[1] |
Sloan E D Jr. Fundamental principles and applications of natural gas hydrates [J]. Nature, 2003, 426(6964): 353-359. doi: 10.1038/nature02135 |
[2] |
Sloan E D Jr, Koh C A. Clathrate Hydrates of Natural Gases[M]. Boca Raton: CRC Press, 2007. |
[3] |
Nair V C, Prasad S K, Kumar R, et al. Energy recovery from simulated clayey gas hydrate reservoir using depressurization by constant rate gas release, thermal stimulation and their combinations [J]. Applied Energy, 2018, 225: 755-768. doi: 10.1016/j.apenergy.2018.05.028 |
[4] |
Kou X, Wang Y, Li X S, et al. Influence of heat conduction and heat convection on hydrate dissociation by depressurization in a pilot-scale hydrate simulator [J]. Applied Energy, 2019, 251: 113405. doi: 10.1016/j.apenergy.2019.113405 |
[5] |
Gambelli A M, Rossi F. Natural gas hydrates: Comparison between two different applications of thermal stimulation for performing CO2 replacement [J]. Energy, 2019, 172: 423-434. doi: 10.1016/j.energy.2019.01.141 |
[6] |
Gupta P, Nair V C, Sangwai J S. Polymer-Assisted chemical inhibitor flooding: a novel approach for energy recovery from hydrate-bearing sediments [J]. Industrial & Engineering Chemistry Research, 2021, 60(22): 8043-8055. |
[7] |
Nair V C, Mech D, Gupta P, et al. Polymer flooding in artificial hydrate bearing sediments for methane gas recovery [J]. Energy & Fuels, 2018, 32(6): 6657-6668. |
[8] |
Rossi F, Gambelli A M, Sharma D K, et al. Experiments on methane hydrates formation in seabed deposits and gas recovery adopting carbon dioxide replacement strategies [J]. Applied Thermal Engineering, 2019, 148: 371-381. doi: 10.1016/j.applthermaleng.2018.11.053 |
[9] |
Koh D Y, Kang H, Lee J W, et al. Energy-efficient natural gas hydrate production using gas exchange [J]. Applied Energy, 2016, 162: 114-130. doi: 10.1016/j.apenergy.2015.10.082 |
[10] |
Fakher S, Elgahawy Y, Abdelaal H. A comprehensive review on gas hydrate reservoirs: Formation and dissociation thermodynamics and rock and fluid properties[C]//International Petroleum Technology Conference. Beijing: International Petroleum Technology Conference, 2019. |
[11] |
徐行, 罗贤虎, 彭登, 等. 中国首次试采天然气水合物成功[J]. 中国地质, 2017, 44(3):620-621 doi: 10.12029/gc20170323
XU Xing, LUO Xianhu, PENG Deng, et al. First successful trial collection of natural gas hydrate in China [J]. China Geology, 2017, 44(3): 620-621. doi: 10.12029/gc20170323 |
[12] |
叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3):557-568 doi: 10.12029/gc20200301
YE Jianliang, QIN Xuwen, XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea [J]. China Geology, 2020, 47(3): 557-568. doi: 10.12029/gc20200301 |
[13] |
Komai T, Kawamura Y K T, Yoon J H. Extraction of Gas Hydrates using CO2 sequestration[C]//The Thirteenth International Offshore and Polar Engineering Conference. Honolulu: The International Society of Offshore and Polar Engineers, 2003. |
[14] |
Birkedal K A, Ersland G, Husebo J, et al. Geomechanical stability during CH4 production from hydrates-depressurization or CO2 sequestration with CO2-CH4 exchange[C]//44th U. S. Rock Mechanics Symposium and 5th U. S. -Canada Rock Mechanics Symposium. Salt Lake City: American Rock Mechanics Association, 2010. |
[15] |
张学民, 李银辉, 张山岭, 等. 多孔介质中CO2-CH4水合物置换过程的强化方法研究进展[J]. 过程工程学报, 2022, 22(4):438-447 doi: 10.12034/j.issn.1009-606X.221122
ZHANG Xuemin, LI Yinhui, ZHANG Shanling, et al. Research progress of enhancement methods of CO2-CH4 hydrate displacement in porous media [J]. The Chinese Journal of Process Engineering, 2022, 22(4): 438-447. doi: 10.12034/j.issn.1009-606X.221122 |
