[1] Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the Galápagos Rift [J]. Science, 1979, 203(4385): 1073-1083. doi: 10.1126/science.203.4385.1073
[2] Paull C K, Hecker B, Commeau R, et al. Biological communities at the Florida escarpment resemble hydrothermal vent taxa [J]. Science, 1984, 226(4677): 965-967. doi: 10.1126/science.226.4677.965
[3] Parson L M, Walker C L, Dixon D R. Hydrothermal vents and processes [J]. Geological Society, London, Special Publication, 1995, 87(1): 1-2. doi: 10.1144/GSL.SP.1995.087.01.01
[4] Judd A, Hovland M. Seabed Fluid Flow: the Impact on Geology, Biology and the Marine Environment[M]. New York: Cambridge University Press, 2009.
[5] Suess E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions [J]. International Journal of Earth Sciences, 2014, 103(7): 1889-1916. doi: 10.1007/s00531-014-1010-0
[6] Levin L A. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes [J]. Oceanography and Marine Biology-an Annual Review, 2005, 43: 1-46.
[7] Levin L A, Baco A R, Bowden D A, et al. Hydrothermal vents and methane seeps: rethinking the sphere of influence [J]. Frontiers in Marine Science, 2016, 3: 72.
[8] 孙治雷, 何拥军, 李军, 等. 洋底热液喷口系统的微生物成矿研究进展[J]. 海洋地质与第四纪地质, 2011, 31(3):123-132. [SUN Zhilei, HE Yongjun, LI Jun, et al. The recent progress of submarine hydrothermal biomineralization [J]. Marine Geology & Quaternary Geology, 2011, 31(3): 123-132.
[9] 孙治雷, 魏合龙, 王利波, 等. 海底冷泉系统的碳循环问题及探测[J]. 应用海洋学学报, 2016, 35(3):442-450. [SUN Zhilei, WEI Helong, WANG Libo, et al. Focus issues of carbon cycle and detecting technologies in seafloor cold seepages [J]. Journal of Applied Oceanography, 2016, 35(3): 442-450. doi: 10.3969/J.ISSN.2095-4972.2016.03.017
[10] German C R, Seyfried Jr W E. Hydrothermal processes [J]. Treatise on Geochemistry, 2014, 6: 191-233.
[11] Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps [J]. Nature Geoscience, 2013, 6(9): 725-734. doi: 10.1038/ngeo1926
[12] Xu N, Wu S G, Shi B Q, et al. Gas hydrate associated with mud diapirs in Southern Okinawa Trough [J]. Marine and Petroleum Geology, 2009, 26(8): 1413-1418. doi: 10.1016/j.marpetgeo.2008.10.001
[13] 孙治雷, 窦振亚, 黄威, 等. 现代海底热液硫化物矿体微生物风化的几个重要研究方向[J]. 海洋地质与第四纪地质, 2014, 34(1):65-74. [SUN Zhilei, DOU Zhenya, HUANG Wei, et al. Key issues for microbial weathering study in modern submarine hydrothermal sulfides [J]. Marine Geology & Quaternary Geology, 2014, 34(1): 65-74.
[14] Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits [J]. Geology, 2011, 39(12): 1155-1158. doi: 10.1130/G32468.1
[15] Kulm L D, Suess E, Moore J C, et al. Oregon subduction zone: venting, fauna, and carbonates [J]. Science, 1986, 231(4738): 561-566. doi: 10.1126/science.231.4738.561
[16] Kelley D S, Karson J A, Früh-Green, G L, et al. A serpentinite-hosted ecosystem: the lost city hydrothermal field [J]. Science, 2005, 307(5714): 1428-1434. doi: 10.1126/science.1102556
[17] Proskurowski G, Lilley M D, Seewald, J S, et al. Abiogenic hydrocarbon production at lost city hydrothermal field [J]. Science, 2008, 319(5863): 604-607. doi: 10.1126/science.1151194
[18] Aharon P, Fu B S. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deep water Gulf of Mexico [J]. Geochimica et Cosmochimica Acta, 2000, 64(2): 233-246. doi: 10.1016/S0016-7037(99)00292-6
[19] MacDonald I R, Bohrmann G, Escobar E, et al. Asphalt volcanism and chemosynthetic life in the Campeche Knolls, Gulf of Mexico [J]. Science, 2004, 304(5673): 999-1002. doi: 10.1126/science.1097154
[20] Skarke A, Ruppel C, Kodis M, et al. Widespread methane leakage from the sea floor on the northern US Atlantic margin [J]. Nature Geoscience, 2014, 7(9): 657-661. doi: 10.1038/ngeo2232
[21] Riedel M, Scherwath M, Römer M, et al. Distributed natural gas venting offshore along the Cascadia margin [J]. Nature Communications, 2018, 9(1): 3264. doi: 10.1038/s41467-018-05736-x
[22] Reysenbach A L, Liu Y T, Banta A B, et al. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents [J]. Nature, 2006, 442(7101): 444-447. doi: 10.1038/nature04921
[23] Åström E K L, Carroll M L, Ambrose Jr W G, et al. Methane cold seeps as biological oases in the high-Arctic deep sea [J]. Limnology and Oceanography, 2018, 63(S1): S209-S231. doi: 10.1002/lno.10732
[24] Katayama T, Yoshioka H, Takahashi H A, et al. Changes in microbial communities associated with gas hydrates in subseafloor sediments from the Nankai Trough [J]. FEMS Microbiology Ecology, 2016, 92(8): fiw093. doi: 10.1093/femsec/fiw093
[25] Ceramicola S, Dupré S, Somoza L, et al. Cold seep systems[M]//Micallef A, Krastel S, Savini A. Submarine Geomorphology. Cham: Springer, 2018: 367-387.
