留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

古菌生物标志物古海水温度指标TEX86研究进展

赵美训 李大伟 邢磊

赵美训, 李大伟, 邢磊. 古菌生物标志物古海水温度指标TEX86研究进展[J]. 海洋地质与第四纪地质, 2009, 29(3): 75-84. doi: 10.3724/SP.J.1140.2009.03075
引用本文: 赵美训, 李大伟, 邢磊. 古菌生物标志物古海水温度指标TEX86研究进展[J]. 海洋地质与第四纪地质, 2009, 29(3): 75-84. doi: 10.3724/SP.J.1140.2009.03075
ZHAO Meixun, LI Dawei, XING Lei. USING ARCHAEA BIOMARKER INDEX TEX86 AS A PALEO-SEA SURFACE TEMPERATURE PROXY[J]. Marine Geology & Quaternary Geology, 2009, 29(3): 75-84. doi: 10.3724/SP.J.1140.2009.03075
Citation: ZHAO Meixun, LI Dawei, XING Lei. USING ARCHAEA BIOMARKER INDEX TEX86 AS A PALEO-SEA SURFACE TEMPERATURE PROXY[J]. Marine Geology & Quaternary Geology, 2009, 29(3): 75-84. doi: 10.3724/SP.J.1140.2009.03075

古菌生物标志物古海水温度指标TEX86研究进展


doi: 10.3724/SP.J.1140.2009.03075
详细信息
    作者简介:

    赵美训(1959-),男,教授,主要从事海洋有机地球化学研究,E-mail:maxzhao@ouc.edu.cn

  • 基金项目:

    国家重点基础研究发展规划项目(2007CB815904)

    国家自然科学基金项目(40776029,40730844,40706021,40621063)