[16] |
Ebinuma T. Method for dumping and disposing of carbon dioxide gas and apparatus therefor: US, 5261490[P]. 1993-11-16. |
[17] |
王敏, 徐刚, 蔡晶, 等. “CH4-CO2”置换法开采天然气水合物[J]. 新能源进展, 2021, 9(1):62-68
WANG Min, XU Gang, CAI Jing, et al. Research progress on the micro-mechanism and efficiency of CH4-CO2 replacement and extraction of CH4 hydrate [J]. Advances in New and Renewable Enengy, 2021, 9(1): 62-68. |
[18] |
Ohgaki K, Takano K, Sangawa H, et al. Methane exploitation by carbon dioxide from gas hydrates-phase equilibria for CO2-CH4 mixed hydrate system [J]. Journal of Chemical Engineering of Japan, 1996, 29(3): 478-483. doi: 10.1252/jcej.29.478 |
[19] |
Schoderbek D, Farrell H, Howard J, et al. ConocoPhillips gas hydrate production test[R]. Houston, TX: ConocoPhillips Co. , 2013. |
[20] |
Schoderbek D, Boswell R. Iġnik Sikumi #1, gas hydrate test well, successfully installed on the Alaska North Slope [J]. Fire in the Ice-Methane Hydrate Newsletter, 2011, 11: 1-5. |
[21] |
Ohgaki K, Takano K, Moritoki M. Exploitation of CH4 hydrates under the Nankai Trough in combination with CO2 storage [J]. Kagaku kōgaku ronbunshū, 1994, 20(1): 121-123. doi: 10.1252/kakoronbunshu.20.121 |
[22] |
Mu L, Von Solms N. Hydrate thermal dissociation behavior and dissociation enthalpies in methane-carbon dioxide swapping process [J]. The Journal of Chemical Thermodynamics, 2018, 117: 33-42. doi: 10.1016/j.jct.2017.08.018 |
[23] |
Ota M, Abe Y, Watanabe M, et al. Methane recovery from methane hydrate using pressurized CO2 [J]. Fluid Phase Equilibria, 2005, 228-229: 553-559. doi: 10.1016/j.fluid.2004.10.002 |
[24] |
Yezdimer E M, Cummings P T, Chialvo A A. Determination of the Gibbs free energy of gas replacement in SI clathrate hydrates by molecular simulation [J]. The Journal of Physical Chemistry A, 2002, 106(34): 7982-7987. doi: 10.1021/jp020795r |
[25] |
Huo Z X, Hester K, Sloan E D Jr, et al. Methane hydrate nonstoichiometry and phase diagram [J]. AIChE Journal, 2003, 49(5): 1300-1306. doi: 10.1002/aic.690490521 |
[26] |
Circone S, Stern L A, Kirby S H, et al. CO2 hydrate: synthesis, composition, structure, dissociation behavior, and a comparison to structure I CH4 hydrate [J]. The Journal of Physical Chemistry B, 2003, 107(23): 5529-5539. doi: 10.1021/jp027391j |
[27] |
Geng C Y, Wen H, Zhou H. Molecular simulation of the potential of methane reoccupation during the replacement of methane hydrate by CO2 [J]. The Journal of Physical Chemistry A, 2009, 113(18): 5463-5469. doi: 10.1021/jp811474m |
[28] |
Yonkofski C M R, Horner J A, White M D. Experimental and numerical investigation of hydrate-guest molecule exchange kinetics [J]. Journal of Natural Gas Science and Engineering, 2016, 35: 1480-1489. doi: 10.1016/j.jngse.2016.03.080 |
[29] |
张杰, 关富佳. CO2置换联合热采技术开采天然气水合物可行性分析[J]. 能源化工, 2018, 39(2):71-75 doi: 10.3969/j.issn.1006-7906.2018.02.015
ZHANG Jie, GUAN Fujia. Feasibility analysis on CO2 replacement combined with heating technology for production of natural gas hydrate [J]. Energy Chemical Industry, 2018, 39(2): 71-75. doi: 10.3969/j.issn.1006-7906.2018.02.015 |
[30] |
颜雨. CO2乳液稳定性评价和CO2乳液盖层改造降压开采水合物研究[D]. 中国石油大学(北京)硕士学位论文, 2019
YAN Yu. Experimental study on stability of CO2 emulsion and hydrate depressurization exploitation after cap reformation via CO2 emulsion[D]. Master Dissertation of China University of Petroleum (Beijing), 2019. |
[31] |
Lee S, Lee Y, Lee J, et al. Experimental verification of methane–carbon dioxide replacement in natural gas hydrates using a differential scanning calorimeter [J]. Environmental Science & Technology, 2013, 47(22): 13184-13190. |
