留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沉积动力学若干问题的讨论

何起祥

何起祥. 沉积动力学若干问题的讨论[J]. 海洋地质与第四纪地质, 2010, 30(4): 1-10. doi: 10.3724/SP.J.1140.2010.04001
引用本文: 何起祥. 沉积动力学若干问题的讨论[J]. 海洋地质与第四纪地质, 2010, 30(4): 1-10. doi: 10.3724/SP.J.1140.2010.04001
HE Qixiang. A DISCUSSION ON SEDIMENT DYNAMICS[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 1-10. doi: 10.3724/SP.J.1140.2010.04001
Citation: HE Qixiang. A DISCUSSION ON SEDIMENT DYNAMICS[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 1-10. doi: 10.3724/SP.J.1140.2010.04001

沉积动力学若干问题的讨论


doi: 10.3724/SP.J.1140.2010.04001
详细信息
    作者简介:

    何起祥(1936-),男,研究员,从事沉积学研究,E-mail:qxhe@163169.net

  • 中图分类号: P53

A DISCUSSION ON SEDIMENT DYNAMICS

More Information
  • 摘要: 根据沉积物的成因标志定量地重建沉积环境的动力学,是地球科学的需要,也是多少代沉积地质学家的梦想。近数十年来,沉积学家通过现代过程的观察、实验模拟和古相沉积序列的研究,探讨沉积物的粒度和沉积构造与沉积环境的动力学关系,取得了长足的进展。简要地回顾了沉积动力学的研究历史,重点讨论了沉积物的粒度和沉积底形的动力学含义,介绍了主要的研究结论。但是,无论是沉积物的粒度还是沉积构造,都是复杂的多变量函数,不可能在没有设定前提的情况下取得某一变量的单一解。沉积地球科学的性质决定了它的思维路线。沉积学家必须坚持自然现象有序性和连续性的基本原理,坚持辩证逻辑和综合分析,才能在沉积动力学研究中取得比较符合实际的科学结论。
  • [1] Bagnold R A. Libyan Sands:Travel in a Dead World[M]. London, Hodder and Stoughton, 1935.
    [2] Bagnold R A. The Physics of Blown Sand and Desert Dunes[M]. New York, William Morrow & Co., 1941.
    [3] Studer B. Remarques geognostiques sur quelques parties de la chaine des alpes[J]. Ann. Sci. Nat. Paris, 1827, 11:1-47.
    [4] Mutti E, Bernoulli D, Ricci Luchi F, et al. Turbidites and turbidity current from Alpine flysch to the exploration of continental margins[J]. Sedimentology, 2009, 56:267-318.
    [5] Bailey E B. New light on sedimentation and tectonics[J]. Geol. Mag., 1930, 67:77-92.
    [6] Daly R A. Origin of submarine canyons[J]. Am. J. Sci., 1936,31:401-420.
    [7] Kuenen Ph H. Experiments in connection with Daly's hypothesis on the formation of submarine canyons[J]. Leidsche Geol. Meded., 1937, 8:327-351.
    [8] Johnson D. The Origin of Submarine Canyons[M]. New York, Columbia University Press, 1939.
    [9] Tercier J. Le Flysch dans la sedimentation alpaine[J]. Ecologae Geol. Helv., 1947, 40:164-198.
    [10] Vassoevich N B. Le flysch et les methodes de son etude[M]. Gostoptekhizat, Leningrad, 1948.
    [11] Kuenen Ph H. Migliorini C I. Turbidity currents as a cause of graded bedding[J]. J. Geol. 1950, 58:91-127.
    [12] Bouma A H. Sedimentology of some Flysch Deposits:A Graphic Approach to Facies Interpretation[M]. Elsvier, Amsterdam, 1962.
    [13] Heezen B C. and Ewing, M., Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake[J]. Am. J. Sci., 1952, 250:840-873.
    [14] Normark W R. Growth patterns of deep-sea fans[J]. AAPG Bull., 1970, 54:2170-2195.
    [15] Hsu K J. Studies of Ventura field, California, I:Facies geometry and genesis of lower Pliocene turbidites[J]. AAPG Bull., 1977, 61:137-168.
    [16] Mulder T. Syvitski J P M. Turbidity currents generated at river mouth during exceptional discharge to the worlds ocean[J]. Jour. Geol. 1995, 103:285-299.
    [17] Mulder T. Syvitski J P M. Modeling erosion and deposition by turbidity currents generated at river mouths[J].Jour. Sed. Research, 1998, A68:124-137.
    [18] Johnson K. et al. A decal record of underflows from a coastal river into the deep sea, Geology[J]. 2001, 29:1019-1022.
    [19] Wright L D, Wiseman W J, Bornhold B D, et al. Marine dispersal and deposition of Yellow River silts by gravity-driven underflows[J]. Nature, 1988, 332:629-632.
    [20] Wright L D, Wiseman W J, Yang Z S, et al. Processes of marine dispersal and deposition of suspended silts off the modern mouth of the Huanghe (Yellow River)[J]. Continental Shelf Research, 1990, 10(1):1-40.
    [21] 李绍全.黄河三角洲的沉积动力学和泥沙运动,成国栋主编,黄河三角洲现代沉积作用及模式[M].北京:地质出版社,1991.110.[LI Shaoquan. Sediment dynamics and motion of sediments,in Sedimentation of the Yellow River and Its Models[M]. Beijing, Geological Publishing House 1991.110.]
    [22] 汪品先.深海沉积与地球系统[J].海洋地质与第四纪地质,2009,29(4):1-12