  • 中图分类号: P736.22

USING ARCHAEA BIOMARKER INDEX TEX86 AS A PALEO-SEA SURFACE TEMPERATURE PROXY

More Information
  • 摘要: TEX86是最近几年提出的一个古海水温度重建指标,它是基于由古菌的一个分支Marine Crenarchaeota所产生的一组生物标志物(GDGTs)的比值。培养实验、水体颗粒物及大洋表层沉积物的研究结果都显示,温度是TEX86指标的主要影响因素,而盐度、营养盐等其他环境因子对TEX86指标无明显影响。由于陆源物质中也含有少量GDGTs,TEX86重建近海温度记录会有较大的误差。但是TEX86和另一个生物标志物指标BIT的同时测定也使TEX86用于近海古温度重建。与通常用的U37K'古海水温度指标相比,TEX86指标可以应用于高于29℃的高温海域,目前已被成功地应用于地质历史中高温期古海水温度的重建。TEX86指标将为重建西太平洋古温度记录提供一种有效的方法。
  • [1] Imbrie J, Kipp N G.A new micropaleontological method quantitative paleoclimatology:application to a late Pleistocene Caribbean core[C]//The Late Cenozoic Ice Ages. New Haven and London:Yale University Press, 1971:71-181.
    [2] Mix A C, Bard E, Schneider R. Environmental processes of the Ice Age:land, oceans,glaciers (EPILOG)[J].Quaternary Science Reviews, 2001, 20:620-657.
    [3] Kucera M, Weineltb M, Kiefer T, et al. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera:multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans[J]. Quaternary Science Reviews, 2005, 24:951-998.
    [4] Morey A E, Mix A C, Pisias N G. Planktonic foraminiferal assemblages preserved in surface sediments correspond to multiple environment variables[J]. Quaternary Science Reviews, 2005, 24:925-950.
    [5] Erez J, Luz B. Experimental paleotemperature equation for planktonic foraminifera[J].Geochimica et Cosmochimica Acta, 1983, 47:1025-1031.
    [6] Yu K F, Zhao J X, Wei G J, et al. δ18O, Sr/Ca and Mg/Ca records of Porites lutea corals from Leizhou Peninsula,northern South China Sea, and their applicability as paleoclimatic indicators[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 218:57-73.
    [7] Nurnberg D, Bijma J, Hemleben C. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures[J]. Geochimica et Cosmochimica Acta, 1996, 60:803-814.
    [8] Elderfield H, Ganssen G. Past temperature and delta O-18 of surface ocean waters inferred from foraminiferal Mg/Ca ratios[J]. Nature, 2000, 405(6785):442-445.
    [9] Lea D W,Pak D K,Spero H J.Climate impact of late Quaternary equatorial Pacific sea surface temperature variations[J]. Science, 2000, 289(5485):1719-1724.
    [10] Lea D W, Pak D K, Belanger C L, et al. Paleoclimate history of Galápagos surface waters over the last 135000 yr[J]. Quaternary Science Reviews, 2006,25(11-12):1152-1167.
    [11] Brassell S C, Eglinton G, Marlowe I T, et al. Molecular stratigraphy-A new tool for climatic assessment[J]. Nature, 1986, 320:129-133.
    [12] Prahl F G, Wakeham S G.Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment[J]. Nature, 1987, 330:367-369.
    [13] Müller P J, Kirst G, Ruhland G, et al. Calibration of the alkenone paleotemperature index based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S)[J]. Geochimica et Cosmochimica Acta,1998,62:1757-1772.
    [14] Herbert T D, Schuffert J D, Andreasen D, et al. Collapse of the California Current during glacial maxima linked to climate change on land[J]. Science, 2001, 293(5527):71-76.
    [15] Zhao M, Huang C Y, Wang C C, et al. A millennial-scale sea-surface temperature record from the South China Sea (8°N) over the last 150 kyr:Monsoon and sea-level influence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 236(1-2):39-55.
    [16] Zhou H Y, Li T G, Jia G D, et al. Sea surface temperature reconstruction for the middle Okinawa Trough during the last glacial-interglacial cycle using C-37 unsaturated alkenones[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246(2-4):440-453.
    [17] Spero H J, Bijma J, Lea D W. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes[J]. Nature, 1999, 390:497-500.
    [18] Rosenthal Y,Lohmann G P.Accurate estimation of sea surface temperatures using dissolution-corrected calibrations for Mg/Ca paleothermometry[J]. Paleoceanography, 2002, 17(3):PA1044, doi:10.1029/2001PA000749.
    [19] Lea D W.The Ocean and Marine Geochemistry[M].Oxford:Treatise on Geochemistry, 2003, 6:365-390.
    [20] Herbert T D.The Ocean and Marine Geochemistry[M].Oxford:Treatise on Geochemistry, 2003, 6:365-390.
    [21] Pelejero C, Calvo E. The upper end of the temperature calibration revisited[J]. Geochemistry, Geophysics,Geosystems, 2003, 4(2):1014, doi:10.1029/2002GC000431.
    [22] McClymont E L, Rosell-Mele A. Links between the onset of modern Walker circulation and the mid-Pleistocene climate transition[J]. Geology, 2005, 33(5):389-392.
    [23] Schneider R.Alkenone temperatures and carbon isotope records:Temporal resolution, offsets, and regionality[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(1):1007, doi:10.1029/2000GC000060.
    [24] Sikes E L,Volkman J K.Calibration of alkenone unsaturation ratios for paleotemperature estimation in cold polar waters[J].Geochimica et Cosmochimica Acta,1993, 57:1883-1889.
    [25] Schouten S, Hopmans E C, Schefu E, et al. Distributional variations in Marine Crenarchaeotal membrane lipids:a new organic proxy for reconstructing ancient sea water temperatures?[J]. Earth and Planetary Science Letters, 2002, 204:265-274.
    [26] Karner M, DeLong E F, Karl D M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean[J]. Nature, 2001, 409:507-510.
    [27] Gliozzi A,Paoli G,DeRosa M,et al.Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaeabacteria[J]. Biochimica et Biophysica Acta, 1983, 735:234-242.
    [28] Uda I,Sugai A,Itoh Y H,et al.Variation on molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature[J]. Lipids, 2001, 36:103-105.
    [29] Wuchter C,Schouten S,Wakeham S G,et al.Archaeal tetraether membrane lipid fluxes in the northeastern Pacific and the Arabian Sea:implications for TEX86 paleothermometry[J]. Paleoceanography, 2006, 21:PA4208. doi:10.1029/2006PA001279.
    [30] Schouten S, Hopmans E C, Kuypers M M M, et al. Extreme high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids[J]. Geology, 2003, 31:1069-1072.
    [31] Hopmans E C, Weijers J W H, Schefu E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224:107-116.
    [32] Wuchter C, Schouten S, Wakeham S G, et al. Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter:Implication for TEX86 paleothermometry[J]. Paleoceanography, 2005, 20:PA3013.
