留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物标志物及其碳同位素在冷泉区生物地球化学研究中的应用

丁玲 赵美训

丁玲, 赵美训. 生物标志物及其碳同位素在冷泉区生物地球化学研究中的应用[J]. 海洋地质与第四纪地质, 2010, 30(2): 133-142. doi: 10.3724/SP.J.1140.2010.02133
引用本文: 丁玲, 赵美训. 生物标志物及其碳同位素在冷泉区生物地球化学研究中的应用[J]. 海洋地质与第四纪地质, 2010, 30(2): 133-142. doi: 10.3724/SP.J.1140.2010.02133
DING Ling, ZHAO Meixun. APPLICATION OF BIOMARKERS AND CARBON ISOTOPES TO COLD SEEP BIOGEOCHEMICAL PROCESSES[J]. Marine Geology & Quaternary Geology, 2010, 30(2): 133-142. doi: 10.3724/SP.J.1140.2010.02133
Citation: DING Ling, ZHAO Meixun. APPLICATION OF BIOMARKERS AND CARBON ISOTOPES TO COLD SEEP BIOGEOCHEMICAL PROCESSES[J]. Marine Geology & Quaternary Geology, 2010, 30(2): 133-142. doi: 10.3724/SP.J.1140.2010.02133

生物标志物及其碳同位素在冷泉区生物地球化学研究中的应用


doi: 10.3724/SP.J.1140.2010.02133
详细信息
    作者简介:

    丁玲(1983-),女,博士生,研究方向为海洋有机地球化学,E-mail:dingling83@163.com

  • 基金项目:

    国家重点基础研究发展规划项目(2007CB815904)

    国家自然科学基金项目(40730844,40776029,40676032)

  • 中图分类号: P736.4

APPLICATION OF BIOMARKERS AND CARBON ISOTOPES TO COLD SEEP BIOGEOCHEMICAL PROCESSES

More Information
  • 摘要: 甲烷通量在很大程度上控制着海底冷泉区生物地球化学过程及生态系统。缺氧甲烷氧化(AOM)作用是消耗CH4的一种重要途径,主要是由甲烷氧化古菌和硫酸盐还原菌共同调节的,其反应机制及碳循环可以利用生物标志物及其碳同位素比值来表征。这两种微生物所产生的特定生物标志物都具有相对负的δ13C值,且硫酸盐还原菌生物标志物的δ13C值要比古菌的略偏正,说明在AOM过程中,甲烷碳从古菌到细菌的传递。甲烷通量决定海底冷泉区微生物群落结构,通量高时以ANME-2古菌群落为主,而OH-AR和BIPH两个生物标志物指标可以指示古菌群落结构变化。所以,利用生物标志物及其δ13C值不仅能够证明AOM作用的存在和反应机制,还可以对冷泉区(尤其是古冷泉区)环境及微生物群落结构进行分析和重建。
  • [1] Kvenvolden K A,Barnard L A. Gas hydrates of the Blake Outer Ridge, Site 533, Deep Sea Drilling Project Leg 76[C]//Initial Reports of the Deep Sea Drilling Project, Washington D. C.:U. S. Governmental Printing Office, 1983,76:353-365.
    [2] Hollister C D,Ewing J I. Initial Reports of the Deep Sea Drilling Project Leg 11[R]. Washington D. C.:U. S. Governmental Printing Office, 1972.
    [3] Kvenvolden K A. Potential effects of gas hydrate on human welfare[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7):3420-3426.
    [4] Crouch E M, Heilmann-Clausen C, Brinkhuis H, et al. Global dinoflagellate event associated with the late Paleocene thermal maximum[J]. Geology, 2001, 29(4):315-318.
    [5] Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology:Past developments and future research directions[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2006, 232(2-4):362-407.
    [6] Reeburgh W H, Ward B B, Whalen S C, et al. Black Sea methane geochemistry[J]. Deep Sea Research Part A-Oceanographic Research Papers, 1991, 38:S1189-S1210.
    [7] 党宏月, 宋林生, 李铁刚,等. 海底深部生物圈微生物的研究进展[J]. 地球科学进展, 2005, 20(12):1306-1313.

