留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南海北部31 ka以来GDGTs组成及其对古温度和季风变化的响应

刘磊 管红香 冯俊熙 许兰芳 茅晟懿 刘丽华

刘磊, 管红香, 冯俊熙, 许兰芳, 茅晟懿, 刘丽华. 南海北部31 ka以来GDGTs组成及其对古温度和季风变化的响应[J]. 海洋地质与第四纪地质. doi: 10.16562/j.cnki.0256-1492.2020021101
引用本文: 刘磊, 管红香, 冯俊熙, 许兰芳, 茅晟懿, 刘丽华. 南海北部31 ka以来GDGTs组成及其对古温度和季风变化的响应[J]. 海洋地质与第四纪地质. doi: 10.16562/j.cnki.0256-1492.2020021101
LIU Lei, GUAN Hongxiang, FENG Junxi, XU Langfang, MAO Shengyi, LIU Lihua. Composition of glycerol dibiphytanyl glycerol tetraethers (GDGTs) and its responses to paleotemperature and monsoon changes since 31ka in northern South China Sea[J]. Marine Geology & Quaternary Geology. doi: 10.16562/j.cnki.0256-1492.2020021101
Citation: LIU Lei, GUAN Hongxiang, FENG Junxi, XU Langfang, MAO Shengyi, LIU Lihua. Composition of glycerol dibiphytanyl glycerol tetraethers (GDGTs) and its responses to paleotemperature and monsoon changes since 31ka in northern South China Sea[J]. Marine Geology & Quaternary Geology. doi: 10.16562/j.cnki.0256-1492.2020021101

南海北部31 ka以来GDGTs组成及其对古温度和季风变化的响应


doi: 10.16562/j.cnki.0256-1492.2020021101
详细信息
    作者简介:

    刘磊(1993—),男,硕士研究生,主要研究方向为海洋地质,E-mail:sc170130@mail.ustc.edu.cn

    通讯作者: 管红香(1981—),女,副研究员,主要研究方向为冷泉碳酸盐岩的地质地球化学特征,E-mail:guanhx@ms.giec.ac.cn
  • 基金项目:  国家自然科学基金项目“南海北部陆坡不同矿物组分冷泉碳酸盐岩”(91958105);青岛海洋科学与技术国家实验室开放基金“冷泉区双壳和管状蠕虫环境中自生碳酸盐岩的有机地球化学对比研究”(QNLM2016ORP0210);广州市科技计划项目“南海北部神狐钻探区自生黄铁矿形成机制及其指示意义” (201804010372)
  • 中图分类号: P736.4

Composition of glycerol dibiphytanyl glycerol tetraethers (GDGTs) and its responses to paleotemperature and monsoon changes since 31ka in northern South China Sea

More Information
  • 摘要: 南海因受到高纬度气候、低纬度大洋以及东亚季风等多种因素的影响而成为研究古温度和季风变化的理想区域。本文通过研究QH-CL11柱状沉积物的GDGTs组成、含量变化特征及其延伸的86个碳原子的四醚指标(TEXH86),分析南海北部GDGTs来源,并定量计算QH-CL11柱状沉积物记录的海洋表面温度(SST),从而探讨31 ka以来南海北部古温度变化的驱动机制。通过甲烷指数和支链/异戊二烯类指标等,确定isoGDGTs主要来自于奇古菌,适用于古温度重建。TEXH86温度显示出明显的冰期—间冰期旋回,与南海北部有孔虫和UK’37 SSTs具有很好的相似性。出现在TEXH86 SST中的海因里希冷事件(H1-3)和Bølling–Allerød暖期之前的温度大幅度上升事件(14.6 ka)反映了高纬度气候对南海的影响。南海SSTs和北太平洋MD01-2421 UK’37 SST的差异(ΔSSTs)可以用来反映东亚冬季风强度的变化。ΔSSTs显示东亚冬季风强度在Bølling–Allerød暖期前增加,在新仙女木时期达到最大值,在全新世早期再次下降,然后在全新世中晚期缓慢增加,这与前人对东亚冬季风强度的认识具有很好的一致性。该方法对重建长周期东亚冬季风强度具有重要的指导意义。
  • 图  1  南海北部QH-CL11沉积柱及对比站位位置图[11]

    Figure  1.  Location of core QH-CL11 and selected paleoenvironmental settings in the South China Sea (SCS)[11]