[26] German C R, Legendre L L, Sander S G, et al. Hydrothermal Fe cycling and deep ocean organic carbon scavenging: model-based evidence for significant POC supply to seafloor sediments [J]. Earth and Planetary Science Letters, 2015, 419: 143-153. doi: 10.1016/j.jpgl.2015.03.012
[27] Yu?cel M, Gartman A, Chan C S, et al. Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean [J]. Nature Geoscience, 2011, 4(6): 367-371. doi: 10.1038/ngeo1148
[28] Chapelle F H, O'Neill K, Bradley P M, et al. A hydrogen-based subsurface microbial community dominated by methanogens [J]. Nature, 2002, 415(6869): 312-315. doi: 10.1038/415312a
[29] 陈忠, 杨华平, 黄奇瑜, 等. 海底甲烷冷泉特征与冷泉生态系统的群落结构[J]. 热带海洋学报, 2007, 26(6):73-82. [CHEN Zhong, YANG Huaping, HUANG Chiyue, et al. Characteristics of cold seeps and structures of chemoauto-synthesis-based communities in seep sediments [J]. Journal of Tropical Oceanography, 2007, 26(6): 73-82. doi: 10.3969/j.issn.1009-5470.2007.06.013
[30] Sun Z L, Li J, Huang W, et al. Generation of hydrothermal Fe-Si oxyhydroxide deposit on the Southwest Indian Ridge and its implication for the origin of ancient banded iron formations [J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(1): 187-203. doi: 10.1002/2014JG002764
[31] Sun Z L, Wei H L, Zhang X H, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 95: 37-53. doi: 10.1016/j.dsr.2014.10.005
[32] Glasby G P, Notsu K. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview [J]. Ore Geology Review, 2003, 23(3-4): 299-339. doi: 10.1016/j.oregeorev.2003.07.001
[33] Alt J C. Subseafloor processes in mid-ocean ridge hydrothennal systems[M]//Humphris S E, Zierenberg R A, Mullineaux L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Volume 91. Washington, DC: American Geophysical Union, 1995: 85-114.
