留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

日本南海海槽俯冲带的地球物理特征及其动力学意义

陈萍 郑彦鹏 刘保华

陈萍, 郑彦鹏, 刘保华. 日本南海海槽俯冲带的地球物理特征及其动力学意义[J]. 海洋地质与第四纪地质, 2014, 34(6): 153-160. doi: 10.3724/SP.J.1140.2014.06153
引用本文: 陈萍, 郑彦鹏, 刘保华. 日本南海海槽俯冲带的地球物理特征及其动力学意义[J]. 海洋地质与第四纪地质, 2014, 34(6): 153-160. doi: 10.3724/SP.J.1140.2014.06153
CHEN Ping, ZHENG Yanpeng, LIU Baohua. GEOPHYSICAL FEATURES OF THE NANKAI TROUGH SUBDUCTION ZONE AND THEIR DYNAMIC SIGNIFICANCE[J]. Marine Geology & Quaternary Geology, 2014, 34(6): 153-160. doi: 10.3724/SP.J.1140.2014.06153
Citation: CHEN Ping, ZHENG Yanpeng, LIU Baohua. GEOPHYSICAL FEATURES OF THE NANKAI TROUGH SUBDUCTION ZONE AND THEIR DYNAMIC SIGNIFICANCE[J]. Marine Geology & Quaternary Geology, 2014, 34(6): 153-160. doi: 10.3724/SP.J.1140.2014.06153

日本南海海槽俯冲带的地球物理特征及其动力学意义


doi: 10.3724/SP.J.1140.2014.06153
详细信息
    作者简介:

    陈萍(1989-),女,硕士生,专业方向为海洋地球物理与海底构造,E-mail:baiseweixiao@163.com

  • 基金项目:

    国家自然科学基金项目(41176058);中国海陆地质地球物理系列图项目(GZH200900504-WX03)

  • 中图分类号: P738

GEOPHYSICAL FEATURES OF THE NANKAI TROUGH SUBDUCTION ZONE AND THEIR DYNAMIC SIGNIFICANCE

More Information
  • 摘要: 日本南海海槽是菲律宾海板块和欧亚板块俯冲消亡的地带,其东西两段俯冲带的空间重力异常、温度分布和海底热流、地壳结构、应力场特征表现出显著差异。东段四国-纪伊岛下的俯冲带表现出典型的热俯冲带的特征,菲律宾海板块俯冲方向为由南向北,总体特征为俯冲带厚度较薄、俯冲角度小和俯冲深度相当浅等;西段九州岛下的菲律宾海板块由南北方向的俯冲过渡至近东西向,总体表现为俯冲角度大、俯冲深度深、板内震源较浅等特征;这些差异可能是由太平洋板块和菲律宾海板块的运动方向和速率发生了数次的旋转和改变,以及四国海盆的扩张等诸多因素导致的。
  • [1] Okino K, Kato Y. Geomorphological study on a clastic accretionary prism:The Nankai Trough[J]. Island Arc, 1995, 4:82-98.
    [2] Kikuchi M, Nakamura M, Yoshikawa K. Source rupture processes of the 1944 Tonankai earthquake and the 1945 Mikawa earthquake derived from lowgain seismograms[J]. Earth Planets and Space, 2003, 55:159-172.
    [3] Sagiya T, Thatcher W. Coseismic slip resolution along a plate boundary megathrust:the Nankai Trough, southwest Japan[J]. Journal of Geophysical Research, 1999, 104:1111-1129.
    [4] Yagi Y, Kikuchi M, Yoshida S, et al. Source Process of the Hyuganada earthquake of April 1, 1968(Mjma 7. 5), and relationship to the subsequent seismicity[J]. Zisin, 1998, 51:139-148.
    [5] Yagi Y, Kikuchi M, Yoshida S, et al. Comparison of the coseismic rupture with the aftershock distribution in the Hyuga-nada earthquakes of 1996[J]. Geophysical Research Letters, 1999, 26:3161-3164.
    [6] Dominguez S, Malavieille J, Lallemand S E. Deformation of accretionary wedges in response to seamount subduction:Insights from sandbox experiments[J]. Tectonics, 2000, 19:182-196.
    [7] Taylor F W, Mann P, Bevis M G, et al. Rapid forearc uplift and subsidence caused by impinging bathymetric features:Examples from the New Hebrides and Solomon arcs[J]. Tectonics, 2005, 24:TC6005.
    [8] Ando M. Source mechanisms and tectonic significance of historical earthquakes along the Nankai Trough[J]. Tectonophysics, 1975, 27:119-140.
    [9] Sugi N, Uyeda S. Subduction of young oceanic plates without deep focus earthquakes, Bull[J]. Soc. Geol., 1984, 26:245-254.
    [10] Kodaira S, Kurashimo E, et al. Structural factors controlling the rupture process of a megathrust earthquake at the Nankai trough seismogenic zone[J]. Geophysical Journal International, 2002, 149(3):815-835.
    [11] Zhao D, Asamori K, Iwamori H. Seismic structure and magmatism of the Young Kyushu Subduction Zone[J]. Geophysical Research Letters, 2000, 27:2057-2060.
    [12] Zhao D, Yanada T, Hasegawa A, et al. Imaging the subducting slabs and mantle upwelling under the Japan Islands[J]. Geophysical Journal International, 2012, 190:816-828.
    [13] Liu X, Zhao D. Seismic imaging of the Southwest Japan arc from the Nankai trough to the Japan Sea[J]. Physics of the Earth and Planetary Interiors, 2013, 216:59-73.
    [14] Nakajima J, Hasegawa A. Anomalous low-velocity zone and linear alignment of seismicity along it in the subducted Pacific slab beneath Kanto, Japan:Reactivation of subducted fracture zone?[J]. Geophysical Research Letters, 2006, 33(16):L16309.
    [15] 陶国保. 菲律宾海板块构造研究述评[J]. 海洋地质译丛, 1987, 3:1-22.[TAO Guobao. Comment on the structure of the Philippine Sea Plate[J]. Marine, 1987