    图  2  南海北部17940、17954和MD997-2146沉积柱UK’37数据及MATLAB拟合的平均UK’37 north温度[9, 17]

    Figure  2.  UK'37 data of core 17940, 17954 and MD997-2146 in northern south China sea(SCS)and averaged UK'37 north temperatures fitted by MATLAB[9, 17]

    图  3  QH-CL11柱状沉积物年代模型

    Figure  3.  Age model of the sediment core QH-CL11

    图  4  QH-CL11中检测到的GDGTs的相对含量。Crenarchaeol' 表示Crenarchaeol异构体

    Figure  4.  The Changes of GDGTs contents with depth in core QH-CL11. Crenarchaeol' represents Crenarchaeol regio isomer

    图  5  (a)南海北部UK’37 north SST和(b)QH-CL11 TEXH86温度,以及(c)UK’37 north SST与QH-CL11 TEXH86温度之间的差值 (夏季、冬季及年平均SST来自19740站位的有孔虫数据[16]

    Figure  5.  (a)The averaged UK’37 north SSTs in the northern SCS and(b)TEXH86 temperatures in core QH-CL11, and(c)Temperature differences between the UK’37 north SSTs and TEXH86 temperatures (The summer, winter and mean annual SSTs are from core 19740[16]

    图  6  (a)沉积柱QH-CL11的TEXH86数据和UK’37 north SST投图;(b)QH-CL11和 MD97-2146平均后的TEXH86数据(AVETEXH86)和UK’37 north SST投图[9, 12, 25]

    Figure  6.  (a)X–Y plots of UK’37 north SSTs versus TEXH86 temperatures in QH-CL11; (b)X–Y plots of UK’37 north SSTs versus TEXH86 temperatures averaged from QH-CL11 and MD97-2146(AVETEXH86[9, 12,25]

    图  7  (a)QH-CL11的沉积速率,(b)QH-CL11的支链/异戊二烯指标BIT,(c)GISP2冰心δ18O记录[46],(d)QH-CL11 TEXH86 SST

    Figure  7.  (a)Sedimentation rates of core QH-CL11; (b)The branched and isoprenoid tetraether(BIT)index values of core QH-CL11; (c)δ18O records of GISP2 ice core [46]; (d)TEXH86 SSTs in QH-CL11

    图  8  (a)董哥洞δ18O记录[2],(b)湖光岩湖Ti含量记录[5],(c)QH-CL11 TEXH86 SST与MD01-2421 UK’37 SST的差值[47],(d)UK’37 north SST与MD01-2421 UK’37 SST的差值[9,17,47],(e)MD97-2151 UK’37 SST与MD01-2421 UK’37 SST的差值[47-48],(f)MD97-2151 UK’37 SST与QH-CL11 TEXH86 SST的差值[48]

    Figure  8.  (a)δ18O records from Dongge Cave stalagmites, China [2]; (b)Ti contents from from the sediment sequence of Lake Huguang Maar [5]; (c)The differences between TEXH86 SSTs in QH-CL11 and UK’37 SSTs in MD01-2421[47]; (d)The differences between UK’37 north SSTs and UK’37 SSTs in MD01-2421[9,17,47]; (e)The differences between UK’37 SSTs in MD97-2151 and UK’37 SSTs in MD01-2421[47-48]; (f)The differences between UK’37 SSTs in MD97-2151 and TEXH86 SSTs in QH-CL11[48]

    表  1  文中用到的指标的定义式

    Table  1.   Initial definitions of the proxies used in this article.