[34] 陈多福, 陈先沛, 陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报, 2002, 20(1):34-40. [CHEN Duofu, CHEN Xianpei, CHEN Guangqian. Geology and geochemistry of cold seepage and venting-related carbonates [J]. Acta Sedimentologica Sinica, 2002, 20(1): 34-40. doi: 10.3969/j.issn.1000-0550.2002.01.007
[35] Talukder A R. Review of submarine cold seep plumbing systems: leakage to seepage and venting [J]. Terra Nova, 2012, 24(4): 255-272. doi: 10.1111/j.1365-3121.2012.01066.x
[36] Pérez-Belzuz F, Alonso B, Ercilla G. History of mud diapirism and trigger mechanisms in the Western Alboran Sea [J]. Tectonophysics, 1997, 282(1-4): 399-422. doi: 10.1016/S0040-1951(97)00226-6
[37] Sautkin A, Talukder A R, Comas M C, et al. Mud volcanoes in the Alboran Sea: evidence from micropaleontological and geophysical data [J]. Marine Geology, 2003, 195(1-4): 237-261. doi: 10.1016/S0025-3227(02)00691-6
[38] Brown K M. The nature and hydrogeologic significance of mud diapirs and diatremes for accretionary systems [J]. Journal of Geophysical Research: Solid Earth, 1990, 95(B6): 8969-8982. doi: 10.1029/JB095iB06p08969
[39] Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates [J]. Marine Geology, 2000, 167(1-2): 29-42. doi: 10.1016/S0025-3227(00)00022-0
[40] Dimitrov L I. Mud volcanoes-the most important pathway for degassing deeply buried sediments [J]. Earth-Science Reviews, 2002, 59(1-4): 49-76. doi: 10.1016/S0012-8252(02)00069-7
[41] Talukder A R, Bialas J, Klaeschen D, et al. High-resolution, deep tow, multichannel seismic and sidescan sonar survey of the submarine mounds and associated BSR off Nicaragua pacific margin [J]. Marine Geology, 2007, 241(1-4): 33-43. doi: 10.1016/j.margeo.2007.03.002
[42] Speer K G, Rona P A. A model of an Atlantic and Pacific hydrothermal plume [J]. Journal of Geophysical Research: Oceans, 1989, 94(C5): 6213-6220. doi: 10.1029/JC094iC05p06213
[43] Resing J A, Sedwick P N, German C R. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean [J]. Nature, 2015, 523(7559): 200-203. doi: 10.1038/nature14577
[44] Boström K, Peterson M N A. The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise [J]. Marine Geology, 1969, 7(5): 427-447. doi: 10.1016/0025-3227(69)90016-4
[45] Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v
[46] Somoza L, Díaz-del-Río V, León R, et al. Seabed morphology and hydrocarbon seepage in the Gulf of Cádiz mud volcano area: acoustic imagery, multibeam and ultra-high resolution seismic data [J]. Marine Geology, 2003, 195(1-4): 153-176. doi: 10.1016/S0025-3227(02)00686-2
[47] Loher M, Pape T, Marcon Y, et al. Mud extrusion and ring-fault gas seepage-upward branching fluid discharge at a deep-sea mud volcano [J]. Scientific Report, 2018, 8(1): 6275. doi: 10.1038/s41598-018-24689-1
[48] Hannington M D, De Ronde C E J, Petersen S. Sea-floor tectonics and submarine hydrothermal systems[M]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. Economic Geology 100th Anniversary Volume. Littleton, Colorado: Society of Economic Geologists, 2005: 111-141.
[49] Reeburgh W S. Global methane biogeochemistry [J]. Treatise on Geochemistry, 2007, 4: 1-32.
[50] 吴能友, 梁金强, 王宏斌, 等. 海洋天然气水合物成藏系统研究进展[J]. 现代地质, 2008, 22(3):356-362. [WU Nengyou, LIANG Jinqiang, WANG Hongbin, et al. Marine gas hydrate system: state of the art [J]. Geoscience, 2008, 22(3): 356-362. doi: 10.3969/j.issn.1000-8527.2008.03.003
[51] Lizarralde D, Soule S A, Seewald J S, et al. Carbon release by off-axis magmatism in a young sedimented spreading centre [J]. Nature Geoscience, 2011, 4(1): 50-54. doi: 10.1038/ngeo1006
[52] Tsunogai U, Kosaka A, Nakayama N, et al. Origin and fate of deep-sea seeping methane bubbles at Kuroshima Knoll, Ryukyu forearc region, Japan [J]. Geochemical Journal, 2010, 44(6): 461-476. doi: 10.2343/geochemj.1.0096
[53] Seewald J S, Seyfried Jr W E, Thornton E C. Organic-rich sediment alteration: an experimental and theoretical study at elevated temperatures and pressures [J]. Applied Geochemistry, 1990, 5(1-2): 193-209. doi: 10.1016/0883-2927(90)90048-A
[54] Johnson J E, Mienert J, Plaza-Faverola A, et al. Abiotic methane from ultraslow-spreading ridges can charge arctic gas hydrates [J]. Geology, 2015, 43(5): 371-374. doi: 10.1130/G36440.1
[55] 侯增谦, 张绮玲. 冲绳海槽现代活动热水区CO2-烃类流体: 流体包裹体证据[J]. 中国科学(D辑), 1998, 41(4):408-415. [HOU Zengqian, ZHANG Qiling. CO2-Hydrocarbon fluids of the Jade hydrothermal field in the Okinawa trough: fluid inclusion evidence [J]. Science in China Series D: Earth Sciences, 1998, 41(4): 408-415.
[56] Watanabe H, Kojima S. Vent fauna in the Okinawa Trough[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo: Springer, 2015: 449-459.
[57] Jollivet D. Specific and genetic diversity at deep-sea hydrothermal vents: an overview [J]. Biodiversity & Conservation, 1996, 5(12): 1619-1653.
