留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西北冰洋北风脊氧同位素5期以来的水体结构变化:来自有孔虫组合及其氧碳同位素的证据

段肖 王汝建 肖文申 章陶亮

段肖, 王汝建, 肖文申, 章陶亮. 西北冰洋北风脊氧同位素5期以来的水体结构变化:来自有孔虫组合及其氧碳同位素的证据[J]. 海洋地质与第四纪地质, 2015, 35(3): 61-71. doi: 10.3724/SP.J.1140.2015.03061
引用本文: 段肖, 王汝建, 肖文申, 章陶亮. 西北冰洋北风脊氧同位素5期以来的水体结构变化:来自有孔虫组合及其氧碳同位素的证据[J]. 海洋地质与第四纪地质, 2015, 35(3): 61-71. doi: 10.3724/SP.J.1140.2015.03061
DUAN Xiao, WANG Rujian, XIAO Wenshen, ZHANG Taoliang. WATER COLUMN STRUCTURE CHANGES ON THE NORTHWIND RIDGE, WESTERN ARCTIC OCEAN SINCE THE MARINE ISOTOPE STAGE 5: EVIDENCES FROM FORAMINIFERAL ASSEMBLAGES AND THEIR OXYGEN AND CARBON ISOTOPES[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 61-71. doi: 10.3724/SP.J.1140.2015.03061
Citation: DUAN Xiao, WANG Rujian, XIAO Wenshen, ZHANG Taoliang. WATER COLUMN STRUCTURE CHANGES ON THE NORTHWIND RIDGE, WESTERN ARCTIC OCEAN SINCE THE MARINE ISOTOPE STAGE 5: EVIDENCES FROM FORAMINIFERAL ASSEMBLAGES AND THEIR OXYGEN AND CARBON ISOTOPES[J]. Marine Geology & Quaternary Geology, 2015, 35(3): 61-71. doi: 10.3724/SP.J.1140.2015.03061

西北冰洋北风脊氧同位素5期以来的水体结构变化:来自有孔虫组合及其氧碳同位素的证据


doi: 10.3724/SP.J.1140.2015.03061
详细信息
    作者简介:

    段肖(1991-),女,硕士生,主要从事海洋地质学和古环境研究,E-mail:duanxiao91@126.com

  • 基金项目:

    国家自然科学基金中俄合作与交流项目(41211120173)

    南北极环境综合考察与评估专项项目(CHINARE2015-03-02)

    国家自然科学基金重点项目(41030859)

    国家海洋局极地考察办公室对外合作支持项目(IC201105)

    中国地质调查局地质调查工作项目(水[2015]02-013-012)

  • 中图分类号: P736.4

WATER COLUMN STRUCTURE CHANGES ON THE NORTHWIND RIDGE, WESTERN ARCTIC OCEAN SINCE THE MARINE ISOTOPE STAGE 5: EVIDENCES FROM FORAMINIFERAL ASSEMBLAGES AND THEIR OXYGEN AND CARBON ISOTOPES

More Information
  • 摘要: 通过分析采集自北风脊的ARC3-P37岩心中有孔虫组合和浮游有孔虫氧碳同位素的变化,旨在反映深海氧同位素(MIS)5期以来西北冰洋水团和洋流系统对气候变化的响应。ARC3-P37中有孔虫丰度的大量增加可能反映了北太平洋水向西北冰洋的输入。有孔虫组合中浮游有孔虫Neogloboquadrina pachyderma (sin.)(Nps)占90%以上。底栖有孔虫组合以深水种Cibicidoides wuellerstorfiOridorsalis umbonatus为主,反映了主要受北极深层水和底层水影响的沉积环境,冷期大西洋水种Cassidulina neoteretis的出现反映了中层水下沉。Nps-δ13C总体来说在暖期较重,反映较高生产力和海汽交换。而Nps-δ18O受其生活习性迁移、水温变化、盐跃层深度变化、融冰作用的影响复杂多变,总体在冷期偏重,反映海冰环境,但在受融冰影响阶段反映为轻值。在MIS3期褐色层B2b之上,MIS1和MIS3期的Nps-δ18O受到海水变暖和融冰水影响偏轻;而在B2b及其下部,暖期Nps-δ18O偏重可能反映了盐跃层变浅和Nps生活习性向深部迁移。
  • [1] Stroeve J C, Serreze M C, Holland M M, et al. The Arctic's rapidly shrinking sea ice cover:a research synthesis[J]. Climatic Chang, 2012, 110:1005-1027.
    [2] Arrigo K R, van Dijken G, Pabi S. Impact of a shrinking Arctic ice cover on marine primary production[J]. Geophysical Research Letters, 2008, 35, L19603, doi:10. 1029/2008GL035028.
    [3] Grebmeier J M. Biological community shifts in Pacific Arctic and sub-Arctic seas[J]. Annual Review of Marine Science, 2012, 4:63-78.
    [4] Polyakov I V, Alexeev V A, Belchansky G I, et al. Arctic Ocean freshwater changes over the past 100 years and their causes[J]. Journal of Climate, 2008, 21:364-384.
    [5] McLaughlin F A, Carmack E C, Williams W J, et al. Joint effects of boundary currents and thermohaline intrusions on the warming of Atlantic water in the Canada Basin, 1993-2007[J]. Journal of Geophysical Research, 2009, 114, C00A12, doi:10. 1029/2008JC005001.
    [6] 史久新,赵进平,矫玉田,等.太平洋入流及其与北冰洋异常变化的联系[J].极地研究,2004,16(3):253-260.