    指标定义合理范围来源
    $\rm{TE{X_{86}} = \dfrac{{\left( {\left[ {GDGT - 2} \right] + \left[ {GDGT - 3} \right] + \left[ {Crenarchaeol\;regio\;isomer} \right]} \right)}}{{\left( {\left[ {GDGT - 1} \right] + \left[ {GDGT - 2} \right] + \left[ {GDGT - 3} \right] + \left[ {Crenarchaeol\;regio\;isomer} \right]} \right)}}}$[28]
    ${\rm{TEX}}_{{\rm{86}}}^{\rm{H}} = {\rm{log(TE}}{{\rm{X}}_{{\rm{86}}}}{\rm{)}}$>15 ℃[32]
    ${\rm{TEX}}_{{\rm{86}}}^{\rm{L}} = {\rm{log}}\left( {\dfrac{{{\rm{GDGT - 2}}}}{{{\rm{GDGT - 1 + GDGT - 2 + GDGT - 3}}}}} \right)$<15 ℃[32]
    ${\rm{BIT = }}\dfrac{{{\rm{(}}\left[ {{\rm{GDGT - Ia}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - IIa}}} \right]{\rm{ + [GDGT - IIIa])}}}}{{{\rm{(}}\left[ {{\rm{GDGT - Ia}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - IIa}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - IIIa}}} \right]{\rm{ + Crenarchaeol)}}}}$<0.4[36]
    ${\rm{MI = }}\dfrac{{\left[ {{\rm{GDGT - 1}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - 2}}} \right]{\rm{ + [GDGT - 3]}}}}{{\left[ {{\rm{GDGT - 1}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - 2}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - 3}}} \right]{\rm{ + }}\left[ {{\rm{Crenarchaeol}}} \right]{\rm{ + [Crenarchaeol}}\;{\rm{regio}}\;{\rm{isomer]}}}}$<0.3[37]
    ${\rm{{\text{%}} GDGT - 2 = }}\dfrac{{{\rm{GDGT - 2}}}}{{\left[ {{\rm{GDGT - 1}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - 2}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - 3}}} \right]{\rm{ + [Crenarchaeol}}\;{\rm{regio}}\;{\rm{isomer]}}}}$<45[38]
    GDGT-0/ Crenarchaeol<2[39]
    GDGT-0/ Crenarchaeol<0.4[40]
    下载: 导出CSV

    表  2  研究区年平均及季节变化海温数据

    Table  2.   Annual mean and seasonal SST data in the study area

    冬季温度/
    春季温度/
    夏季温度/
    秋季温度/
    年平均温度/
    24.326.729.127.526.9
      注:所有数据都是在0 m水深观测,数据来源于World Ocean Atlas 2013。
    下载: 导出CSV

    表  3  南海北部QH-CL11沉积柱有孔虫AMS14C年龄

    Table  3.   14C-AMS ages from core QH-CL11 in the northern South China Sea(SCS)

    实验室编号深度/(cmbsf a有孔虫种类14C测定年龄/aBP校正后年龄/aBP
    5263672~5G.ruber + G.sacculifer200 ±300~71
    52475562~65G.ruber + G.sacculifer3 450 ±303 174~3 426
    526368182~185G.ruber + G.sacculifer8 710 ±3092 43~9 469
    524758242~245G.ruber + G.sacculifer11 100 ±3012 530~12 710
    524759302~305G.ruber + G.sacculifer12 650±3013 950~14 305
    524760362~365G.ruber + G.sacculifer13 410±3015 745~15 306
    526370482~485G.ruber + G.sacculifer18 890±6022 132~22 523
    526371542~545G.ruber + G.sacculifer22 500±7026 045~26 543
    526372602~605G.ruber + G.sacculifer24 820±9028 160~28 715
    524765672~675G.ruber + G.sacculifer28 080±12031 160~31 649
      注:a 海底以下以厘米为单位的深度。
    下载: 导出CSV

    表  4  文中收集的古温度和古环境数据来源与信息

    Table  4.   Sources of paleotemperature and paleoenvironment data collected in the paper

    名称纬度(°N)经度(°E)数据类型来源
    GISP2冰心72.970−38.800δ18O [‰ SMOW][46]
    董哥洞25.283108.083δ18O [‰ VPDB][2]
    湖光岩湖 21.250110.472Ti [counts·s−1][5]
    MD01-242136.033141.783UK’37[47]
    1794020.117117.383UK’37[17]
    MD97-214620.117117.385UK’37/TEXH86[9, 12, 25]
    1795414.797111.525UK’37[17]
    MD97-21518.728109.869UK’37[48]
    下载: 导出CSV

    表  5  南海北部QH-CL11柱状沉积物中各指标及TEXH86 SST数据

    Table  5.   The indices used to evaluate the application of TEX86 and TEXH86 SST in core QH-CL11