    , 3:1-22.]
    [16] Okino K, Ohara Y, et al. Tectonics of the southern tip of the Parece Vela Basin, Philippine Sea Plate[J]. Tectonophysics, 2009, 466(3-4):213-228.
    [17] 许淑梅, 张晓东, 翟世奎. 四国海盆起源于沉积环境演化[J]. 海洋地质与第四纪地质, 2004, 24(2):119-124.

    [XU Shumei, ZHANG Xiaodong, ZHAI Shikui. The origin and sedimentary environment evolution of the Shikoku Basin[J]. Marine Geology and Quaternary Geology, 2004, 24(2):119-124.]
    [18] Nishizawa A, Kaneda K, Oikawa M. Seismic structure of the northern end of the Ryukyu Trench subduction zone, southeast of Kyushu, Japan[J]. Earth Planets Space, 2009, 61:e37-e40.
    [19] Yoshioka S, Toda M. Regionality of deep low-frequency earthquakes associated with subduction of the Philippine Sea plate along the Nankai Trough, southwest Japan[J]. Earth and Planetary Science Letters, 2008, 272(1-2):189-198.
    [20] 徐纪人, 赵志新, 河野芳辉,等. 日本南海海槽地震区域应力场及其板块构造动力学特征[J]. 地球物理学报, 2003, 46(4):488-496.

    [XU Jiren, ZHAO Zhixin, Kono Y, et al. Regional characteristics of stress field and its dynamics in and around the Nankai Trough, Japan[J]. Chinese J. Geophys, 2003, 46(4):488-496.]
    [21] Takahashi N, Kodaira S. Seismic structure of western end of the Nankai trough seismogenic zone[J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B10):2212.
    [22] Kaneda Y, Kodaira S. Structural Research on the Nankai Trough Using Reflections and Refractions[J]. Journal of Disaster Research, 2009, 4(2):2.
    [23] Nakajima J, Hasegawa A. Subduction of the Philippine Sea plate beneath southwestern Japan:Slab geometry and its relationship to arc magmatism[J]. Journal of Geophysical Research:Solid Earth, 2007, 112:B8.
    [24] Seno T, Zhao D, Kobayashi Y, et al. Dehydration of serpentinized slab mantle:Seismic evidence from southwest Japan[J]. Earth Planets Space, 2001, 53:861-871.
    [25] Honda S, Nakanishi I. Seismic tomography of the uppermost mantle beneath southwestern Japan:Seismological constraints on modeling subduction and magmatism for the Philippine Sea slab[J]. Earth Planets Space, 2003, 55:443-462.
    [26] Peacock S, Wang K. Seismic Consequences of Warm Versus Cool Subduction Metamorphism:Examples from Southwest and Northeast Japan[J]. Science, 1999, 286:937-939.
    [27] Kirby S H. Taking the Temperature of Slabs[J]. Nature, 2000, 403:31-34.
    [28] Matsubara M, Hayashi H, Obara K, et al. Low velocity oceanic crust at the top of the Philippine Sea and Pacific plates beneath the Kanto region, central Japan, imaged by seismic tomography[J]. J. Geophys, Res., 2005, 110:B12304.
    [29] Wei D, Seno T. Determination of the Amurian plate motion, in mantle dynamics and plate interactions in East Asia[C]//Geodynamics Series 27. American Geophysical Union, Washington D C, 1998:337-346.
    [30] Sella G F, Dioxin T H, Mao A. REVEL:a model for Recent plate velocities from space geodesy[J]. J. Geophys. Res, 2002, 107:B4.
    [31] Zhao D, Wang Z, Umino N, et al. Tomographic imaging outside a seismic network:application to the Northeast Japan arc[J]. Bulletin of the Seismological Society of America, 2007, 97:1121-1132.
    [32] Jackson E D, Shaw H R, Baggary K E. Calculated geochronology and stress field orientation along the Hawiian Chain[J]. Earth and Planet Sci.Lett., 1975, 26:145-155.
    [33] 林长松, 唐勇, 谭勇华. 南海西缘断裂带右行走滑的地球动力学机制[J]. 海洋学报, 2009, 31(1):159-160.