    [SHI Jiuxin, ZHAO Jingping, JIAO Yutian, et al. Pacific inflow and its links with abnormal variations in the Arctic Ocean[J]. Chinese Journal of Polar Research, 2004, 16(3):253-260.]
    [7] Rabe B, Karcher M, Schauer U, et al. An assessment of Arctic Ocean freshwater content changes from the 1990s to the 2006-2008 period[J]. Deep-Sea Research I, 2011, 58:173-185.
    [8] 司贺园,王汝建,丁旋,等.西北冰洋表层沉积物中的底栖有孔虫组合及其古环境意义[J].海洋学报,2013,35(6):96-112.

    [SI Heyuan, WANG Rujian, DING Xuan, et al. Benthic foraminiferal assemblages in the western Arctic surface sediments and their paleoenrivonmental implications[J]. Acta Oceanologica Sinica, 2013, 35(6):96-112.]
    [9] 丁旋,王汝建,张海峰,等.北冰洋马克洛夫海盆现代浮游有孔虫深度分布及其生态与氧碳同位素特征[J].科学通报,2014,59:1230-1241.[DING Xuan, WANG Rujian, ZHANG Haifeng, et al. Distribution, ecology, and oxygen and carbon isotope characteristics of modern planktonic foraminifers in the Makarov Basin of the Arctic Ocean[J]. Chinese Science Bulletin, 2014