    编号深度/
    cmbsf
    年龄/
    ka
    甲烷指数MIGDGT-0/
    Crenarchaeol
    GDGT-2/
    Crenarchaeol
    %GDGT-2BITTEXH86TEXH86 SST/
    19043810.010.210.440.1439.80.026−0.18026.3
    190439110.440.190.400.1238.20.019−0.18426.0
    190440210.990.190.370.1237.80.018−0.19225.5
    190441311.530.190.390.1338.40.024−0.17426.7
    190442412.080.200.370.1340.50.017−0.17526.6
    190443613.160.190.390.1340.80.023−0.17826.5
    190444713.830.200.400.1339.80.029−0.17226.9
    190445814.540.190.370.1239.70.021−0.17826.5
    190446915.250.190.350.1338.90.028−0.17426.7
    1904471015.960.200.390.1439.90.029−0.17526.6
    1904481217.380.210.390.1440.80.021−0.17626.6
    1904491317.780.180.340.1239.40.019−0.16527.3
    1904501418.080.190.330.1341.30.017−0.15727.8
    1904511518.390.190.350.1339.90.016−0.17026.9
    1904521618.690.190.360.1341.00.014−0.17126.9
    1904531819.290.180.360.1240.20.017−0.17426.7
    1904541919.760.190.370.1340.20.018−0.18026.3
    19045520110.310.190.360.1340.80.016−0.17526.6
    19045621110.850.190.380.1340.30.016−0.17826.4
    19045722111.400.200.410.1340.70.016−0.18426.0
    19045824112.480.200.500.1241.40.019−0.20924.3
    19045925112.800.170.410.1038.70.016−0.21623.8
    19046026113.050.190.430.1240.50.021−0.20624.5
    19046127113.300.190.420.1138.70.017−0.20924.3
    19046228113.560.200.450.1239.50.015−0.21623.8
    19046330114.060.180.480.1139.90.014−0.21424.0
    19046431114.300.210.580.1339.90.013−0.23422.6
    19046532114.540.190.540.1139.40.015−0.23422.6
    19046633114.770.190.580.1039.00.014−0.25621.1
    19046734115.000.190.600.1139.80.023−0.24322.0
    19046836115.470.190.590.1039.30.021−0.25721.0
    19046937116.090.190.570.1037.70.025−0.25421.2
    19047038116.850.180.550.1037.60.030−0.26720.3
    19047139117.600.180.570.1036.90.027−0.25920.9
    19047240118.360.170.530.0936.40.022−0.25221.4
    19047342119.860.190.540.1140.30.023−0.23122.8
    19047443120.340.200.540.1139.10.023−0.24322.0
    19047544120.720.160.490.0836.90.023−0.25820.9
    19047645121.100.180.540.1037.90.025−0.25221.3
    19047746121.480.180.560.1039.10.022−0.25221.4
    19047848122.240.190.540.1035.20.016−0.22823.0
    19047949122.820.200.600.1238.70.018−0.24721.7
    19048050123.480.190.530.1038.40.021−0.24621.7
    19048151124.140.200.600.1239.60.022−0.23822.3
    19048252124.800.180.510.1038.20.022−0.23522.5
    19048354126.120.170.510.1036.00.024−0.20524.6
    19048455126.550.180.510.1036.00.020−0.23122.8
    19048556126.910.190.520.1137.80.023−0.24122.1
    19048657127.260.200.520.1240.70.022−0.21923.6
    19048758127.620.190.540.1136.40.028−0.22223.4
    19048860128.330.180.530.1036.20.022−0.23822.3
    19048961128.760.190.520.1138.20.019−0.21723.7
    19049062129.190.190.580.1036.40.028−0.23922.2
    19049163129.610.190.540.1037.40.022−0.24921.6
    19049264130.040.200.580.1138.00.029−0.23722.4
    19049366130.880.200.580.1139.10.027−0.24022.2
    19049467131.310.190.500.1138.30.024−0.21224.1
    19049568131.670.200.570.1240.40.024−0.22923.0
    下载: 导出CSV
  • [1] Lau K M, Kim M K, Kim K M. Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau [J]. Climate Dynamics, 2006, 26(7-8): 855-864. doi: 10.1007/s00382-006-0114-z
    [2] Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China [J]. Earth and Planetary Science Letters, 2005, 233(1-2): 71-86. doi: 10.1016/j.jpgl.2005.01.036
    [3] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate [J]. Science, 2005, 308(5723): 854-857. doi: 10.1126/science.1106296
    [4] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 2001, 294(5550): 2345-2348. doi: 10.1126/science.1064618
    [5] Yancheva G, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon [J]. Nature, 2007, 445(7123): 74-77. doi: 10.1038/nature05431
    [6] 李明坤. 南海西北部36 kyr BP以来的古气候环境演变与驱动机制[D]. 中国科学院大学(中国科学院广州地球化学研究所)博士学位论文, 2018.