[58] Micheli F, Peterson C H, Mullineaux L S, et al. Predation structures communities at deep-sea hydrothermal vents [J]. Ecological Monographs, 2002, 72(3): 365-382. doi: 10.1890/0012-9615(2002)072[0365:PSCADS]2.0.CO;2
[59] Tunnicliffe V, Fowler C M R. Influence of sea-floor spreading on the global hydrothermal vent fauna [J]. Nature, 1996, 379(6565): 531-533. doi: 10.1038/379531a0
[60] Beal E J, House C H, Orphan V J. Manganese- and iron-dependent marine methane oxidation [J]. Science, 2009, 325(5937): 184-187. doi: 10.1126/science.1169984
[61] Borowski W S, Rodriguez N M, Paull C K, et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record? [J]. Marine and Petroleum Geology, 2013, 43: 381-395. doi: 10.1016/j.marpetgeo.2012.12.009
[62] Lonsdale P. A deep-sea hydrothermal site on a strike-slip fault [J]. Nature, 1979, 281(5732): 531-534. doi: 10.1038/281531a0
[63] Feng D, Roberts H H. Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico continental slope [J]. Earth and Planetary Science Letters, 2011, 309(1-2): 89-99.
[64] Matsumoto R. Isotopically heavy oxygen-containing siderite derived from the decomposition of methane hydrate [J]. Geology, 1989, 17(8): 707-710. doi: 10.1130/0091-7613(1989)017<0707:IHOCSD>2.3.CO;2
[65] Hsu T W, Jiang W T, Wang Y. Authigenesis of vivianite as influenced by methane-induced sulfidization in cold-seep sediments off southwestern Taiwan [J]. Journal of Asian Earth Sciences, 2014, 89: 88-97. doi: 10.1016/j.jseaes.2014.03.027
[66] Morad S, Al-Aasm I S. Conditions of rhodochrosite-nodule formation in Neogene-Pleistocene deep-sea sediments: evidence from O, C and Sr isotopes [J]. Sedimentary Geology, 1997, 114(1-4): 295-304. doi: 10.1016/S0037-0738(97)00066-3
[67] 周琦, 陈建华, 张命桥, 等. 冷泉碳酸盐岩研究进展及成矿意义[J]. 贵州科学, 2007, 25(S1):103-110. [ZHOU Qi, CHEN Jianhua, ZHANG Mingqiao, et al. The advances in study and metallogenic significance of cold seep carbonates [J]. Guizhou Science, 2007, 25(S1): 103-110.
[68] Hu W X, Kang X, Cao J, et al. Thermochemical oxidation of methane induced by high-valence metal oxides in a sedimentary basin [J]. Nature Communications, 2018, 9(1): 5131. doi: 10.1038/s41467-018-07267-x
[69] 曾志刚. 海底热液地质学[M]. 北京: 科学出版社, 2011.

ZENG Zhigang. Submarine Hydrothermal Geology[M]. Beijing: Science Press, 2011.
[70] Chiba H, Nakashima, K, Gamo T, et al. Hydrothermal activity at the Minami-Ensei knoll, Okinawa trough: Chemical characteristics of hydrothermal solutions [J]. JAMSTECTR Deep-Sea Research, 1993, 9: 271-282.
[71] Zhang X R, Sun Z L, Fan D J, et al. Compositional characteristics and sources of DIC and DOC in seawater of the Okinawa Trough, East China Sea [J]. Continental Shelf Research, 2019, 174: 108-117. doi: 10.1016/j.csr.2018.12.014
[72] Núñez-Useche F, Canet C, Liebetrau V, et al. Redox conditions and authigenic mineralization related to cold seeps in central Guaymas Basin, Gulf of California [J]. Marine and Petroleum Geology, 2018, 95: 1-15. doi: 10.1016/j.marpetgeo.2018.04.010
[73] Sibuet J C, Letouzey J, Barbier F, et al. Back arc extension in the Okinawa Trough [J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B13): 14041-14063. doi: 10.1029/JB092iB13p14041
[74] 栾锡武, 鲁银涛, 赵克斌, 等. 东海陆坡及邻近槽底天然气水合物成藏条件分析及前景[J]. 现代地质, 2008, 22(3):342-355. [LUAN Xiwu, LU Yintao, ZHAO Kebin, et al. Geological factors for the development and newly advances in exploration of gas hydrate in East China Sea Slope and Okinawa Trough [J]. Geoscience, 2008, 22(3): 342-355. doi: 10.3969/j.issn.1000-8527.2008.03.002