    [WANG Pinxian. Deep sea sediments and earth system[J]. Marine Geology and Quaternary Geology, 2009, 29(4):1-12.]
    [23] Posamentier H W. Depositional elements associated with a basin floor channel-levee system:case study from the Gulf of Mexico[C]//Turbidites:Models and Problems,Mar. Petr. Geol.2003,20:677-690.
    [24] Trask P D. Mechanical analysis of sediments by centrifuge[J]. Econ. Geol. 1930, 25:581-599.
    [25] Krumbein W C. Size frequency distribution of sediments[J]. J. Sed. Petr., 1934, 4:195-196.
    [26] Krumbein W C and Pettijohn F J. Manual of Sedimentary Petrography[M]. New York, D. Appleton-Century Co., Inc., 1938.
    [27] Otto G H. A modified logarithmic probability graph for the interpretation of mechanical analyses of sediments[J]. J. Sed. Petro. 1939, 9:62-76.
    [28] Inman D L. Measures for describing the size distribution of sediments[J]. J. Sed. Petro. 1962, 22:125-145.
    [29] Folk R L and Ward W C. Brazos River bar, a study in the significance of grain size parameters[J]. J. Sed. Petro. 1957,27:3-27.
    [30] McCammon R B. Efficiencies of percentile measures for describing the mean size and sorting of sedimentary particles[J]. J. Geol., 1962, 70:453-365.
    [31] Visher G S. Exploration Stratigraphy[M]. Tulsa, Penn Well Publishing Company, 1984.
    [32] Hjulstrom F. Transportation of detritus by moving water, In Recent Marine Sediments[C]. A Symposium Spec. Pub. Econ. Paleont. Miner, 1939, 4,Tulsa, 5-31.
    [33] Passega R. Texture as characteristic of clastic deposition[J]. Am. Assoc. Petroleum Geol. Bull., 1957,44:1952-1984.
    [34] Passega R. Grain size representation by CM pattern as a geological tool[J]. Jour. Sed. Petrol., 1964, 34:830-847.
    [35] Sahu B K. Depositional mechanisms from the size analysis of clastic sediments[J]. J. Sed. Petro. 1964,34:73-83.
    [36] Friedman G M. Distinction between dune, beach and river sands from their textural characteristics[J]. J. Sed. Petro. 1967, 28:151-163.
    [37] Gilbert G K. The Transportation of debris by running water[M]. USGS Professional Paper, 1914:1-86.
    [38] Simons D B, Richardson E V, et al. Forms of bed roughness in alluvial channels[J].Am. Soc. Civil. Eng. Proc, 1961, 81, no.HY3:87-105.
    [39] Guy, et al. Summary of alluvial channel data from flume experiments, 1956-1961[M]. USGS Professional Paper, 462-I, 1966.
    [40] Williams G. Flume experiments on the transport of a coarse sand[C]. USGS Prof. Paper 652-B,1967,1-31.
    [41] Allen J R L. Current Ripples:Their Relation to Patterns of Water and Sediment Motion[J]. Amsterdam, North-Holland, 1968.
    [42] Southard J B. Representation of bed configurations in depth-velocity-size diagram[J]. J. Sed. Petr., 1971, 41:903-915.
    [43] Harms J C, Southard J B, Spearing D R, et al. Depositional Environments as Interpreted from Primary Sedimentary Structures and Stratification Sequences[M]. Lecture Notes, Sed. Econ. Paleont. Miner. Short Course 2, Dallas, 1975.
    [44] Vannoni V. Factors determining bed forms in alluvial channels[J]. Am. Soc. Engineers Proc., 1974, 100, no. Hyz, 363-377.
    [45] Reineck H E and Singh I B. Depositonal Sedimentary Environments[M]. New York, Springer-Verlag, 1973.
    [46] 何起祥.水槽底形序列及其与水流变量的关系[J].长春地质学院学报,1981,3:59-68.[HE Qixiang. Bedforms sequence and its relation with hydrodynamic variables[J]. Journal of Changchun Geological Institute, 1981