    LI Mingkun. Paleocliamte and paleoenvironment evolutions in the Northwestern South China Sea over the past 36 kyr BP and the forcing mechanisms[D]. Doctor Dissertation of University of Chinese Academy of Sciences (Guangzhou Institute of geochemistry, Chinese Academy of Sciences), 2018.
    [7] Liu J B, Chen J H, Zhang X J, et al. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records [J]. Earth-Science Reviews, 2015, 148: 194-208. doi: 10.1016/j.earscirev.2015.06.004
    [8] 许慎栋, 陈文煌, 邓文峰, 等. 南海北部沉积物中浮游有孔虫Globigerinoides ruber壳体氧同位素指示的冬季表层海水温度[J]. 海洋地质与第四纪地质, 2016, 36(2):101-107. [XU Shendong, CHEN Wenhuang, DENG Wenfeng, et al. Winter surface seawater temperature in the northern South China Sea induced from temperature index of shell oxygen isotope of Globigerinoides ruber [J]. Marine Geology & Quaternary Geology, 2016, 36(2): 101-107.
    [9] Lin D C, Chen M T, Yamamoto M, et al. Millennial-scale alkenone sea surface temperature changes in the northern South China Sea during the past 45, 000 years (MD972146) [J]. Quaternary International, 2014, 333: 207-215. doi: 10.1016/j.quaint.2014.03.062
    [10] Yamamoto M, Sai H, Chen M T, et al. The East Asian winter monsoon variability in response to precession during the past 150 000 yr [J]. Climate of the Past, 2013, 9(6): 2777-2788. doi: 10.5194/cp-9-2777-2013
    [11] Li D W, Zhao M X, Tian J, et al. Comparison and implication of TEX86 and U-37K' temperature records over the last 356 kyr of ODP Site 1147 from the northern South China Sea [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 376: 213-223.
    [12] Shintani T, Yamamoto M, Chen M T. Paleoenvironmental changes in the northern South China Sea over the past 28, 000 years: A study of TEX86-derived sea surface temperatures and terrestrial biomarkers [J]. Journal of Asian Earth Sciences, 2011, 40(6): 1221-1229. doi: 10.1016/j.jseaes.2010.09.013
    [13] Huang E Q, Tian J, Steinke S. Millennial-scale dynamics of the winter cold tongue in the southern South China Sea over the past 26 ka and the East Asian winter monsoon [J]. Quaternary Research, 2011, 75(1): 196-204. doi: 10.1016/j.yqres.2010.08.014
    [14] Li L, Wang H, Li J R, et al. Changes in sea surface temperature in western South China Sea over the past 450 ka [J]. Chinese Science Bulletin, 2009, 54(18): 3335-3343. doi: 10.1007/s11434-009-0083-9
    [15] Shintani T, Yamamoto M, Chen M T. Slow warming of the northern South China Sea during the last deglaciation [J]. Terrestrial Atmospheric and Oceanic Sciences, 2008, 19(4): 341-346. doi: 10.3319/TAO.2008.19.4.341(IMAGES)
    [16] Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the south China Sea [J]. Marine Geology, 1999, 156(1-4): 245-284. doi: 10.1016/S0025-3227(98)00182-0
    [17] Pelejero C, Grimalt J O, Heilig S, et al. High-resolution UK37 temperature reconstructions in the South China Sea over the past 220 kyr [J]. Paleoceanography and Paleoclimatology, 1999, 14(2): 224-231.
    [18] Huang C Y, Liew P M, Zhao M X, et al. Deep sea and lake records of the Southeast Asian paleomonsoons for the last 25 thousand years [J]. Earth and Planetary Science Letters, 1997, 146(1-2): 59-72. doi: 10.1016/S0012-821X(96)00203-8
    [19] 王小华, 陈荣华, 赵庆英, 等. 2009—2010年南海北部浮游有孔虫通量和稳定同位素季节变化及其对东亚季风的响应[J]. 海洋地质与第四纪地质, 2014, 34(1):103-115. [WANG Xiaohua, CHEN Ronghua, ZHAO Qingying, et al. The influence of East Asian Monsoon on seasonal variations in planktonic foraminiferal flux and stable isotope in the northern South China Sea during 2009-2010 [J]. Marine Geology & Quaternary Geology, 2014, 34(1): 103-115.
    [20] Liu Q Y, Jiang X, Xie S P, et al. A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: Seasonal development and interannual variability [J]. Journal of Geophysical Research: Oceans, 2004, 109(C7): C07012.
