留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热带西太平洋250 ka来浮游有孔虫G.sacculifer壳体质量变化特征及控制机理

秦秉斌 李铁刚 常凤鸣 熊志方 郝鹏

秦秉斌, 李铁刚, 常凤鸣, 熊志方, 郝鹏. 热带西太平洋250 ka来浮游有孔虫G.sacculifer壳体质量变化特征及控制机理[J]. 海洋地质与第四纪地质, 2014, 34(3): 85-92. doi: 10.3724/SP.J.1140.2014.03085
引用本文: 秦秉斌, 李铁刚, 常凤鸣, 熊志方, 郝鹏. 热带西太平洋250 ka来浮游有孔虫G.sacculifer壳体质量变化特征及控制机理[J]. 海洋地质与第四纪地质, 2014, 34(3): 85-92. doi: 10.3724/SP.J.1140.2014.03085
QIN Bingbin, LI Tiegang, CHANG Fengming, XIONG Zhifang, HAO Peng. SHELL WEIGHT CHANGES OF PLANKTONIC FORAMINIFERA G. sacculifer FROM THE TROPICAL WESTERN PACIFIC DURING THE LAST 250 ka AND CONTROLLING MECHANISMS[J]. Marine Geology & Quaternary Geology, 2014, 34(3): 85-92. doi: 10.3724/SP.J.1140.2014.03085
Citation: QIN Bingbin, LI Tiegang, CHANG Fengming, XIONG Zhifang, HAO Peng. SHELL WEIGHT CHANGES OF PLANKTONIC FORAMINIFERA G. sacculifer FROM THE TROPICAL WESTERN PACIFIC DURING THE LAST 250 ka AND CONTROLLING MECHANISMS[J]. Marine Geology & Quaternary Geology, 2014, 34(3): 85-92. doi: 10.3724/SP.J.1140.2014.03085

热带西太平洋250 ka来浮游有孔虫G.sacculifer壳体质量变化特征及控制机理


doi: 10.3724/SP.J.1140.2014.03085
详细信息
    作者简介:

    秦秉斌(1989-),男,硕士生,主要从事古海洋与古环境研究,E-mail:qbbqbb@163.com

  • 基金项目:

    国家自然科学基金项目(41230959,41106042,41076030)

    中国科学院战略性先导科技专项(XDA10010305)

    国家海洋局基础研究项目

  • 中图分类号: P736.4

SHELL WEIGHT CHANGES OF PLANKTONIC FORAMINIFERA G. sacculifer FROM THE TROPICAL WESTERN PACIFIC DURING THE LAST 250 ka AND CONTROLLING MECHANISMS