    , 59:674-687, doi:10.1007/s11434-013-0082-8.]
    [10] Xiao Wenshen, Wang Rujian, Polyak Leonid, et al. Stable oxygen and carbon isotopes in planktonic foraminifera Neogloboquadrina pachyderma in the Arctic Ocean:An overview of published and new surface-sediment data[J]. Marine Geology, 2014, 352:397-408.
    [11] Lubinski D J, Polyak L, Forman S L. Freshwater and Atlantic water inflows to the deep northern Barents and Kara seas since ca 1314Cka:Foraminifera and stable isotopes[J]. Quaternary Science Review, 2001, 20:1851-1879.
    [12] Eynaud F. Planktonic foraminifera in the arctic:Potentials and issues regarding modern and quaternary populations[J]. IOP Conference Series:Earth and Environmental Science, 2011, 14, 012005, doi:10. 1088/1755-1315/14/1/012005.
    [13] Polyak L, Curry W B, Darby D A, et al. Contrasting glacial/interglacial regimes in the western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 203:73-93.
    [14] Darby D A, Polyak L, Bauch H. Past glacial and interglacial conditions in the Arctic Ocean and marginal seas——a review[J]. Progress in Oceanography, 2006, 71:129-144.
    [15] Stein R. Arctic Ocean Sediments:Processes, Proxies, and Palaeoenvironment[M]. Developments in Marine Geology, Elsevier, Amsterdam, 2008, 2, 592.
    [16] Lagoe M B. Recent benthic foraminifera from the Central Arctic Ocean[J]. Journal of Foraminiferal Research, 1977, 7(2):106-129.
    [17] Lagoe M B. Recent benthonic foraminiferal biofacies in the Arctic Ocean[J]. Micropaleontology, 1979, 25(2):214-224.
    [18] Aagaard K, Swift J H, Carmack E C. Thermohaline circulation in the Arctic Mediterranean seas[J]. Journal of Geophysical Research, 1985, 90(C3):4833-4846.
    [19] Yamamoto-Kawai M, McLaughlin F A, Carmack E C, et al. Freshwater budget of the Canada Basin, Arctic Ocean, from salinity, δ18O, and nutrients[J]. Journal of Geophysical Research, 2008, 113, C01007, doi:10. 1029/2006JC003858.
    [20] Antonov J I, Locarnini R A, Boyer T P, et al. World Ocean Atlas 2005, volume 2:salinity[M]. Washington D C:NOAA Atlas NESDIS 62. U.S. Government Printing Office, 2006:182.
    [21] Woodgate R A. Arctic Ocean Circulation:Going Around At the Top Of the World[J]. Nature Education Knowledge, 2013, 4(8):8.
    [22] Woodgate R A, Aagaard K, Swift J H, et al. Atlantic water circulation over the Mendeleev Ridge and Chukchi Borderland from thermohaline intrusions and water mass properties[J]. Journal of Geophysical Research, 2007, 112, C02005, doi:10. 1029/2005JC003416.
    [23] Scott D B, Vilks G. Benthonic foraminifera in the surface sediments of the deep-sea Arctic Ocean[J]. Journal of Foraminiferal Research, 1991, 21(1):20-38.
    [24] Jones E P. Circulation in the Arctic Ocean[J]. Polar Research, 2001, 20:139-146.
    [25] Grebmeier J M, Cooper L W, Feder H M, et al. Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic[J]. Progress in Oceanography, 2006, 71:331-361.
    [26] Parkinson C L, Cavalieri D J. Arctic sea ice variability and trends, 1979-2006[J]. Journal of Geophysical Research, 2008, 113, C07003, doi:10. 1029/2007JC004558.
    [27] Wang R J, Xiao W S, Marz C, et al. Late Quaternary paleoenvironmental changes revealed by multi-proxy records from the Chukchi Abyssal Plain, western Arctic Ocean[J]. Global and Planetary Change, 2013, 108:100-118.
    [28] Polyak L, Best K M, Crawford K A, et al. Quaternary history of sea ice in the western Arctic Ocean based on foraminifera[J]. Quaternary Science Reviews, 2013, 79:145-156.
    [29] Backman J, Jakobsson M, Løvlie R, et al. Is the central Arctic Ocean a sediment starved basin[J]. Quaternary Science Reviews, 2004, 23, 1435-1454.
    [30] Smith L M, Miller R G, Otto-Bliesner B, et al. Sensitivity of the Northern Hemisphere climate system to extreme changes in the Holocene Arctic sea ice[J]. Quaternary Science Reviews, 2002, 22(5-7):645-658.
    [31] 章陶亮,王汝建,陈志华,等.西北冰洋楚科奇海台08P23孔氧同位素3期以来的古海洋与古气候记录[J].极地研究,2014,26(1):46-57.