    [21] Koutavas A, Lynch-Stieglitz J, Marchitto T M Jr, et al. El Nino-like pattern in ice age tropical Pacific sea surface temperature [J]. Science, 2002, 297(5579): 226-230. doi: 10.1126/science.1072376
    [22] Wang P X, Wang L J, Bian Y H, et al. Late quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles [J]. Marine Geology, 1995, 127(1-4): 145-165. doi: 10.1016/0025-3227(95)00008-M
    [23] Wang L J, Wang P X. Late quaternary paleoceanography of the South China Sea: glacial-interglacial contrasts in an enclosed basin [J]. Paleoceanography and Paleoclimatology, 1990, 5(1): 77-90.
    [24] Wei G J, Li X H, Nie B F, et al. High resolution Porites Mg/Ca thermometer for the north of the South China Sea [J]. Chinese Science Bulletin, 1999, 44(3): 273-276. doi: 10.1007/BF02896292
    [25] Lin D C, Chen M T, Yamamoto M, et al. Hydrographic variability in the northern South China Sea over the past 45, 000 years: New insights based on temperature reconstructions by Uk’37 and TEXH86 proxies from a marine sediment core (MD972146) [J]. Quaternary International, 2017, 459: 1-16. doi: 10.1016/j.quaint.2017.09.029
    [26] Jia G D, Zhang J, Chen J F, et al. Archaeal tetraether lipids record subsurface water temperature in the South China Sea [J]. Organic Geochemistry, 2012, 50: 68-77. doi: 10.1016/j.orggeochem.2012.07.002
    [27] Steinke S, Kienast M, Groeneveld J, et al. Proxy dependence of the temporal pattern of deglacial warming in the tropical South China Sea: toward resolving seasonality [J]. Quaternary Science Reviews, 2008, 27(7-8): 688-700. doi: 10.1016/j.quascirev.2007.12.003
    [28] Schouten S, Hopmans E C, Schefuß E, et al. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? [J]. Earth and Planetary Science Letters, 2002, 204(1-2): 265-274. doi: 10.1016/S0012-821X(02)00979-2
    [29] Uda I, Sugai A, Itoh Y H, et al. Variation in molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature [J]. Lipids, 2001, 36(1): 103-105. doi: 10.1007/s11745-001-0914-2
    [30] Gliozzi A, Paoli G, De Rosa M, et al. Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaebacteria [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1983, 735(2): 234-242. doi: 10.1016/0005-2736(83)90298-5
    [31] Wuchter C, Schouten S, Coolen M J L, et al. Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry [J]. Paleoceanography and Paleoclimatology, 2004, 19(4): PA4028.
    [32] Kim J H, Van Der Meer J, Schouten S, et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions [J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4639-4654. doi: 10.1016/j.gca.2010.05.027
    [33] Pelejero C, Grimalt J O. The correlation between the U37k index and sea surface temperatures in the warm boundary: The South China Sea [J]. Geochimica et Cosmochimica Acta, 1997, 61(22): 4789-4797. doi: 10.1016/S0016-7037(97)00280-9
    [34] Wei Y L, Wang J X, Liu J, et al. Spatial variations in archaeal lipids of surface water and core-top sediments in the south china sea and their implications for paleoclimate studies [J]. Applied and Environmental Microbiology, 2011, 77(21): 7479-7489. doi: 10.1128/AEM.00580-11
    [35] Zhang J, Bai Y, Xu S D, et al. Alkenone and tetraether lipids reflect different seasonal seawater temperatures in the coastal northern South China Sea [J]. Organic Geochemistry, 2013, 58: 115-120. doi: 10.1016/j.orggeochem.2013.02.012
    [36] Hopmans E C, Weijers J W H, Schefuß E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids [J]. Earth and Planetary Science Letters, 2004, 224(1-2): 107-116. doi: 10.1016/j.jpgl.2004.05.012