More Information
  • 摘要: 作为新兴的海水CO32-替代性指标,浮游有孔虫壳体质量对于海洋碳循环研究具有重要意义。测定了热带西太平洋WP7孔250 ka以来表层浮游有孔虫G.sacculifer壳体质量。除了在MIS1和MIS4期外,壳体质量显示冰期重、间冰期轻的旋回特征,响应大气pCO2变化,表明大气pCO2变化是该海域浮游有孔虫壳体质量变化的主控因素。研究结果表明MIS4期间壳体质量异常低值可能是该时期加强的上升流和CaCO3溶解事件共同导致。温度与营养盐浓度并不是壳体质量异常的主要原因,共生体则可能是影响因素。G.sacculifer壳体质量与大气pCO2整体上良好的反相关关系表明其可以作为可靠的表层海水CO32-替代性指标。
  • [1] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399:429-436.
    [2] Boyle E A. Vertical oceanic nutrient fractionation and glacial/interglacial CO2 cycles[J]. Nature, 1988, 331:55-56.
    [3] Sanyal A, Hemming N, Hanson G N, et al. Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera[J]. Nature, 1995, 373:234-236.
    [4] Archer D, Winguth A, Lea D, et al. What caused the glacial/interglacial atmospheric pCO2 cycles?[J] Reviews of Geophysics, 2000, 38:159-190.
    [5] Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407:859-869.
    [6] Hönisch B, Hemming N G. Surface ocean pH response to variations in pCO2 through two full glacial cycles[J]. Earth and Planetary Science Letters, 2005, 236:305-314.
    [7] Barker S, Elderfield H. Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2[J]. Science, 2002, 297:833-836.
    [8] Lohmann G P. A Model for variation in the chemistry of planktonic-foraminifera due to secondary calcification and selective dissolution[J]. Paleoceanography, 1995, 10:445-457.
    [9] Spero H J, Bijma J, Lea D W, et al. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes[J]. Nature, 1997, 390:497-500.
    [10] Bijma J, Spero H J, Lea D W. Reassessing Foraminiferal Stable Isotope Geochemistry:Impact of the Oceanic Carbonate Systems (Experimental Results)[C]//Use of Proxies in Paleoceanography:Examples from the South Atlantic. New York:Springer-Verlag, 1999:489-512.
    [11] Bijma J, Honisch B, Zeebe R E. Impact of the ocean carbonate chemistry on living foraminiferal shell weight:Comment on "Carbonate ion concentration in glacial-age deep waters of the Caribbean Sea" by W. S. Broecker and E. Clark[J]. Geochemistry Geophysics Geosystems, 2002, 3(11):1064.
    [12] Russell A D, Hönisch B, Spero H J, et al. Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera[J]. Geochimica et Cosmochimica Acta, 2004, 68:4347-4361.
    [13] Moy A D, Howard W R, Bray S G, et al. Reduced calcification in modern Southern Ocean planktonic foraminifera[J]. Nature Geoscience, 2009, 2:276-280.
    [14] Naik S S, Naidu P D, Govil P, et al. Relationship between weights of planktonic foraminifer shell and surface water CO32- concentration during the Holocene and Last Glacial Period[J]. Marine Geology, 2010, 275:278-282.
    [15] Broecker W S, Clark E. An evaluation of Lohmann's foraminifera weight dissolution index[J]. Paleoceanography, 2001, 16:531-534.
    [16] Berger W H. Biogenous deep-sea Sediments:fractionation by deep-sea circulation[J]. Geological Society of America Bulletin, 1970, 18:1385-1402.
    [17] Peterson L C, Prell W L. Carbonate dissolution in recent sediments of the eastern equatorial Indian Ocean:Preservation patterns and carbonate loss above the lysocline[J]. Marine Geology, 1985, 64:259-290.
    [18] Broecker W S, Clark E. CaCO3 size distribution:A paleocarbonate ion proxy[J]. Paleoceanography, 1999, 14:596-604.
    [19] Broecker W S, Clark E. Reevaluation of the CaCO3 size index paleocarbonate ion proxy[J]. Paleoceanography, 2001, 16:669-671.
    [20] Hemming N, Hanson G. Boron isotopic composition and concentration in modern marine carbonates[J]. Geochimica et Cosmochimica Acta, 1992, 56:537-543.
    [21] Li T, Zhao J, Nan Q, et al. Palaeoproductivity evolution in the centre of the western Pacific warm pool during the last 250 ka[J]. Journal of Quaternary Science, 2011, 26:478-484.
    [22] Janecek T R. Date report:High-resolution Carbonate and Bulk Grain-size Data for Sites 803~806(0~2Ma)[C]//In:Berger W H, Kroenke L W, Mayer L A et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results 130, 1993:761-773.
    [23] Wu G, Yasuda M, Berger W. Late Pleistocene carbonate stratigraphy on Ontong-Java Plateau in the western equatorial Pacific[J]. Marine Geology, 1991, 99:135-150.
    [24] Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305:367-371.
    [25] Zeebe R E, Zachos J C, Caldeira K, et al. Oceans-Carbon emissions and acidification[J]. Science, 2008, 321:51-52.
    [26] Caldeira K, Wickett M E. Anthropogenic carbon and ocean pH[J]. Nature, 2003, 425:365-365.
    [27] Broecker W S, Clark E. Glacial-to-Holocene redistribution of carbonate ion in the deep sea[J]. Science, 2001, 294:2152-2155.
    [28] Gazeau F, Gattuso J P, Dawber C, et al. Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis[J]. Biogeosciences, 2010, 7:2051-2060.
    [29] Langdon C, Atkinson M. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment[J]. Journal of Geophysical Research, 2005, 110:C09S07.
    [30] Riebesell U. Effects of CO2 enrichment on marine phytoplankton[J]. Journal of Oceanography, 2004, 60:719-729.
    [31] Riebesell U, Bellerby R, Grossart H P, et al. Mesocosm CO2 perturbation studies:from organism to community level[J]. Biogeosciences, 2008, 5:1157-1164.
    [32] Schiebel R. Planktic foraminiferal sedimentation and the marine calcite budget[J]. Global Biogeochemical Cycles, 2002, 16:1065.