    [33] Wuchter C, Schouten S, Coolen M J L, et al. Temperature-dependent variation in the distribution of tetraether membrane lipids of Marine Crenarchaeota:Implications for TEX86 paleothermometry[J].Paleoceanography, 2004, 19:PA4028, doi:10.1029/2004PA001041.
    [34] Schouten S,Forster A,Panato E,et al.Towards the calibration of the TEX86 paleothermometer in ancient green house worlds[J]. Organic Geochemistry, 2007, 38:1537-1546.
    [35] Kim J H, Schouten S, Hopmans E C, et al. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean[J].Geochimica et Cosmochimica Acta,2008,72:1154-1173.
    [36] Huguet C, Schimmelmann A, Thunell R, et al. A study of the TEX86 paleothermometer in the water column and sediments of the Santa Barbara Basin, California[J]. Paleoceanography, 2007, 22:PA3203, doi:10.1029/2006PA001310.
    [37] Menzel D, Hopmans E C, Schouten S, et al. Membrane tetraether lipids of planktonic Crenarchaeota in Pliocene sapropels of the eastern Mediterranean Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239:1-15.
    [38] Herfort L, Schouten S, Boon J P, et al. Application of the TEX86 temperature proxy in the southern North Sea[J]. Organic Geochemistry, 2006, 37:1715-1726.
    [39] Huguet C, Kim J H, Sinninghe Damsté J S, et al. Reconstruction of sea surface temperature variations in the Arabian Sea over the last 23 kyr using organic proxies (TEX86 and U37K')[J]. Paleoceanography, 2006, 21:PA3003, doi:10.1029/2005PA001215.
    [40] Murray A E, Preston C M, Massana R, et al. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica[J]. Applied and Environmental Microbiology, 1998, 64:2585-2595.
    [41] Murray A E, Wu K Y, Moyer C L, et al. Evidence for circumpolar distribution of planktonic Archaea in the Southern Ocean[J]. Aquatic Microbial Ecology, 1999, 18:263-273.
    [42] Murray A E, Blakis A, Massana R, et al. A time series assessment of planktonic archaeal variability in the Santa Barbara Channel[J]. Aquatic Microbial Ecology, 1999, 20:129-145.
    [43] Turich C, Freeman K H, Bruns M A, et al. Lipids of marine Archaea:Patterns and provenance in the water-column and sediments[J]. Geochimica et Cosmochimica Acta, 2007, 71:3272-3291.
    [44] Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, et al. Distribution of membrane lipids of planktonic Crenarchaeota in the Arabian Sea[J]. Applied and Environmental Microbiology, 2002, 68:2997-3002.
    [45] Powers L A. Calibration and application of a new paleotemperature tool in lacustrine systems:TEX86 for continental paleoclimate reconstruction[D]. Ph. D. Thesis, University of Minnesota, 2005:92.
    [46] Schouten S, Hopmans E C, Sinninghe Damsté J S. The effect of maturity and depositional redox conditions on archaeal tetraether lipid palaeothermometry[J]. Organic Geochemistry, 2004, 35:567-571.
    [47] Powers, L A,Werne J P,Johnson T C,et al. Crenarchaeotal membrane lipids in lake sediments:a new paleotemperature proxy for continental paleoclimate reconstruction?[J]. Geology, 2004, 32(7):613-616.
    [48] Schouten S, Hopmans EC, Pancost R D, Sinninghe Damsté J S. Wide spread occurrence of structurally diverse tetraether membrane lipids:evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(26):14421-14426.
    [49] Weijers J W H,Schouten S,Spaargaren O C,et al.Occurrence and distribution of tetraether membrane lipids in soils:Implications for the use of the TEX86 proxy and the BIT index[J]. Organic Geochemistry, 2006, 37:1680-1693.
    [50] Sluijs A,Schouten S,Pagani M,et al.Subtropical Artic Ocean temperatures during the Palaeocene-Eocene thermal maximum[J]. Nature, 2006, 441:610-613.
    [51] Weijers J W H, Schouten S, van den Linden M, et al. Water table related variations in the abundance of intact archaeal membrane lipids in a Swedish peat bog[J]. FEMS Microbiological Letters, 2004, 239:51-56.
    [52] Herfort L, Schouten S, Boon J P, et al. Characterization of transport and deposition of terrestrial organic matter in the southern North Sea using the BIT index[J]. Limnology Oceanography, 2006, 51(5):2196-2205.
    [53] Kuypers M M M, Blokker P, Erbacher J, et al. Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event[J]. Science, 2001, 293:92-95.
    [54] Kennett J P, Stott L D. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene[J]. Nature, 1991, 353:225-229.
    [55] Tripati A,Elderfield H.Deep-sea temperature and circulation changes atthe Paleocene-Eocene thermal maximum[J]. Science, 2005, 308:1894-1898.
    [56] Bice K L, Birgel D, Meyers P A, et al. A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations[J]. Paleoceanography, 2006, 21:PA2002, doi:10.1029/2005PA001203.
    [57] Dickens G R, Castillo M M, Walker J C G. A blast of gas in the latest Paleocene:Simulating first-order effects of massive dissociation of oceanic methane hydrate[J]. Geology, 1997, 25:259-262.
    [58] Zachos J C, Wara M W, Bohaty S, et al. A transient rise in tropical sea surface temperature during the Paleocene-Eocene Thermal Maximum[J]. Science, 2003, 302:1551-1554.
    [59] Zachos J C, Schouten S, Bohaty S. Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum:Inferences from TEX86 and isotope data[J]. Geology, 2006, 34(9):737-740.
    [60] Yan X H, Ho C R, Zheng Q, et al. Temperature and size variabilities of the Western Pacific Warm Pool[J]. Science, 1992, 258:1643-1645.
    [61] Meyers G,Douguy J R,Reed R K.Evaporative cooling of the western equatorial Pacific by anomalous winds[J]. Nature, 1986, 323:523-526.
    [62] Webster P J. The role of hydrological processes in ocean-atmosphere interactions[J]. Reviews of Geophysics, 1994, 32:427-476.
    [63] McClymont E L,Rosell-Mele A,Giraudeau J,et al.Alkenone and coccolith records of the mid-Pleistocene in the southeast Atlantic:Implications for the U37K' index and South African climate[J]. Quaternary Science Reviews, 2005, 24(14-15):1559-1572.
    [64] Wara M W,Ravelo A C,Delaney M L.Permanent El Niño-like conditions during the Pliocene warm period[J]. Science, 2005, 309:758-761.
    [65] 汪品先,赵泉鸿,翦知湣,等.南海三千万年的深海记录[J].科学通报,2003,48(21):2206-2215.