    [37] Zhang Y G, Zhang C L, Liu X L, et al. Methane Index: A tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates [J]. Earth and Planetary Science Letters, 2011, 307(3-4): 525-534. doi: 10.1016/j.jpgl.2011.05.031
    [38] Damsté J S S, Ossebaar J, Schouten S, et al. Distribution of tetraether lipids in the 25-ka sedimentary record of Lake Challa: extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake [J]. Quaternary Science Reviews, 2012, 50: 43-54. doi: 10.1016/j.quascirev.2012.07.001
    [39] Weijers J W H, Lim K L H, Aquilina A, et al. Biogeochemical controls on glycerol dialkyl glycerol tetraether lipid distributions in sediments characterized by diffusive methane flux [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(10): Q10010. doi: 10.1029/2011GC003724
    [40] Blaga C I, Reichart G J, Heiri O, et al. Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north-south transect [J]. Journal of Paleolimnology, 2009, 41(3): 523-540.
    [41] Yeh Y C, Sibuet J C, Hsu S K, et al. Tectonic evolution of the Northeastern South China Sea from seismic interpretation [J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B6): B0610. doi: 10.1029/2009JB006354
    [42] Huguet C, Hopmans E C, Febo-Ayala W, et al. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids [J]. Organic Geochemistry, 2006, 37(9): 1036-1041. doi: 10.1016/j.orggeochem.2006.05.008
    [43] Hopmans E C, Schouten S, Damsté J S S. The effect of improved chromatography on GDGT-based palaeoproxies [J]. Organic Geochemistry, 2016, 93: 1-6. doi: 10.1016/j.orggeochem.2015.12.006
    [44] Müller P J, Kirst G, Ruhland G, et al. Calibration of the alkenone paleotemperature index U37K′ based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S) [J]. Geochimica et Cosmochimica Acta, 1998, 62(10): 1757-1772.
    [45] Prahl F G, Muehlhausen L A, Zahnle D L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions [J]. Geochimica et Cosmochimica Acta, 1988, 52(9): 2303-2310. doi: 10.1016/0016-7037(88)90132-9
    [46] Rasmussen S O, Seierstad I K, Andersen K K, et al. Synchronization of the NGRIP, GRIP, and GISP2 ice cores across MIS 2 and palaeoclimatic implications [J]. Quaternary Science Reviews, 2008, 27(1-2): 18-28. doi: 10.1016/j.quascirev.2007.01.016
    [47] Isono D, Yamamoto M, Irino T, et al. The 1500-year climate oscillation in the midlatitude North Pacific during the Holocene [J]. Geology, 2009, 37(7): 591-594. doi: 10.1130/G25667A.1
    [48] Zhao M X, Huang C Y, Wang C C, et al. A millennial-scale U37K′ sea-surface temperature record from the South China Sea (8°N) over the last 150 kyr: Monsoon and sea-level influence [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 236(1-2): 39-55. doi: 10.1016/j.palaeo.2005.11.033
    [49] Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP [J]. Radiocarbon, 2013, 55(4): 1869-1887. doi: 10.2458/azu_js_rc.55.16947
    [50] Wuchter C, Schouten S, Wakeham S G, et al. Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter: Implications for TEX86 paleothermometry [J]. Paleoceanography and Paleoclimatology, 2005, 20(3): PA3013.
    [51] Massana R, Murray A E, Preston C M, et al. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel [J]. Applied and Environmental Microbiology, 1997, 63(1): 50-56. doi: 10.1128/AEM.63.1.50-56.1997
    [52] Zhang C Y, Hu C M, Shang S L, et al. Bridging between SeaWiFS and MODIS for continuity of chlorophyll-a concentration assessments off Southeastern China [J]. Remote Sensing of Environment, 2006, 102(3-4): 250-263. doi: 10.1016/j.rse.2006.02.015
    [53] Yamamoto M, Shimamoto A, Fukuhara T, et al. Glycerol dialkyl glycerol tetraethers and TEX86 index in sinking particles in the western North Pacific [J]. Organic Geochemistry, 2012, 53: 52-62.
