10.3321/j.issn:1006-3021.1999.03.006

    MAO Jianren, TAO Kuiyuan, XING Guangfu, et al. Petrological records of the Mesozoic-Cenozoic mantle plume tectonics in epicontinental area of Southeast China[J]. Acta Geoscientia Sinica, 1999, 20(3): 253-258. doi: 10.3321/j.issn:1006-3021.1999.03.006

    [46]

    Palmeri R, Ghiribelli B, Ranalli G, et al. Ultrahigh-pressure metamorphism and exhumation of garnet-bearing ultramafic rocks from the Lanterman Range (northern Victoria Land, Antarctica)[J]. Journal of Metamorphic Geology, 2007, 25(2): 225-243. doi: 10.1111/j.1525-1314.2006.00686.x

  • 期刊类型引用(2)

    1. 孔淼淼,刘夙睿,王厚杰,毕乃双,胡利民,闫天浩,任晰熙,刘彦昊,吴晓. 现代黄河水下三角洲对尾闾改道事件的沉积响应——以1855、1976、1996年三期改道为例. 海洋地质前沿. 2025(02): 68-77 . 百度学术
    2. 孙璐,单红仙,张红,刘汉露,贾永刚. 基于~(210)Pb、~(137)Cs分布和粒度特征的海床液化深度判定研究——以埕岛海域为例. 海洋学报. 2023(10): 105-113 . 百度学术

    其他类型引用(2)

图(9)  /  表(3)
计量
  • 文章访问数:  3460
  • HTML全文浏览量:  487
  • PDF下载量:  32
  • 被引次数: 4
出版历程
  • 收稿日期:  2017-05-30
  • 修回日期:  2017-06-18
  • 刊出日期:  2017-08-27

目录

    /

    返回文章
    返回