    [WANG Pinxian, ZHAO Quanhong, JIAN Zhimin, et al. The deep sea record in South China Sea since 30 Ma[J]. Chinese Science Bulletin, 2003, 48(21):2206-2215.]
    [66] Mercer J L,Zhao M X.Alkenone stratigraphy of the Northern South China Sea for the past 35 million years:Sites 1147 and 1148, ODP Leg 184[C]//Proceedings of the Ocean Drilling Program, Scientific Results, 2004:1-17.
    [67] Jian Z M, Li B H, Huang B Q, et al. Globorotalia truncatulinoides as indicator of upper-ocean thermal structure during the Quaternary:Evidences from the South China Sea and Okinawa Trough[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 162(3-4):287-298.
    [68] Jian Z M, Huang B Q, Kuhnt W. Late Quaternary upwelling intensity and East Asian monsoon forcing in the South China Sea[J]. Quaternary Research, 2001, 55:363-370.
    [69] Xiang R, Sun Y B, Li T G, et al. Paleoenvironmental change in the middle Okinawa Trough since the last deglaciation:Evidence from the sedimentation rate and planktonic foraminiferal record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 243(3-4):378-393.
  • [1] 谢世文, 王宇辰, 舒誉, 吴宇翔, 刘冬青, 王菲.  珠一坳陷湖盆古环境恢复与优质烃源岩发育模式 . 海洋地质与第四纪地质, 2022, 42(1): 1-11. doi: 10.16562/j.cnki.0256-1492.2021081001
    [2] 李鑫, 曹红, 孙治雷, 耿威, 张喜林, 徐翠玲, 吴能友, 闫大伟, 秦双双, 张现荣, 翟滨, 王利波.  生物载体对海底冷泉-热液极端环境的地球化学记录 . 海洋地质与第四纪地质, 2021, 41(6): 1-11. doi: 10.16562/j.cnki.0256-1492.2020121401
    [3] 赵金环, 刘昌岭, 邹长春, 陈强, 孟庆国, 刘洋, 卜庆涛.  基于ERT技术的含水合物沉积物可视化探测模拟实验 . 海洋地质与第四纪地质, 2021, 41(6): 1-7. doi: 10.16562/j.cnki.0256-1492.2021060901
    [4] 王伟, 汤世凯, 胡艳萍, 王红艳, 石洪源, 战超.  山东半岛南部丁字湾口外海底沉积物粒度时空变化及影响因素 . 海洋地质与第四纪地质, 2021, 41(6): 1-11. doi: 10.16562/j.cnki.0265-1492.2021050601
    [5] 孔丽茹, 罗敏, 陈多福.  新西兰Hikurangi俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr同位素证据 . 海洋地质与第四纪地质, 2021, 41(6): 1-9. doi: 10.16562/j.cnki.0256-1492.2021071202
    [6] 《海洋地质与第四纪地质》创刊40周年优秀作者与优秀审稿专家名单 . 海洋地质与第四纪地质, 2021, 41(5): 231-232.
    [7] 刘德政, 夏非.  江苏中部海岸晚第四纪沉积物的粒度与磁化率特征及其古环境意义 . 海洋地质与第四纪地质, 2021, 41(5): 210-220. doi: 10.16562/j.cnki.0256-1492.2021051901
    [8] 马晓理, 刘丽华, 徐行, 金光荣, 魏雪芹, 翟梦月.  南海南部浅表层柱状沉积物孔隙水地球化学特征对甲烷渗漏活动的指示 . 海洋地质与第四纪地质, 2021, 41(5): 112-125. doi: 10.16562/j.cnki.0256-1492.2020123101
    [9] 肖倩文, 冯秀丽, 苗晓明.  南海北部神狐海域SH37岩芯浊流沉积及其物源分析 . 海洋地质与第四纪地质, 2021, 41(5): 101-111. doi: 10.16562/j.cnki.0256-1492.2021011901
    [10] 李晶, 刘昌岭, 吴能友, 贺行良, 孟庆国, 许晓晴, 陈烨.  海洋环境中甲烷好氧氧化过程的研究进展 . 海洋地质与第四纪地质, 2021, 41(5): 67-76. doi: 10.16562/j.cnki.0256-1492.2020112302
    [11] 辛友志, 孙治雷, 王红梅, 陈烨, 徐翠玲, 耿威, 曹红, 张喜林, 张现荣, 李鑫, 闫大伟, 吴能友.  海洋沉积物中金属依赖型甲烷厌氧氧化作用研究进展及展望 . 海洋地质与第四纪地质, 2021, 41(5): 58-66. doi: 10.16562/j.cnki.0256-1492.2020122801
    [12] 刘昌岭, 孙运宝.  海洋天然气水合物储层特性及其资源量评价方法 . 海洋地质与第四纪地质, 2021, 41(5): 44-57. doi: 10.16562/j.cnki.0256-1492.2021082401
    [13] 吴能友, 李彦龙, 刘乐乐, 万义钊, 张正财, 陈明涛.  海洋天然气水合物储层蠕变行为的主控因素与研究展望 . 海洋地质与第四纪地质, 2021, 41(5): 3-11. doi: 10.16562/j.cnki.0256-1492.2021092201
    [14] 汪品先.  海洋地质与第四纪地质的结合 . 海洋地质与第四纪地质, 2021, 41(5): 1-2. doi: 10.16562/j.cnki.0256-1492.2021072601
    [15] 陈俊锦, 张经纬, 刘时桥, 陈万利, 秦永鹏, 吴时国.  中沙群岛海域表层沉积物粒度特征及其输运趋势 . 海洋地质与第四纪地质, 2021, 41(): 1-12. doi: 10.16562/j.cnki.0256-1492.2021090901
  • 加载中
计量
  • 文章访问数:  806
  • HTML全文浏览量:  85
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-02-09
  • 修回日期:  2009-03-15