    [LIN Changsong, TANG Yong, TAN Yonghua. Geodynamic mechanism of dextral strike slip of the western edge faults of the South China Sea[J]. Acta Oceanologica Sinica, 2009, 31(1):159-160.]
    [34] Hall R, Ali J R. Origin and motion history of the Philippine Sea Plate[J]. Tectonophysics, 1995, 251(1-4):229-250.
    [35] Lee T Y, Lawver L A. Cenozoic plate reconstruction of Southeast Asia[J]. Tectonophysics, 1995, 251:85-138.
    [36] Kimura J I, Stern R J, Yoshida T. Reinitiation of subduction and magmatic responses in SW Japan during Neogene time[J]. Geological Society of America Bulletin, 2005, 117:969-986.
    [37] Deschamps A, Okino K. Late amagmatic extension along the central and eastern segments of the West Philippine Basin fossil spreading axis[J]. Earth and Planetary Science Letters, 2002, 203(1):277-293.
    [38] Okino K, Fujioka K. The Central Basin Spreading Center in the Philippine Sea:Structure of an extinct spreading center and implications for marginal basin formation[J]. J. Geophys. Res., 2003, 108(B1):2040.
    [39] Ike T, Moore G F. Tectonics and sedimentation around Kashinosaki Knoll:A subducting basement high in the eastern Nankai Trough[J]. Island Arc, 2008, 17(3):358-375.
    [40] Watanabe Y. Late Cenozoic evolution of epithermal gold metallogenic provinces in Kyushu, Japan[J]. Mineralium Deposita, 2005, 40:307-323.
    [41] Yamaji A. Slab rollback suggested by latest Miocene to Pliocene forearc stress and migration of volcanic front in southern Kyushu, northern Ryukyu Arc[J]. Tectonophysics, 2003, 364:9-24.
    [42] 臧绍先, 宁杰远. 菲律宾海板块与欧亚板块的相互作用及其对东亚构造运动的影响[J]. 地球物理学报, 2002, 45(2):188-198.