[32] |
Jung J W, Espinoza D N, Santamarina J C. Properties and phenomena relevant to CH4-CO2 replacement in hydrate-bearing sedim-ents [J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B10): B10102. doi: 10.1029/2009JB000812 |
[33] |
Yuan Q, Sun C Y, Liu B, et al. Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO2 [J]. Energy Conversion and Management, 2013, 67: 257-264. doi: 10.1016/j.enconman.2012.11.018 |
[34] |
Yuan Q, Sun C Y, Yang X, et al. Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor [J]. Energy, 2012, 40(1): 47-58. doi: 10.1016/j.energy.2012.02.043 |
[35] |
Schicks J M, Strauch B, Heeschen K U, et al. From microscale (400 μl) to macroscale (425 L): Experimental investigations of the CO2/N2-CH4 exchange in gas hydrates simulating the Iġnik Sikumi Field Trial [J]. Journal of Geophysical Research:Solid Earth, 2018, 123(5): 3608-3620. doi: 10.1029/2017JB015315 |
[36] |
Gambelli A M, Filipponi M, Rossi F. How methane release may affect carbon dioxide storage during replacement processes in natural gas hydrate reservoirs [J]. Journal of Petroleum Science and Engineering, 2021, 205: 108895. doi: 10.1016/j.petrol.2021.108895 |
[37] |
Xu C G, Zhang W, Yan K F, et al. Research on micro mechanism and influence of hydrate-based methane-carbon dioxide replacement for realizing simultaneous clean energy exploitation and carbon emission reduction [J]. Chemical Engineering Science, 2022, 248: 117266. doi: 10.1016/j.ces.2021.117266 |
[38] |
Uchida T, Takeya S, Ebinuma T, et al. Replacing methane with CO2 in clathrate hydrate: observations using Raman spectroscopy[J]. 2001. |
[39] |
Ors O, Sinayuc C. An experimental study on the CO2-CH4 swap process between gaseous CO2 and CH4 hydrate in porous media [J]. Journal of Petroleum Science and Engineering, 2014, 119: 156-162. doi: 10.1016/j.petrol.2014.05.003 |
[40] |
Mok J, Choi W, Seo Y. Time-dependent observation of a cage-specific guest exchange in sI hydrates for CH4 recovery and CO2 sequestration [J]. Chemical Engineering Journal, 2020, 389: 124434. doi: 10.1016/j.cej.2020.124434 |
[41] |
Xu C G, Cai J, Yu Y S, et al. Research on micro-mechanism and efficiency of CH4 exploitation via CH4-CO2 replacement from natural gas hydrates [J]. Fuel, 2018, 216: 255-265. doi: 10.1016/j.fuel.2017.12.022 |
[42] |
Zhang Y, Xiong L J, Li X S, et al. Replacement of CH4 in hydrate in porous sediments with liquid CO2 injection [J]. Chemical Engineering & Technology, 2014, 37(12): 2022-2029. |
[43] |
宋光春, 李玉星, 王武昌. 温度和压力对CO2置换甲烷水合物的影响[J]. 油气储运, 2016, 35(3):295-301
SONG Guangchun, LI Yuxing, WANG Wuchang. Impacts of temperature and pressure on displacement of CH4 in hydrate by CO2 [J]. Oil and Gas Storage and Transportation, 2016, 35(3): 295-301. |
[44] |
Uchida T, Ikeda I Y, Takeya S, et al. Kinetics and stability of CH4-CO2 mixed gas hydrates during formation and long-term storage [J]. ChemPhysChem, 2005, 6(4): 646-654. doi: 10.1002/cphc.200400364 |
[45] |
Huang X, Cai W J, Zhan L S, et al. Study on the reaction of methane hydrate with gaseous CO2 by Raman imaging microscopy [J]. Chemical Engineering Science, 2020, 222: 115720. doi: 10.1016/j.ces.2020.115720 |
[46] |
Yoon J H, Kawamura T, Yamamoto Y, et al. Transformation of methane hydrate to carbon dioxide hydrate: In situ Raman spectroscopic observations[C]//The Fifteenth International Offshore and Polar Engineering Conference. Seoul, Korea: The International Society of Offshore and Polar Engineers, 2005. |
[47] |
王菲菲. 二氧化碳置换甲烷水合物微观实验研究[D]. 中国地质大学博士学位论文, 2015.