    [33] Milliman J D. Production and accumulation of calcium-carbonate in the ocean:budget of a Nonsteady state[J]. Global Biogeochemical Cycles, 1993, 7:927-957.
    [34] Zeebe R E, Sanyal A. Comparison of two potential strategies of planktonic foraminifera for house building:Mg2+ or H+ removal[J]. Geochimica Et Cosmochimica Acta, 2002, 66:1159-1169.
    [35] Erez J. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies[J]. Biomineralization, 2003, 54:115-149.
    [36] Kuroyanagi A, Kawahata H, Suzuki A, et al. Impacts of ocean acidification on large benthic foraminifers:Results from laboratory experiments[J]. Marine Micropaleontology, 2009, 73:190-195.
    [37] Lombard F, da Rocha R E, Bijma J, et al. Effect of carbonate ion concentration and irradiance on calcification in planktonic foraminifera[J]. Biogeosciences, 2010, 7:247-255.
    [38] Vollmer F, Arnold S. Whispering-gallery-mode biosensing:label-free detection down to single molecules[J]. Nature methods, 2008, 5:591-596.
    [39] Ridgwell A, Zeebe R E. The role of the global carbonate cycle in the regulation and evolution of the Earth system[J]. Earth and Planetary Science Letters, 2005, 234:299-315.
    [40] Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2009, 56:554-577.
    [41] Tudhope A W, Chilcott C P, McCulloch M T, et al. Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle[J]. Science, 2001, 291:1511-1517.
    [42] Palmer M, Pearson P N. A 23000-year record of surface water pH and pCO2 in the Western Equatorial Pacific Ocean[J]. Science, 2003, 300:480-482.
    [43] Lea D W, Pak D K, Spero H J. Climate impact of late Quaternary equatorial Pacific sea surface temperature variations[J]. Science, 2000, 289:1719-1724.
    [44] Turk D, McPhaden M J, Busalacchi A J, et al. Remotely sensed biological production in the equatorial Pacific[J]. Science, 2001, 293:471-474.
    [45] Lewis M R, Harrison W G, Oakey N S, et al. Vertical nitrate fluxes in the oligotrophic ocean[J]. Science, 1986, 234:870-873.
    [46] de Villiers S. Foraminiferal shell-weight evidence for sedimentary calcite dissolution above the lysocline[J]. Deep-Sea Research Part I-Oceanographic Research Papers, 2005, 52:671-680.
    [47] Archer D, Emerson S, Reimers C. Dissolution of calcite in deep-sea Sediments:ph and O2 microelectrode results[J]. Geochimica et Cosmochimica Acta, 1989, 53:2831-2845.
    [48] Emerson S, Bender M. Carbon fluxes at the sediment-water interface of the deep-sea:calcium carbonate preservation[J]. Journal of Marine Research, 1981, 39:139-162.
    [49] Le J, Shackleton N J. Carbonate dissolution fluctuations in the western equatorial Pacific during the late Quaternary[J]. Paleoceanography, 1992, 7:21-42.
    [50] Gonzalez-Mora B, Sierro F J, Flores J A. Controls of shell calcification in planktonic foraminifers[J]. Quaternary Science Reviews, 2008, 27:956-961.
    [51] Beer C J, Schiebel R, Wilson P A. Testing planktic foraminiferal shell weight as a surface water[CO32-] proxy using plankton net samples[J]. Geology, 2010, 38:103-106.
    [52] Spero H J, Lerche I, Williams D F. Opening the carbon isotope "vital effect" black box, 2, Quantitative model for interpreting foraminiferal carbon isotope data[J]. Paleoceanography, 1991, 6:639-655.
    [53] Lombard F, Labeyrie L, Michel E, et al. Modelling the temperature dependent growth rates of planktic foraminifera[J]. Marine Micropaleontology, 2009, 70:1-7.
    [54] de Villiers S. Optimum growth conditions as opposed to calcite saturation as a control on the calcification rate and shell-weight of marine foraminifera[J]. Marine Biology, 2004, 144:45-49.
    [55] Aldridge D, Beer C J, Purdie D A. Calcification in the planktonic foraminifera Globigerina bulloides linked to phosphate concentrations in surface waters of the North Atlantic Ocean[J]. Biogeosciences, 2012, 9:1725-1739.
    [56] Rink S, Kühl M, Bijma J, et al. Microsensor studies of photosynthesis and respiration in the symbiotic foraminifer Orbulina universa[J]. Marine Biology, 1998, 131:583-595.
    [57] ter Kuile B. Mechanisms for Calcification and Carbon Cycling in Algal Symbiont-bearing Foraminifera[C]//In:Biology of Foraminifera, edited by Lee J L, Anderson O R. Academic Press, 1991:74-89.
    [58] Fujita K, Hikami M, Suzuki A, et al. Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers[J]. Biogeosciences, 2011, 8:2089-2098.
    [59] Ortiz J D, Mix A C, Collier R W. Environmental control of living symbiotic and asymbiotic foraminifera of the California Current[J]. Paleoceanography, 1995, 10:987-1009.
    [60] Bijma J, Hemleben C, Oberhaensli H, et al. The effects of increased water fertility on tropical spinose planktonic foraminifers in laboratory cultures[J]. Journal of Foraminiferal Research, 1992, 22:242-256.
  • [1] 曾志刚, 张玉祥, 陈祖兴, 李晓辉, 齐海燕, 王晓媛, 陈帅, 殷学博.  西太平洋弧后盆地的热液系统及其岩浆环境研究 . 海洋地质与第四纪地质, 2021, 41(5): 1-13. doi: 10.16562/j.cnki.0256-1492.2021070101
    [2] 孙国洪, 田丽艳, 李小虎, 张汉羽, 陈凌轩, 刘红玲.  西南印度洋中脊岩石地球化学特征及其岩浆作用研究 . 海洋地质与第四纪地质, 2021, 41(5): 1-13. doi: 10.16562/j.cnki.0256-1492.2021021701
    [3] 刘家岐, 兰晓东.  中太平洋莱恩海山富钴结壳元素地球化学特征及成因探讨 . 海洋地质与第四纪地质, 2021, 41(): 1-11.
    [4] 刘佳辉, 曲扬, 李伟强, 魏广祎, 孙倩元, 凌洪飞, 陈天宇.  西太平洋铁锰结壳中两类不同成因磷酸盐的元素特征、形成机制及指示意义 . 海洋地质与第四纪地质, 2021, 41(): 1-9.
  • 加载中
计量
  • 文章访问数:  551
  • HTML全文浏览量:  35
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-19
  • 修回日期:  2014-03-09