    [ZHANG Taoliang, WANG Rujian, CHEN Zhihua, et al. Paleoceanographic and Paleoclimatic records of core 08P23 from the Chukchi plateau Western Arctic Ocean, since MIS 3[J]. Chinese Journal of Polar Research, 2014, 26, 26(1):46-57.]
    [32] Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0~50000 Years cal BP[J]. Radiocarbon, 1993, 55(4):1869-1887.
    [33] Stuiver M, Reimer P J. Extended 14C database and revised CALIB radiocarbon calibration program[J]. Radiocarbon, 1993, 35:215-230.
    [34] Hanslik D, Jakobsson M, Backman J, et al. Quaternary Arctic Ocean sea ice variations and radiocarbon reservoir age corrections[J]. Quaternary Science Reviews, 2010, 29:3430-3441.
    [35] Jakobsson M, Løvlie R, Al-Hanbali H, et al. Manganese and color cycle in Arctic Ocean sediments constrain Pleistocene chronology[J]. Geology, 2000, 28:23-26.
    [36] Adler RE, Polyak L, Ortiz J D, et al. Sediment record from the western Arctic Ocean with an improved Late Quaternary age resolution:HOTRAX core HLY0503-8JPC, Mendeleev Ridge[J]. Global and Planetary Change, 2009, 68:18-29.
    [37] Polyak L, Bischof J, Ortiz J D, et al. Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean[J]. Global and Planetary Change, 2009, 68:5-17.
    [38] Stein R, Matthiessen J, Niessen F, et al. Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean)[J]. Polarforschung, 2010, 79:97-121.
    [39] Cronin T M, DeNinno L H, Polyak L, et al. Quaternary Ostracode and Foraminiferal Biostratigraphy and Paleoceanography in the Western Arctic Ocean[J]. Marine Micropaleontology, 2014, 111:118-133, doi:10. 1016/j.marmicro.2014.05.001.
    [40] Ishman S E, Polyak L, Poore R Z. Expanded record of Quaternary oceanographic change:Amerasian Arctic Ocean[J]. Geology, 1996, 24:139-142.
    [41] Niessen F, Hong J K, Hegewald A, et al. Repeated Pleistocene glaciation of the East Siberian continental margin[J]. Nature Geoscience, 2013, 6:842-846.
    [42] Brigham-Grette. A fresh look at Arctic ice sheets[J]. Nature Geoscience, 2013, 6:807-808.
    [43] Siddall M, Rohling E J, Almogi-Labin A, et al. Sea-level fluctuations during the last glacial cycle[J]. Nature, 2003, 423:853-858, doi:10. 1038/nature01690.
    [44] Waelbroeck C, Labeyrie L, Michel E, et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records[J]. Quaternary Science Reviews, 2002, 21(1-3):295-305.
    [45] Darby D A, Naidu A S, Mowatt T C, et al. Sediment composition and sedimentary processes in the Arctic Ocean[C]//In:Herman Y, ed. The Arctic Seas. New York, Springer, 1989:657-720.
    [46] Saidova K M. Deep-water foraminifera communities of the Arctic Ocean[J]. Oceanology, 2011, 51(1):60-68, doi:10. 1134/S0001437011010152.
    [47] Daniela Hanslik. Late Quaternary Biostratigraphy and Paleoceanography of the central Arctic Ocean[D]. A dissertation for the degree of Doctor of Philosophy in Natural Sciences, Stockholm University, 2011, ISBN:978-91-7447-311-7.
    [48] Mackensen A, Sejrup H P, Jansen E. The Distribution of Living Benthic Foraminifera on the Continental-Slope and Rise off Southwest Norway[J]. Marine Micropaleontology, 1985, 9:275-306.
    [49] Osterman L E, Poore R Z, Foley K M. Distribution of benthic foraminifers (>125μm) in the surface sediments of the Arctic Ocean[J]. United States Geological Survey Bulletin, 1999, 2164:28.
    [50] Cronin T M, Dwyer G S, Farmer J, et al. Deep Arctic Ocean Warming during the last Glacial Cycle[J]. Nature Geosciences, 2012, 5:631-634, doi:10. 1038/ngeo1557.
    [51] Kaiho K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean[J]. Geology, 1994, 22:719-722.
    [52] Dulk M D, Reichart G J, Memon G M, et al. Benthic foraminiferal response to variations in the surface water productivity and oxygenation in the northern Arabian Sea[J]. Marine Micropaleontology, 1998, 35:43-66.
    [53] Polyak L, Korsun S, Febo L A, et al. Benthic foraminiferal assemblages from the southern Kara Sea, a river-influenced Arctic marine environment[J]. Journal of Foraminiferal Research, 2002, 32(3):252-273.
    [54] Miller G H, Alley R B, Brigham-Grette J, et al. Arctic amplification:can the past constrain the future[J]. Quaternary Science Reviews, 2010, 29:1779-1790.
    [55] Shackleton N J. Attainment of isotopic equilibrium between ocean water and benthic foraminifera genus Uvigerina:isotopic changes in the ocean during the last glacial[J]. C. N. R. S Colloquium, 1979, 219:203-209.
    [56] Farmer J, Cronin T, de Vernal A, et al. Western Arctic Ocean temperature variability during the last 8000 years[J]. Geophysical Research Letters, 2011, 38(24), L20602, doi:10. 1029/2011GL049714.
    [57] Duplessy J C. Isotope Studies[M]//In:Gribbin J, ed. Climate Change. Cambridge:Cambridge University Press, 1978:47-67.
    [58] Spielhagen R F, Baumann K H, Erlenkeuser H, et al. Arctic Ocean deep-sea record of northern Euransian ice sheet history[J]. Quaternary Science Reviews, 2004, 23(11-13):1455-1483.
    [59] Nørgaard-Pedersen N, Mikkelsen N, Kristoffersen Y. Arctic Ocean record of last two glacial-interglacial cycles off North Greeland/Ellesmere Island-Implications for glacial history[J]. Marine Geology, 2007, 244:93-108.
  • [1] 孔丽茹, 罗敏, 陈多福.  新西兰Hikurangi俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr同位素证据 . 海洋地质与第四纪地质, 2021, 41(5): 1-9.
    [2] 孙国洪, 田丽艳, 李小虎, 张汉羽, 陈凌轩, 刘红玲.  西南印度洋中脊岩石地球化学特征及其岩浆作用研究 . 海洋地质与第四纪地质, 2021, 41(5): 1-13. doi: 10.16562/j.cnki.0256-1492.2021021701
    [3] 范佳慧, 窦衍光, 赵京涛, 李军, 邹亮, 蔡峰, 陈晓辉, 李清.  东海外陆坡−冲绳海槽水体剖面地球化学特征与指示意义 . 海洋地质与第四纪地质, 2021, 41(): 1-15.
    [4] 雷雁翔, 何磊, 王玉敏, 张朋朋, 张斌, 胡蕾, 吴治国, 叶思源.  渤海湾西岸晚更新世以来的沉积环境演化及碳埋藏评价 . 海洋地质与第四纪地质, 2021, (): 1-12. doi: 10.16562/j.cnki.0256-1492.2021020101
    [5] 罗顺开, 周怀阳, 赵国庆, 袁伟.  加瓜海脊铁锰结壳的年龄及其定年方法适用性比较 . 海洋地质与第四纪地质, , (): -. doi: 10.16562/j.cnki.0256-1492.2021070502
  • 加载中
计量
  • 文章访问数:  645
  • HTML全文浏览量:  70
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-10
  • 修回日期:  2015-04-30