WANG Feifei. Micro-experimental study onreplacement of CH4 hydrate by use of Co[D]. Doctor Dissertation of China University of Geosciences, 2015. |
[48] |
Wang T, Zhang L X, Sun L J, et al. Methane recovery and carbon dioxide storage from gas hydrates in fine marine sediments by using CH4/CO2 replacement [J]. Chemical Engineering Journal, 2021, 425: 131562. doi: 10.1016/j.cej.2021.131562 |
[49] |
Pan D B, Zhong X P, Zhu Y, et al. CH4 recovery and CO2 sequestration from hydrate-bearing clayey sediments via CO2/N2 injection [J]. Journal of Natural Gas Science and Engineering, 2020, 83: 103503. doi: 10.1016/j.jngse.2020.103503 |
[50] |
Ren J J, Liu X H, Niu M Y, et al. Effect of sodium montmorillonite clay on the kinetics of CH4 hydrate-implication for energy recovery [J]. Chemical Engineering Journal, 2022, 437: 135368. doi: 10.1016/j.cej.2022.135368 |
[51] |
Gambelli A M. An experimental description of the double positive effect of CO2 injection in methane hydrate deposits in terms of climate change mitigation [J]. Chemical Engineering Science, 2021, 233: 116430. doi: 10.1016/j.ces.2020.116430 |
[52] |
Zhang X M, Wang Y M, Li J P, et al. Recovering CH4 from natural gas hydrate with CO2 in porous media below the freezing point [J]. Petroleum Science and Technology, 2019, 37(7): 770-779. doi: 10.1080/10916466.2019.1566248 |
[53] |
Khasanov M K, Stolpovsky M V, Gimaltdinov I K. Mathematical model of injection of liquid carbon dioxide in a reservoir saturated with methane and its hydrate [J]. International Journal of Heat and Mass Transfer, 2019, 132: 529-538. doi: 10.1016/j.ijheatmasstransfer.2018.12.033 |
[54] |
Khasanov M K, Musakaev N G, Stolpovsky M V, et al. Mathematical Model of decomposition of methane hydrate during the injection of liquid carbon dioxide into a reservoir saturated with methane and its hydrate [J]. Mathematics, 2020, 8(9): 1482. doi: 10.3390/math8091482 |
[55] |
Shagapov V S, Khasanov M K, Musakaev N G, et al. Theoretical research of the gas hydrate deposits development using the injection of carbon dioxide [J]. International Journal of Heat and Mass Transfer, 2017, 107: 347-357. doi: 10.1016/j.ijheatmasstransfer.2016.11.034 |
[56] |
Lee B R, Koh C A, Sum A K. Quantitative measurement and mechanisms for CH4 production from hydrates with the injection of liquid CO2 [J]. Physical Chemistry Chemical Physics, 2014, 16(28): 14922-14927. doi: 10.1039/C4CP01780C |
[57] |
Qi Y X, Ota M, Zhang H. Molecular dynamics simulation of replacement of CH4 in hydrate with CO2 [J]. Energy Conversion and Management, 2011, 52(7): 2682-2687. doi: 10.1016/j.enconman.2011.01.020 |
[58] |
Tung Y T, Chen L J, Chen Y P, et al. In situ methane recovery and carbon dioxide sequestration in methane hydrates: A molecular dynamics simulation study [J]. The Journal of Physical Chemistry B, 2011, 115(51): 15295-15302. doi: 10.1021/jp2088675 |
[59] |
Hsieh P Y, Sean W Y, Sato T, et al. Mesoscale modeling of exploiting methane hydrate by CO2 replacement in homogeneous porous media [J]. International Journal of Heat and Mass Transfer, 2020, 158: 119741. doi: 10.1016/j.ijheatmasstransfer.2020.119741 |
[60] |
Bai D S, Zhang X R, Chen G J, et al. Replacement mechanism of methane hydrate with carbon dioxide from microsecond molecular dynamics simulations [J]. Energy & Environmental Science, 2012, 5(5): 7033-7041. |
[61] |
刘一楠. 基于分子动力学模拟的天然气水合物分解和置换过程机理研究[D]. 天津大学硕士学位论文, 2017.