    , 3:59-68.]
    [47] Kennedy J F. The mechanics of dunes and antidunes in erodible-bed Channels[J]. J. Fluid Mech. 1963, 16:521-544.
    [48] 何起祥.中国海洋沉积地质学[M].北京;海洋出版社, 2006.[HE Qixiang, Marine Sedimentary Geology of China[M]. Beijing;China Ocean Press, 2006.]
    [49] Belderson R H, Johnson M A, et al. Bedforms, In Offshore Tidal Sands:Process and Deposits[C]. New York, Chapman and Hall, 1982:27-57.
    [50] 成冶.某地区白垩系中的沉积相[J].地质科学,1976(4):37-45.[CHENG Ye, A Cretaceous case of sedimentary facies[J]. Earth Sciences, 1976

    (4):37-45.]
    [51] 刘宝珺.沉积岩石学[M].北京:地质出版社, 1980,[LIU Baojun. Sedimentary Petrology[M]. Beijing:Geological Publishing House, 1980.]
    [52] 刘宝珺.沉积成岩作用的若干问题[J].沉积学报, 2009, 27(5):787-791.

    [LIU Baojun. Some problems on the study of sedimentary diagenesis[J]. Acta Sedimentologica Sinica, 2009, 27(5), 787-791.]
  • [1] 程琳燕, 李磊, 高毅凡, 张威, 龚广传, 杨志鹏, 王潘.  琼东南盆地陵水凹陷海底周期阶坎底形的特征及成因 . 海洋地质与第四纪地质, 2021, 41(5): 1-8. doi: 10.16562/j.cnki.0256-1492.2021041902
    [2] 吴峰, 任培罡, 谈明轩, 张福榕, 马皓然.  西湖凹陷孔雀亭地区平湖组沉积相演变及其主控因素分析 . 海洋地质与第四纪地质, 2021, 41(5): 1-12. doi: 10.16562/j.cnki.0256-1492.2021052401
    [3] 肖倩文, 冯秀丽, 苗晓明.  神狐海域SH37岩心浊流沉积及其物源分析 . 海洋地质与第四纪地质, 2021, 41(5): 1-11. doi: 10.16562/j.cnki.0256-1492.2021011901
    [4] 李法坤, 戴黎明, 李三忠, 董昊, 刘泽, 占华旺, 王亮亮, 盛世强, 胡泽明, 王迪, 王宇.  构造-沉积耦合过程的数值模拟:以南海北部阳江凹陷为例 . 海洋地质与第四纪地质, 2021, 41(5): 1-12. doi: 10.16562/j.cnki.0256-1492.2021040601
    [5] 马晓理, 刘丽华, 徐行, 金光荣, 魏雪芹, 翟梦月.  南海南部浅表层柱状沉积物孔隙水地球化学特征对甲烷渗漏活动的指示 . 海洋地质与第四纪地质, 2021, 41(5): 1-14. doi: 10.16562/j.cnki.0256-1492.2020123101
    [6] 孔丽茹, 罗敏, 陈多福.  新西兰Hikurangi俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr同位素证据 . 海洋地质与第四纪地质, 2021, 41(5): 1-9.
    [7] 赵金环, 刘昌岭, 邹长春, 陈强, 孟庆国, 刘洋, 卜庆涛.  基于ERT技术的含水合物沉积物可视化探测模拟实验 . 海洋地质与第四纪地质, 2021, 41(): 1-7.
    [8] 雷雁翔, 何磊, 王玉敏, 张朋朋, 张斌, 胡蕾, 吴治国, 叶思源.  渤海湾西岸晚更新世以来的沉积环境演化及碳埋藏评价 . 海洋地质与第四纪地质, 2021, (): 1-12. doi: 10.16562/j.cnki.0256-1492.2021020101
  • 加载中
计量
  • 文章访问数:  663
  • HTML全文浏览量:  57
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-10
  • 修回日期:  2010-07-20

沉积动力学若干问题的讨论

doi: 10.3724/SP.J.1140.2010.04001
    作者简介:

    何起祥(1936-),男,研究员,从事沉积学研究,E-mail:qxhe@163169.net

  • 中图分类号: P53

摘要: 根据沉积物的成因标志定量地重建沉积环境的动力学,是地球科学的需要,也是多少代沉积地质学家的梦想。近数十年来,沉积学家通过现代过程的观察、实验模拟和古相沉积序列的研究,探讨沉积物的粒度和沉积构造与沉积环境的动力学关系,取得了长足的进展。简要地回顾了沉积动力学的研究历史,重点讨论了沉积物的粒度和沉积底形的动力学含义,介绍了主要的研究结论。但是,无论是沉积物的粒度还是沉积构造,都是复杂的多变量函数,不可能在没有设定前提的情况下取得某一变量的单一解。沉积地球科学的性质决定了它的思维路线。沉积学家必须坚持自然现象有序性和连续性的基本原理,坚持辩证逻辑和综合分析,才能在沉积动力学研究中取得比较符合实际的科学结论。

English Abstract

参考文献 (52)

目录

    /

    返回文章
    返回