    [DANG Hongyue, SONG Linsheng, LI Tiegang, et al. Progress in the studies of subseafloor deep biosphere microorganisms[J]. Advances in Earth Science, 2005, 20(12):1306-1313.]
    [8] Reeburgh W H. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2):486-513.
    [9] Wegener G,Boetius A. An experimental study on short-term changes in the anaerobic oxidation of methane in response to varying methane and sulfate fluxes[J]. Biogeosciences, 2009, 6(5):867-876.
    [10] Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine Sediments[J]. Nature, 1999, 398:802-805.
    [11] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407:623-626.
    [12] Orphan V J, Hinrichs K U, Ussler W, et al. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments[J]. Applied and Environmental Microbiology, 2001a, 67(4):1922-1934.
    [13] Pancost R D, Hopmans E C, Simmimghe Damste J S, et al. Archaeal lipids in Mediterranean cold seeps:Molecular proxies for anaerobic methane oxidation[J]. Geochimica et Cosmochimica Acta, 2001,65(10):1611-1627.
    [14] Knittel K, Losekann T, Boetius A, et al. Diversity and distribution of methanotrophic archaea at cold seeps[J]. Applied and Environmental Microbiology,2005, 71(1):467-479.
    [15] Niemann H, Duarte J, Hensen C, et al. Microbial methane turnover at mud volcanoes of the Gulf of Cadiz[J]. Geochimica et Cosmochimica Acta, 2006, 70(21):5336-5355.
    [16] Neue H. Methane emission from rice fields:Wetland rice fields may make a major contribution to global warming[J]. BioScience, 1993, 43(7):466-473.
    [17] Valentine D L. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments:A review[J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2002, 81:271-282.
    [18] Nauhaus K, Treude T, Boetius A, et al. Environmental regulation of the anaerobic oxidation of methane:a comparison of ANME-1 and ANME-2 communities[J]. Environmental Microbiology, 2005, 7(1):98-106.
    [19] Valentine D L, Blanton D C, Reeburgh W S, et al. Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel River Basin[J]. Geochimica et Cosmochimica Acta, 2001, 65(16):2633-2640.
    [20] Greinert J, Bohrmann G, Elvert M. Stromatolitic fabric of authigenic carbonate crusts:result of anaerobic methane oxidation at cold seeps in 4850m water depth[J]. International Journal of Earth Sciences, 2002, 91(4):698-711.
    [21] Chen D F, Huang Y Y, Yuan X L, et al. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the northeastern South China Sea[J]. Marine and Petroleum Geology, 2005, 22(5):613-621.
    [22] Lin S, Hsieh W C, Lim Y C, et al. Methane migration and its influence on sulfate reduction in the Good Weather Ridge region, South China Sea continental margin sediments[J]. Terrestrial Atmospheric and Oceanic Sciences, 2006, 17(4):883-902.
    [23] Huang C Y, Chien C W, Zhao M X, et al. Geological investigations of active cold seeps in the syn-collision accretionary prism Kaoping slope off SW Taiwan[J]. Terrestrial Atmospheric and Oceanic Sciences, 2006, 17(4):679-702.
    [24] Orphan V J, House C H, Hinrichs K U, et al. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis[J]. Science, 2001b, 293(5529):484-487.
    [25] Michaelis W, Seifert R, Nauhaus K, et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane[J]. Science, 2002, 297(5583):1013-1015.
    [26] Brocks J J,Pearson A. Building the biomarker tree of life[J]. Reviews in Mineralogy and Geochemistry, 2005, 59(1):233-258.
    [27] Hopmans E C, Schouten S, Pancost R D, et al. Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2000, 14(7):585-589.
    [28] Bouloubassi I, Aloisi G, Pancost R D, et al. Archaeal and bacterial lipids in authigenic carbonate crusts from eastern Mediterranean mud volcanoes[J]. Organic Geochemistry, 2006, 37(4):484-500.
    [29] Stadnitskaia A, Bouloubassi I, Elvert M, et al. Extended hydroxyarchaeol, a novel lipid biomarker for anaerobic methanotrophy in cold seepage habitats[J]. Organic Geochemistry, 2008, 39(8):1007-1014.
    [30] Elvert M, Suess E, Whiticar M J. Anaerobic methane oxidation associated with marine gas hydrates:superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids[J]. Naturwissenschaften, 1999, 86(6):295-300.
    [31] Elvert M, Hopmans E C, Treude T, et al. Spatial variations of methanotrophic consortia at cold methane seeps:implications from a high-resolution molecular and isotopic approach[J]. Geobiology, 2005, 3(3):195-209.
    [32] Pancost R D, Sinninghe Damst J S, Lint S D, et al. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria[J]. Applide and Environmental Microbiology, 2000, 66(3):1126-1132.
    [33] Bian L, Hinrichs K U, Xie T, et al. Algal and archaeal polyisoprenoids in a recent marine sediment:molecular isotopic evidence for anaerobic oxidation of methane[J]. Geochemistry Geophysics Geosystems, 2001, 2:2000GC000112.
    [34] Zhang C L, Pancost R D, Sassen R, et al. Archaeal lipid biomarkers and isotopic evidence of anaerobic methane oxidation associated with gas hydrates in the Gulf of Mexico[J]. Organic Geochemistry, 2003, 34(6):827-836.
    [35] Pancost R D,Sinninghe Damst J S. Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings[J]. Chemical Geology, 2003, 195(1-4):29-58.