LIU Yinan. Mechanism study on the decomposition andreplacement of natural gas hydrate basedon molecular dynamics simulation[D]. Master Dissertation of Tianjin University, 2017. |
[62] |
Ota M, Morohashi K, Abe Y, et al. Replacement of CH4 in the hydrate by use of liquid CO2 [J]. Energy Conversion and Management, 2005, 46(11-12): 1680-1691. doi: 10.1016/j.enconman.2004.10.002 |
[63] |
Ota M, Saito T, Aida T, et al. Macro and microscopic CH4-CO2 replacement in CH4 hydrate under pressurized CO2 [J]. AIChE Journal, 2007, 53(10): 2715-2721. doi: 10.1002/aic.11294 |
[64] |
张凤琦, 陈国兴, 郭开华, 等. 液态二氧化碳置换整形甲烷水合物过程特性[J]. 过程工程学报, 2018, 18(3):639-645 doi: 10.12034/j.issn.1009-606X.217304
ZHANG Fengqi, CHEN Guoxing, GUO Kaihua, et al. Process characteristics on replacement of bulk-methane hydrates with liquid cardon dioxide [J]. The Chinese Journal of Process Engineering, 2018, 18(3): 639-645. doi: 10.12034/j.issn.1009-606X.217304 |
[65] |
Zhou X T, Fan S S, Liang D Q, et al. Determination of appropriate condition on replacing methane from hydrate with carbon dioxide [J]. Energy Conversion and Management, 2008, 49(8): 2124-2129. doi: 10.1016/j.enconman.2008.02.006 |
[66] |
Wang X H, Li F G, Xu Y X, et al. Elastic properties of hydrate-bearing sandy sediment during CH4-CO2 replacement [J]. Energy Conversion and Management, 2015, 99: 274-281. doi: 10.1016/j.enconman.2015.04.032 |
[67] |
Falenty A, Qin J, Salamatin A N, et al. Fluid composition and kinetics of the in-situ replacement in CH4-CO2 hydrate system [J]. The Journal of Physical Chemistry C, 2016, 120(48): 27159-27172. doi: 10.1021/acs.jpcc.6b09460 |
[68] |
Kvamme B, Graue A, Buanes T, et al. Storage of CO2 in natural gas hydrate reservoirs and the effect of hydrate as an extra sealing in cold aquifers [J]. International Journal of Greenhouse Gas Control, 2007, 1(2): 236-246. doi: 10.1016/S1750-5836(06)00002-8 |
[69] |
Zhou X T, Fan S S, Liang D Q, et al. Replacement of methane from quartz sand-bearing hydrate with carbon dioxide-in-water emulsion [J]. Energy & Fuels, 2008, 22(3): 1759-1764. |
[70] |
周锡堂, 樊栓狮, 梁德青. CO2乳状液置换天然气水合物中CH4的动力学研究[J]. 天然气地球科学, 2013, 24(2):259-264
ZHOU Xitang, FAN Shuanshi, LIANG Deqing. Kinetic research on replacement of methane in gas hydrate with carbon dioxide emulsion [J]. Natural Gas Geoscience, 2013, 24(2): 259-264. |
[71] |
Deusner C, Bigalke N, Kossel E, et al. Methane production from gas hydrate deposits through injection of supercritical CO2 [J]. Energies, 2012, 5(7): 2112-2140. doi: 10.3390/en5072112 |
[72] |
Bi Y, Yang T, Guo K H. Determination of the upper-quadruple-phase equilibrium region for carbon dioxide and methane mixed gas hydrates [J]. Journal of Petroleum Science and Engineering, 2013, 101: 62-67. doi: 10.1016/j.petrol.2012.11.019 |
[73] |
McGrail B P, Zhu T, Hunter R B, et al. A new method for enhanced production of gas hydrates with CO2 [J]. Gas Hydrates:Energy Resource Potential and Associated Geologic Hazards, 2004, 2004: 12-16. |
[74] |
Lee Y, Kim Y, Lee J, et al. CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter [J]. Applied Energy, 2015, 150: 120-127. doi: 10.1016/j.apenergy.2015.04.012 |
[75] |
Mu L, von Solms N. Methane production and carbon capture by hydrate swapping [J]. Energy & Fuels, 2017, 31(4): 3338-3347. |
[76] |
Prasad P S R, Kiran B S. Stability and exchange of guest molecules in gas hydrates under the influence of CH4, CO2, N2 and CO2+N2 gases at low-pressures [J]. Journal of Natural Gas Science and Engineering, 2020, 78: 103311. doi: 10.1016/j.jngse.2020.103311 |
[77] |
Lim D, Ro H, Seo Y, et al. Thermodynamic stability and guest distribution of CH4/N2/CO2 mixed hydrates for methane hydrate production using N2/CO2 injection [J]. The Journal of Chemical Thermodynamics, 2017, 106: 16-21. doi: 10.1016/j.jct.2016.11.012 |
[78] |
Bhawangirkar D R, Sangwai J S. Insights into cage occupancies during gas exchange in CH4+CO2 and CH4+N2+CO2 mixed hydrate systems relevant for methane gas recovery and carbon dioxide sequestration in hydrate reservoirs: a thermodynamic approach [J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 14462-14475. |