古菌生物标志物古海水温度指标TEX86研究进展

doi: 10.3724/SP.J.1140.2009.03075
    作者简介:

    赵美训(1959-),男,教授,主要从事海洋有机地球化学研究,E-mail:maxzhao@ouc.edu.cn

基金项目:

国家重点基础研究发展规划项目(2007CB815904)

国家自然科学基金项目(40776029,40730844,40706021,40621063)

  • 中图分类号: P736.22

摘要: TEX86是最近几年提出的一个古海水温度重建指标,它是基于由古菌的一个分支Marine Crenarchaeota所产生的一组生物标志物(GDGTs)的比值。培养实验、水体颗粒物及大洋表层沉积物的研究结果都显示,温度是TEX86指标的主要影响因素,而盐度、营养盐等其他环境因子对TEX86指标无明显影响。由于陆源物质中也含有少量GDGTs,TEX86重建近海温度记录会有较大的误差。但是TEX86和另一个生物标志物指标BIT的同时测定也使TEX86用于近海古温度重建。与通常用的U37K'古海水温度指标相比,TEX86指标可以应用于高于29℃的高温海域,目前已被成功地应用于地质历史中高温期古海水温度的重建。TEX86指标将为重建西太平洋古温度记录提供一种有效的方法。

English Abstract

参考文献 (69)

目录

    /

    返回文章
    返回