    [36] Zhang C L, Huang Z Y, Cantu J, et al. Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrate in the Gulf of Mexico[J]. Applied and Environmrntal Microbiology, 2005, 71(4):2106-2112.
    [37] Orphan V J, House C H, Hinrichs K U, et al. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(11):7663-7668.
    [38] Blumenberg M, Seifert R, Reitner J, et al. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30):11111-11116.
    [39] Niemann H,Elvert M. Diagnostic lipid biomarker and stable carbon isotope signatures of microbial communities mediating the anaerobic oxidation of methane with sulphate[J]. Organic Geochemistry, 2008, 39(12):1668-1677.
    [40] Pape T, Blumenberg M, Seifert R, et al. Lipid geochemistry of methane-seep-related Black Sea carbonates[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 227(1-3):31-47.
    [41] Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161(1-3):291-314.
    [42] Thiel V, Peckmann J, Seifert R, et al. Highly isotopically depleted isoprenoids:Molecular markers for ancient methane venting[J]. Geochimica et Cosmochimica Acta, 1999, 63(23-24):3959-3966.
    [43] Thiel V, Peckmann J, Richnow H H, et al. Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat[J]. Marine Chemistry, 2001, 73(2):97-112.
    [44] Elvert M, Suess E, Greinert J, et al. Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone[J]. Organic Geochemistry, 2000, 31:1175-1187.
    [45] Aloisi G, Bouloubassi I, Heijs S K, et al. CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps[J]. Earth and Planetary Science Letters, 2002, 203(1):195-203.
    [46] Hinrichs K U, Summons R E, Orphan V, et al. Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments[J]. Organic Geochemistry, 2000, 31(12):1685-1701.
    [47] Zhang C L, Li Y L, Wall J D, et al. Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico[J]. Geology, 2002, 30:239-242.
    [48] Brooks J M, Kennicutt M C, Fry R R, et al. Thermogenic Gas Hydrates in the Gulf of Mexico[J]. Science, 1984, 225:409-411.
    [49] Lein A Y. Authigenic carbonate formation in the ocean[J]. Lithology and Mineral Resources, 2004, 39(1):1-30.
    [50] Lein A Y, Gal'chenko V F, Pokrovskii B G. Marine carbonate nodules as a result of microbial methane oxidation of gas hydrate methane in the Sea of Okhotsk[J]. Geokhimiya, 1989, 10:1396-1406.
    [51] Hoehler T M, Alperin M J, Albert D B, et al. Field and laboratory studies of methane oxidation in an anoxic marine sediment:evidence for a methanogen-sulfate reducer consortium[J]. Global Biogeochemical Cycles, 1994, 8(4):451-463.
    [52] Valentine D L,Reeburgh W S. New perspectives on anaerobic methane oxidation[J]. Environmental Microbiology, 2000, 2:477-484.
    [53] Orphan V J, Ussler W, Naehr T H, et al. Geological, geochemical, and microbiological heterogeneity of the seafloor around methane vents in the Eel River Basin, offshore California[J]. Chemical Geology, 2004, 205(3-4):265-289.
    [54] Gilhooly Ⅲ W P, Carney R S, Macko S A. Relationships between sulfide-oxidizing bacterial mats and their carbon sources in northern Gulf of Mexico cold seeps[J]. Organic Geochemistry, 2007, 38(3):380-393.
    [55] Wegener G, Niemann H, Elvert M, et al. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane[J]. Environmental Microbiology, 2008, 10(9):2287-2298.
    [56] Summons R E, Franzmann P D, Nichols P D. Carbon isotopic fractionation associated with methylotrophic methanogenesis[J]. Organic Geochemistry, 1998, 28(7-8):465-475.
    [57] Teece M A, Fogel M L, Dollhopf M E. Isotopic fractionation associated with biosynthesis of fatty acids by a marine bacterium under oxic and anoxic conditions[J]. Organic Geochemistry, 1999, 30(12):1571-1579.
    [58] Wang G Z, Spivack A J, Rutherford S, et al. Quantification of co-occurring reaction rates in deep subseafloor sediments[J]. Geochimica et Cosmochimica Acta, 2008, 72(14):3479-3488.
    [59] Kelley D S, Karson J A, Blackman D K, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N[J]. Nature, 2001, 412(6843):145-149.
    [60] Kelley D S, Karson J A, Fruh-Green G L, et al. A serpentinite-hosted ecosystem:The lost city hydrothermal field[J]. Science, 2005, 307(5714):1428-1434.
    [61] Boetius A. Lost city life[J]. Science, 2005, 307(5714):1420-1422.
    [62] Gay A, Lopez M, Ondreas H, et al. Seafloor facies related to upward methane flux within a Giant Pockmark of the Lower Congo Basin[J]. Marine Geology, 2006, 226(1-2):81-95.
  • [1] 张云山, 贾永刚, 尉建功.  海底冷泉原位观测装置研究回顾与展望 . 海洋地质与第四纪地质, 2021, 41(5): 1-14. doi: 10.16562/j.cnki.0256-1492.2021052002
    [2] 马晓理, 刘丽华, 徐行, 金光荣, 魏雪芹, 翟梦月.  南海南部浅表层柱状沉积物孔隙水地球化学特征对甲烷渗漏活动的指示 . 海洋地质与第四纪地质, 2021, 41(5): 1-14. doi: 10.16562/j.cnki.0256-1492.2020123101
    [3] 肖倩文, 冯秀丽, 苗晓明.  神狐海域SH37岩心浊流沉积及其物源分析 . 海洋地质与第四纪地质, 2021, 41(5): 1-11. doi: 10.16562/j.cnki.0256-1492.2021011901
    [4] 孔丽茹, 罗敏, 陈多福.  新西兰Hikurangi俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr同位素证据 . 海洋地质与第四纪地质, 2021, 41(5): 1-9.
    [5] 赵金环, 刘昌岭, 邹长春, 陈强, 孟庆国, 刘洋, 卜庆涛.  基于ERT技术的含水合物沉积物可视化探测模拟实验 . 海洋地质与第四纪地质, 2021, 41(): 1-7.
    [6] 刘佳辉, 曲扬, 李伟强, 魏广祎, 孙倩元, 凌洪飞, 陈天宇.  西太平洋铁锰结壳中两类不同成因磷酸盐的元素特征、形成机制及指示意义 . 海洋地质与第四纪地质, 2021, 41(): 1-9.
  • 加载中
计量
  • 文章访问数:  710
  • HTML全文浏览量:  76
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-16
  • 修回日期:  2009-12-26