    [ZANG Shaoxian, NING Jieyuan. Interaction Between Philippine Sea Plate(PH) and Eurasia(EU) Plate and its Influence on the Movement Eastern Asia[J]. Chinese Journal of Geophusics, 2002, 45(2):188-198.]
  • [1] 刘峰, 黄苏卫, 杨鹏程, 张传运.  西湖凹陷Y构造花港组气藏特征及成藏主控因素 . 海洋地质与第四纪地质, 2021, 41(6): 1-9. doi: 10.16562/j.cnki.0256-1492.2021080401
    [2] 孔丽茹, 罗敏, 陈多福.  新西兰Hikurangi俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr同位素证据 . 海洋地质与第四纪地质, 2021, 41(5): 1-9.
    [3] 李法坤, 戴黎明, 李三忠, 董昊, 刘泽, 占华旺, 王亮亮, 盛世强, 胡泽明, 王迪, 王宇.  构造-沉积耦合过程的数值模拟:以南海北部阳江凹陷为例 . 海洋地质与第四纪地质, 2021, 41(5): 1-12. doi: 10.16562/j.cnki.0256-1492.2021040601
    [4] 马晓理, 刘丽华, 徐行, 金光荣, 魏雪芹, 翟梦月.  南海南部浅表层柱状沉积物孔隙水地球化学特征对甲烷渗漏活动的指示 . 海洋地质与第四纪地质, 2021, 41(5): 1-14. doi: 10.16562/j.cnki.0256-1492.2020123101
    [5] 兰蕾, 李友川, 王一博.  南海南部海陆过渡相烃源岩的两类分布模式 . 海洋地质与第四纪地质, 2021, 41(5): 1-8. doi: 10.16562/j.cnki.0256-1492.2021011802
    [6] 袁勇, 陈建文, 梁杰, 张银国, 薛路, 吴淑玉, 蓝天宇, 吴飘.  南黄海崂山隆起二叠系砂岩储层特征及其油气勘探前景 . 海洋地质与第四纪地质, 2021, 41(5): 1-13. doi: 10.16562/j.cnki.0256-1492.2021020201
    [7] 孙国洪, 田丽艳, 李小虎, 张汉羽, 陈凌轩, 刘红玲.  西南印度洋中脊岩石地球化学特征及其岩浆作用研究 . 海洋地质与第四纪地质, 2021, 41(5): 1-13. doi: 10.16562/j.cnki.0256-1492.2021021701
    [8] 程琳燕, 李磊, 高毅凡, 张威, 龚广传, 杨志鹏, 王潘.  琼东南盆地陵水凹陷海底周期阶坎底形的特征及成因 . 海洋地质与第四纪地质, 2021, 41(5): 1-8. doi: 10.16562/j.cnki.0256-1492.2021041902
    [9] 徐俊杰, 刘道涵, 陈松, 刘慧, 刘磊, 刘盼, 刘广宁.  北康盆地基底卷入断层特征及其对南海南部构造演化的启示 . 海洋地质与第四纪地质, 2021, 41(4): 116-128. doi: 10.16562/j.cnki.0256-1492.2020101701
    [10] 范佳慧, 窦衍光, 赵京涛, 李军, 邹亮, 蔡峰, 陈晓辉, 李清.  东海外陆坡−冲绳海槽水体剖面地球化学特征与指示意义 . 海洋地质与第四纪地质, 2021, 41(): 1-15.
    [11] 鲁银涛, 杨涛涛, 许小勇, 徐宁, 刘忻蕾, 闫春, 邵大力, 范国章, 吕福亮, 李东.  印度尼西亚库泰盆地下中新统混积序列特征研究 . 海洋地质与第四纪地质, 2021, 41(): 1-9. doi: 10.16562/j.cnki.0256-1492.2021051403
    [12] 刘家岐, 兰晓东.  中太平洋莱恩海山富钴结壳元素地球化学特征及成因探讨 . 海洋地质与第四纪地质, 2021, 41(): 1-11.
    [13] 刘佳辉, 曲扬, 李伟强, 魏广祎, 孙倩元, 凌洪飞, 陈天宇.  西太平洋铁锰结壳中两类不同成因磷酸盐的元素特征、形成机制及指示意义 . 海洋地质与第四纪地质, 2021, 41(): 1-9.
    [14] 罗顺开, 周怀阳, 赵国庆, 袁伟.  加瓜海脊铁锰结壳的年龄及其定年方法适用性比较 . 海洋地质与第四纪地质, , (): -. doi: 10.16562/j.cnki.0256-1492.2021070502
  • 加载中
计量
  • 文章访问数:  788
  • HTML全文浏览量:  86
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-11
  • 修回日期:  2014-08-20

日本南海海槽俯冲带的地球物理特征及其动力学意义

doi: 10.3724/SP.J.1140.2014.06153
    作者简介:

    陈萍(1989-),女,硕士生,专业方向为海洋地球物理与海底构造,E-mail:baiseweixiao@163.com

基金项目:

国家自然科学基金项目(41176058);中国海陆地质地球物理系列图项目(GZH200900504-WX03)

  • 中图分类号: P738

摘要: 日本南海海槽是菲律宾海板块和欧亚板块俯冲消亡的地带,其东西两段俯冲带的空间重力异常、温度分布和海底热流、地壳结构、应力场特征表现出显著差异。东段四国-纪伊岛下的俯冲带表现出典型的热俯冲带的特征,菲律宾海板块俯冲方向为由南向北,总体特征为俯冲带厚度较薄、俯冲角度小和俯冲深度相当浅等;西段九州岛下的菲律宾海板块由南北方向的俯冲过渡至近东西向,总体表现为俯冲角度大、俯冲深度深、板内震源较浅等特征;这些差异可能是由太平洋板块和菲律宾海板块的运动方向和速率发生了数次的旋转和改变,以及四国海盆的扩张等诸多因素导致的。

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回