热带西太平洋250 ka来浮游有孔虫G.sacculifer壳体质量变化特征及控制机理

doi: 10.3724/SP.J.1140.2014.03085
    作者简介:

    秦秉斌(1989-),男,硕士生,主要从事古海洋与古环境研究,E-mail:qbbqbb@163.com

基金项目:

国家自然科学基金项目(41230959,41106042,41076030)

中国科学院战略性先导科技专项(XDA10010305)

国家海洋局基础研究项目

  • 中图分类号: P736.4

摘要: 作为新兴的海水CO32-替代性指标,浮游有孔虫壳体质量对于海洋碳循环研究具有重要意义。测定了热带西太平洋WP7孔250 ka以来表层浮游有孔虫G.sacculifer壳体质量。除了在MIS1和MIS4期外,壳体质量显示冰期重、间冰期轻的旋回特征,响应大气pCO2变化,表明大气pCO2变化是该海域浮游有孔虫壳体质量变化的主控因素。研究结果表明MIS4期间壳体质量异常低值可能是该时期加强的上升流和CaCO3溶解事件共同导致。温度与营养盐浓度并不是壳体质量异常的主要原因,共生体则可能是影响因素。G.sacculifer壳体质量与大气pCO2整体上良好的反相关关系表明其可以作为可靠的表层海水CO32-替代性指标。

English Abstract

参考文献 (60)

目录

    /

    返回文章
    返回