生物标志物及其碳同位素在冷泉区生物地球化学研究中的应用

doi: 10.3724/SP.J.1140.2010.02133
    作者简介:

    丁玲(1983-),女,博士生,研究方向为海洋有机地球化学,E-mail:dingling83@163.com

基金项目:

国家重点基础研究发展规划项目(2007CB815904)

国家自然科学基金项目(40730844,40776029,40676032)

  • 中图分类号: P736.4

摘要: 甲烷通量在很大程度上控制着海底冷泉区生物地球化学过程及生态系统。缺氧甲烷氧化(AOM)作用是消耗CH4的一种重要途径,主要是由甲烷氧化古菌和硫酸盐还原菌共同调节的,其反应机制及碳循环可以利用生物标志物及其碳同位素比值来表征。这两种微生物所产生的特定生物标志物都具有相对负的δ13C值,且硫酸盐还原菌生物标志物的δ13C值要比古菌的略偏正,说明在AOM过程中,甲烷碳从古菌到细菌的传递。甲烷通量决定海底冷泉区微生物群落结构,通量高时以ANME-2古菌群落为主,而OH-AR和BIPH两个生物标志物指标可以指示古菌群落结构变化。所以,利用生物标志物及其δ13C值不仅能够证明AOM作用的存在和反应机制,还可以对冷泉区(尤其是古冷泉区)环境及微生物群落结构进行分析和重建。

English Abstract

参考文献 (62)

目录

    /

    返回文章
    返回