[79] |
Matsui H, Jia J H, Tsuji T, et al. Microsecond simulation study on the replacement of methane in methane hydrate by carbon dioxide, nitrogen, and carbon dioxide-nitrogen mixtures [J]. Fuel, 2020, 263: 116640. doi: 10.1016/j.fuel.2019.116640 |
[80] |
Song W L, Sun X L, Zhou G G, et al. Molecular dynamics simulation study of N2/CO2 displacement process of methane hydrate [J]. ChemistrySelect, 2020, 5(44): 13936-13950. doi: 10.1002/slct.202003845 |
[81] |
Sun Y H, Li S L, Zhang G B, et al. Hydrate phase equilibrium of CH4+N2+CO2 gas mixtures and cage occupancy behaviors [J]. Industrial & Engineering Chemistry Research, 2017, 56(28): 8133-8142. |
[82] |
Li B, Xu T F, Zhang G B, et al. An experimental study on gas production from fracture-filled hydrate by CO2 and CO2/N2 replacement [J]. Energy Conversion and Management, 2018, 165: 738-747. doi: 10.1016/j.enconman.2018.03.095 |
[83] |
王晓辉. 注气开采天然气水合物实验模拟与能效分析[D]. 中国石油大学(北京)博士学位论文, 2017
WANG Xiaohui. Experimental simulation and energy efficiency analysis of gas hydrates production by gas injection method[D]. Doctor Dissertation of China University of Petroleum (Beijing), 2017. |
[84] |
Chaturvedi K R, Sinha A S K, Nair V C, et al. Enhanced carbon dioxide sequestration by direct injection of flue gas doped with hydrogen into hydrate reservoir: Possibility of natural gas production [J]. Energy, 2021, 227: 120521. doi: 10.1016/j.energy.2021.120521 |
[85] |
Sun Y H, Zhang G B, Li S L, et al. CO2/N2 injection into CH4+C3H8 hydrates for gas recovery and CO2 sequestration [J]. Chemical Engineering Journal, 2019, 375: 121973. doi: 10.1016/j.cej.2019.121973 |
[86] |
Yasue M, Masuda Y, Liang Y F. Estimation of methane recovery efficiency from methane hydrate by the N2-CO2 gas mixture injection method [J]. Energy & Fuels, 2020, 34(5): 5236-5250. |
[87] |
Liu B, Pan H, Wang X H, et al. Evaluation of different CH4-CO2 replacement processes in hydrate-bearing sediments by measuring P-wave velocity [J]. Energies, 2013, 6(12): 6242-6254. doi: 10.3390/en6126242 |
[88] |
Pandey J S, Solms N V. Hydrate stability and methane recovery from gas hydrate through CH4-CO2 replacement in different mass transfer scenarios [J]. Energies, 2019, 12(12): 2309. doi: 10.3390/en12122309 |
[89] |
Yang J H, Okwananke A, Tohidi B, et al. Flue gas injection into gas hydrate reservoirs for methane recovery and carbon dioxide sequestration [J]. Energy Conversion and Management, 2017, 136: 431-438. doi: 10.1016/j.enconman.2017.01.043 |
[90] |
王曦. CO2+N2混合气置换开采天然气水合物实验研究及过程模拟[D]. 华南理工大学硕士学位论文, 2017.
WANG Xi. Experimental research and process simulation of natural gas hydrate replacement production by injecting CO2+N2 mixture gas[D]. Master Dissertation of South China University of Technology, 2017. |
[91] |
Park Y, Kim D Y, Lee J W, et al. Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates [J]. Proceedings of the National Academy of Sciences, 2006, 103(34): 12690-12694. doi: 10.1073/pnas.0602251103 |
[92] |
Koh D Y, Kang H, Kim D O, et al. Recovery of methane from gas hydrates intercalated within natural sediments using CO2 and a CO2/N2 gas mixture [J]. ChemSusChem, 2012, 5(8): 1443-1448. doi: 10.1002/cssc.201100644 |
[93] |
Cha M J, Shin K, Lee H, et al. Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy [J]. Environmental Science & Technology, 2015, 49(3): 1964-1971. |
[94] |
Koh D Y, Ahn Y H, Kang H, et al. One-dimensional productivity assessment for on-field methane hydrate production using CO2/N2 mixture gas [J]. AIChE Journal, 2015, 61(3): 1004-1014. doi: 10.1002/aic.14687 |
[95] |
Youn Y, Cha M J, Kwon M, et al. One-dimensional approaches for methane hydrate production by CO2/N2 gas mixture in horizontal and vertical column reactor [J]. Korean Journal of Chemical Engineering, 2016, 33(5): 1712-1719. doi: 10.1007/s11814-015-0294-5 |
[96] |
Pan D B, Zhong X P, Li B, et al. Experimental investigation into methane production from hydrate-bearing clayey sediment by CO2/N2 replacement [J]. Energy Exploration & Exploitation, 2020, 38(6): 2601-2617. |
[97] |
潘栋彬. 海洋天然气水合物射流破碎与注CO2/N2置换联合开采研究[D]. 吉林大学, 2021.