西北冰洋北风脊氧同位素5期以来的水体结构变化:来自有孔虫组合及其氧碳同位素的证据

doi: 10.3724/SP.J.1140.2015.03061
    作者简介:

    段肖(1991-),女,硕士生,主要从事海洋地质学和古环境研究,E-mail:duanxiao91@126.com

基金项目:

国家自然科学基金中俄合作与交流项目(41211120173)

南北极环境综合考察与评估专项项目(CHINARE2015-03-02)

国家自然科学基金重点项目(41030859)

国家海洋局极地考察办公室对外合作支持项目(IC201105)

中国地质调查局地质调查工作项目(水[2015]02-013-012)

  • 中图分类号: P736.4

摘要: 通过分析采集自北风脊的ARC3-P37岩心中有孔虫组合和浮游有孔虫氧碳同位素的变化,旨在反映深海氧同位素(MIS)5期以来西北冰洋水团和洋流系统对气候变化的响应。ARC3-P37中有孔虫丰度的大量增加可能反映了北太平洋水向西北冰洋的输入。有孔虫组合中浮游有孔虫Neogloboquadrina pachyderma (sin.)(Nps)占90%以上。底栖有孔虫组合以深水种Cibicidoides wuellerstorfiOridorsalis umbonatus为主,反映了主要受北极深层水和底层水影响的沉积环境,冷期大西洋水种Cassidulina neoteretis的出现反映了中层水下沉。Nps-δ13C总体来说在暖期较重,反映较高生产力和海汽交换。而Nps-δ18O受其生活习性迁移、水温变化、盐跃层深度变化、融冰作用的影响复杂多变,总体在冷期偏重,反映海冰环境,但在受融冰影响阶段反映为轻值。在MIS3期褐色层B2b之上,MIS1和MIS3期的Nps-δ18O受到海水变暖和融冰水影响偏轻;而在B2b及其下部,暖期Nps-δ18O偏重可能反映了盐跃层变浅和Nps生活习性向深部迁移。

English Abstract

参考文献 (59)

目录

    /

    返回文章
    返回