刘杰, 刘丽华, 吴能友, 邬黛黛, 金光荣, 杨睿. 南海东沙海域深水区末次冰期以来天然气水合物稳定带演化[J]. 海洋地质与第四纪地质, 2021, 41(2): 146-155. DOI: 10.16562/j.cnki.0256-1492.2020061801
引用本文: 刘杰, 刘丽华, 吴能友, 邬黛黛, 金光荣, 杨睿. 南海东沙海域深水区末次冰期以来天然气水合物稳定带演化[J]. 海洋地质与第四纪地质, 2021, 41(2): 146-155. DOI: 10.16562/j.cnki.0256-1492.2020061801
LIU Jie, LIU Lihua, WU Nengyou, WU Daidai, JIN Guangrong, YANG Rui. Evolution of gas hydrate stability zone in the deep water of Dongsha sea area since the Last Glaciation Maximum[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 146-155. DOI: 10.16562/j.cnki.0256-1492.2020061801
Citation: LIU Jie, LIU Lihua, WU Nengyou, WU Daidai, JIN Guangrong, YANG Rui. Evolution of gas hydrate stability zone in the deep water of Dongsha sea area since the Last Glaciation Maximum[J]. Marine Geology & Quaternary Geology, 2021, 41(2): 146-155. DOI: 10.16562/j.cnki.0256-1492.2020061801

南海东沙海域深水区末次冰期以来天然气水合物稳定带演化

Evolution of gas hydrate stability zone in the deep water of Dongsha sea area since the Last Glaciation Maximum

  • 摘要: 利用基于热力学理论的CSMHYD程序,模拟预测了末次冰期以来南海东沙海域深水区天然气水合物稳定带(GHSZ)的演化特征,同时讨论了海平面、底水温度对该区天然气水合物稳定带变化的影响,以及水合物分解对环境的影响。结果表明:①水深超过595 m的海域具备形成天然气水合物的环境条件;GHSZ平均厚度可达245 m,其中最厚区位于研究区东部,超过380 m,其次为东沙陆坡段与台湾浅滩陆坡段的结合部。②末次冰期(LGM)以来东沙海域GHSZ厚度呈现不对称旋回变化,按照时间由老到新可以分为TC1、TC2、TC3、TC4和TC5共5个完整的旋回。稳定带变化的减薄半旋回持续时间要长于增厚半旋回。TC1—TC4旋回内GHSZ厚度变化受海平面升降的控制,TC5旋回内稳定带厚度变化受到海底温度的控制。③在由陆缘向中央海盆方向逐渐增大的高地温梯度背景下,LGM以来海底温度和海平面变化对GHSZ的影响在中层水范围内大于深层水;同时水柱引起的压力效应在中层水深度范围内相对较大,深层水范围内海平面变化对GHSZ的影响十分有限。东沙海域CaCO3含量异常降低可能受水合物分解释放的甲烷气进入水体后引起海水酸化的影响。

     

    Abstract: The evolutionary history of the gas hydrate stability zone (GHSZ) in the Dongsha deep water area since the last glacial maximum (LGM) is simulated and predicted using the CSMHYD program, and the fluctuations of sea level and bottom water temperature and their effects on the thickness of gas hydrate stability zone as well as the effects of hydrate decomposition on environment are carefully investigated and discussed. The results show that: (1) Gas hydrate could form in the sea area at a water depth more than 595 m; the current theoretical thickness of GHSZ is 245 m on average, and the maximum could be over 380 m which is located in the eastern part of the study area. Another area with large thickness is found at the juncture of the Dongsha continental slope and the Taiwan shoal continental slope. (2) The thickness of GHSZ in the Dongsha sea area has changed in an asymmetrical pattern since the LGM. It can be divided chronologically into five complete cycles, named TC1, TC2, TC3, TC4 and TC5 respectively. The thinning half-cycles are longer in time than those of the thickening ones. The thickness of GHSZ in cycles of TC1-TC4 is controlled by sea level fluctuation, while the thickness of cycle TC5 mainly controlled by sea bottom temperature. (3) The seabed temperature and sea level changes bring stronger effects on GHSZ thickness in the intermediate water area rather than in the deep water area. Meanwhile, the pressure effect is relatively obvious in the intermediate water depth area. The influence of sea level variation on GHSZ in the deep water area is limited. The abnormal decrease in CaCO3 content in the Dongsha sea area is possibly due to the acidification caused by the methane released from gas hydrates dissociation.

     

/

返回文章
返回