PAN Dongbin. Research on joint exploitation of marine gas hydrate jet fragmentation and CO2/N2 replacement [D]. Jilin University, 2021. |
[98] |
Niu M Y, Wu G Z, Yin Z Y, et al. Effectiveness of CO2-N2 injection for synergistic CH4 recovery and CO2 sequestration at marine gas hydrates condition [J]. Chemical Engineering Journal, 2021, 420: 129615. doi: 10.1016/j.cej.2021.129615 |
[99] |
Seo Y, Kang S P, Jang W. Study on mechanism of methane hydrate replacement by carbon dioxide injection[C]//The Nineteenth International Offshore and Polar Engineering Conference. Osaka, Japan: The International Society of Offshore and Polar Engineers, 2009. |
[100] |
Zhou X B, Liang D Q, Liang S, et al. Recovering CH4 from natural gas hydrates with the injection of CO2-N2 gas mixtures [J]. Energy & Fuels, 2015, 29(2): 1099-1106. |
[101] |
Ouyang Q, Fan S S, Wang Y H, et al. Enhanced methane production efficiency with in situ intermittent heating assisted CO2 replacement of hydrates [J]. Energy & Fuels, 2020, 34(10): 12476-12485. |
[102] |
操原. 二氧化碳与氮气混合气辅热联合置换开采天然气水合物实验研究[D]. 华南理工大学硕士学位论文, 2018.
CAO Yuan. Experimental study on gas hydrate exploitation by combining N2 and CO2 mixture replacement and heat injection[D]. Master Dissertation of South China University of Technology, 2018. |
[103] |
Masuda Y. Methane recovery from hydrate-bearing sediments by N2-CO2 gas mixture injection: experimental investigation on CO2-CH4 exchange ratio[C]//International Conference on Gas Hydrate. 2011. |
[104] |
Tupsakhare S S, Castaldi M J. Efficiency enhancements in methane recovery from natural gas hydrates using injection of CO2/N2 gas mixture simulating in-situ combustion [J]. Applied Energy, 2019, 236: 825-836. doi: 10.1016/j.apenergy.2018.12.023 |
[105] |
余静薇, 祁影霞, 魏欣宇. Ar提高CO2置换CH4水合物置换率研究[J]. 热能动力工程, 2020, 35(6):251-256
YU Jingwei, QI Yingxia, WEI Xinyu. Promotion of replacement rate of CH4 hydrates with CO2 by adding small Ar gas [J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(6): 251-256. |
[106] |
Okwananke A, Yang J H, Tohidi B, et al. Enhanced depressurisation for methane recovery from gas hydrate reservoirs by injection of compressed air and nitrogen [J]. The Journal of Chemical Thermodynamics, 2018, 117: 138-146. doi: 10.1016/j.jct.2017.09.028 |
[107] |
穆德富, 祁影霞. 热激励的CO2置换CH4水合物的实验研究[J]. 能源研究与信息, 2017, 33(1):13-18
MU Defu, QI Yingxia. Experimental study on the replacement of methane hydrate by CO2 with thermal excitation [J]. Energy Research and Information, 2017, 33(1): 13-18. |
[108] |
Zhang L X, Yang L, Wang J Q, et al. Enhanced CH4 recovery and CO2 storage via thermal stimulation in the CH4/CO2 replacement of methane hydrate [J]. Chemical Engineering Journal, 2017, 308: 40-49. doi: 10.1016/j.cej.2016.09.047 |
[109] |
Stanwix P L, Rathnayake N M, De Obanos F P P, et al. Characterising thermally controlled CH4-CO2 hydrate exchange in unconsolidated sediments [J]. Energy & Environmental Science, 2018, 11(7): 1828-1840. |
[110] |
欧阳潜. 置换联合原位加热强化开采天然气水合物及逆置换研究[D]. 华南理工大学硕士学位论文, 2020.
OUYANG Qian. Investigation of replacement combined with in-situ heating enhanced exploitation of natural gas hydrates and the inverse[D]. Master Dissertation of South China University of Technology, 2020. |
[111] |
张育诚. 注热及CO2/N2置换开采天然气水合物实验研究[D]. 华南理工大学硕士学位论文, 2019
ZHANG Yucheng. Recovery CHA via thermal stimulation and CO2/N2 nreplacement of methane hydrate[D]. Master Dissertation of South China University of Technology, 2019. |
[112] |
Tupsakhare S S, Fitzgerald G C, Castaldi M J. Thermally assisted dissociation of methane hydrates and the impact of CO2 injection [J]. Industrial & Engineering Chemistry Research, 2016, 55(39): 10465-10476. |
[113] |
Zhao J F, Chen X Q, Song Y C, et al. Experimental study on a novel way of methane hydrates recovery: combining CO2 replacement and depressurization [J]. Energy Procedia, 2014, 61: 75-79. doi: 10.1016/j.egypro.2014.11.910 |
[114] |
Zhao J F, Zhang L X, Chen X Q, et al. Combined replacement and depressurization methane hydrate recovery method [J]. Energy Exploration & Exploitation, 2016, 34(1): 129-139. |
[115] |
Ouyang Q, Pandey J S, Von Solms N. Critical parameters influencing mixed CH4/CO2 hydrates dissociation during multistep depressurization[J]. Fuel, 2022, 320: 123985. |
[116] |
Lee Y, Deusner C, Kossel E, et al. Influence of CH4 hydrate exploitation using depressurization and replacement methods on mechanical strength of hydrate-bearing sediment [J]. Applied Energy, 2020, 277: 115569. doi: 10.1016/j.apenergy.2020.115569 |
[117] |
Mohammadi A H, Eslamimanesh A, Richon D. Semi-clathrate hydrate phase equilibrium measurements for the CO2+H2/CH4+tetra-n-butylammonium bromide aqueous solution system [J]. Chemical Engineering Science, 2013, 94: 284-290. doi: 10.1016/j.ces.2013.01.063 |
[118] |
龙小军. TBAB和TEAB存在下水合物法生物气脱碳技术研究[D]. 华南理工大学硕士学位论文, 2017.
LONG Xiaojun. Study on hydrate based biogas decarburization technology in the presence of TBAB and TEAB[D]. Master Dissertation of South China University of Technology, 2017. |
[119] |
Babu P, Chin W I, Kumar R, et al. Systematic evaluation of tetra-n-butyl ammonium bromide (TBAB) for carbon dioxide capture employing the clathrate process [J]. Industrial & Engineering Chemistry Research, 2014, 53(12): 4878-4887. |
[120] |
王乐, 祁影霞, 邢艳青, 等. 置换法开采天然气水合物的实验研究[J]. 现代化工, 2014, 34(4):89-92 doi: 10.16606/j.cnki.issn0253-4320.2014.04.043
WANG Le, QI Yingxia, XING Yanqing, et al. Experimental study on exploitation of natural gas hydrate by replacement with CO2 [J]. Modern Chemical Industry, 2014, 34(4): 89-92. doi: 10.16606/j.cnki.issn0253-4320.2014.04.043 |
[121] |
Ricaurte M, Dicharry C, Renaud X, et al. Combination of surfactants and organic compounds for boosting CO2 separation from natural gas by clathrate hydrate formation [J]. Fuel, 2014, 122: 206-217. doi: 10.1016/j.fuel.2014.01.025 |
[122] |
Gambelli A M, Castellani B, Nicolini A, et al. Water salinity as potential aid for improving the carbon dioxide replacement process’ effectiveness in natural gas hydrate reservoirs [J]. Processes, 2020, 8(10): 1298. doi: 10.3390/pr8101298 |
[123] |
Gambelli A M, Castellani B, Filipponi M, et al. Chemical inhibitors as potential allied for CO2 replacement in gas hydrates reservoirs: Sodium chloride case study[C]//Proceedings of the 6th World Congress on Mechanical, Chemical, and Material Engineering (MCM'20). Prague, Czech Republic: ICCPE, 2020, 18. |
[124] |
Liu X J, Ren J J, Chen D Y, et al. Comparison of SDS and L-Methionine in promoting CO2 hydrate kinetics: Implication for hydrate-based CO2 storage [J]. Chemical Engineering Journal, 2022, 438: 135504. doi: 10.1016/j.cej.2022.135504 |