    [54] Fallet U, Ullgren J E, Castañeda I S, et al. Contrasting variability in foraminiferal and organic paleotemperature proxies in sedimenting particles of the Mozambique Channel (SW Indian Ocean) [J]. Geochimica et Cosmochimica Acta, 2011, 75(20): 5834-5848. doi: 10.1016/j.gca.2011.08.009
    [55] Wuchter C, Schouten S, Wakeham S G, et al. Archaeal tetraether membrane lipid fluxes in the northeastern Pacific and the Arabian Sea: Implications for TEX86 paleothermometry [J]. Paleoceanography and Paleoclimatology, 2006, 21(4): PA4208.
    [56] Zhang Y G, Liu X Q. Export depth of the TEX86 signal [J]. Paleoceanography and Paleoclimatology, 2018, 33(7): 666-671. doi: 10.1029/2018PA003337
    [57] Schouten S, Hopmans E C, Damsté J S S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review [J]. Organic Geochemistry, 2013, 54: 19-61. doi: 10.1016/j.orggeochem.2012.09.006
    [58] Thompson P R. Planktonic foraminifera in the Western North Pacific during the past 150 000 years: Comparison of modern and fossil assemblages [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1981, 35: 241-279. doi: 10.1016/0031-0182(81)90099-7
    [59] Kienast M, Steinke S, Stattegger K, et al. Synchronous tropical South China Sea SST change and Greenland warming during deglaciation [J]. Science, 2001, 291(5511): 2132-2134. doi: 10.1126/science.1057131
    [60] Bard E, Rostek F, Sonzogni C. Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry [J]. Nature, 1997, 385(6618): 707-710. doi: 10.1038/385707a0
    [61] Bond G C, Lotti R. Iceberg discharges into the north atlantic on millennial time scales during the last glaciation [J]. Science, 1995, 267(5200): 1005-1010.
    [62] Bond G C, Heinrich H, Broecker W, et al. Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period [J]. Nature, 1992, 360(6401): 245-249. doi: 10.1038/360245a0
    [63] Zhang R, Delworth T L. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation [J]. Journal of Climate, 2005, 18(12): 1853-1860. doi: 10.1175/JCLI3460.1
    [64] Claussen M, Ganopolski A, Brovkin V, et al. Simulated global-scale response of the climate system to Dansgaard/Oeschger and Heinrich events [J]. Climate Dynamics, 2003, 21(5-6): 361-370. doi: 10.1007/s00382-003-0336-2
    [65] Leuschner D C, Sirocko F. The low-latitude monsoon climate during Dansgaard-Oeschger cycles and Heinrich Events [J]. Quaternary Science Reviews, 2000, 19(1-5): 243-254.
    [66] Schulz H, Von Rad U, Erlenkeuser H, et al. Correlation between Arabian Sea and Greenland climate oscillations of the past 110, 000 years [J]. Nature, 1998, 393(6680): 54-57. doi: 10.1038/31750
    [67] Berger A, Loutre M F. Insolation values for the climate of the last 10 million years [J]. Quaternary Science Reviews, 1991, 10(4): 297-317. doi: 10.1016/0277-3791(91)90033-Q
  • [1] 周小康, 卫哲, 傅恒, 吴婷婷, 梁杰, 曾驿, 李颖薇.  南海北部珠江口盆地深水区碳酸盐岩发育特征及地震识别 . 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2018.06.014
    [2] 尉建功, 杨胜雄, 梁金强, 陆敬安, 刘胜旋, 张伟.  海洋钻探对甲烷渗漏的影响:以南海北部天然气水合物钻探GMGS2-16站位为例 . 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2018.05.006
    [3] 夏少红, 范朝焰, 孙金龙, 曹敬贺, 赵芳, 万奎元.  南海北部晚新生代岩浆活动的发育特征与构造意义 . 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2017.06.003
    [4] 胡高伟, 李彦龙, 吴能友, 陈强, 刘昌岭, 刘振纹.  神狐海域W18/19站位天然气水合物上覆层不排水抗剪强度预测 . 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2017.05.015
    [5] 许慎栋, 陈文煌, 邓文峰, 贾国东.  南海北部沉积物中浮游有孔虫Globigerinoides ruber壳体氧同位素指示的冬季表层海水温度 . 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2016.02.012
    [6] 刘科, 王建华.  南海北部新构造活动特征及地震区带划分参数分析 . 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2016.02.010
    [7] 刘鸿, 栾锡武, 岳保静, 曾洁.  南海北部磁静区重磁特征及成因 . 海洋地质与第四纪地质, doi: 10.3724/SP.J.1140.2014.04065
    [8] 王小华, 陈荣华, 赵庆英, 陈建芳, 冉莉华, Wiesner M G.  2009-2010年南海北部浮游有孔虫通量和稳定同位素季节变化及其对东亚季风的响应 . 海洋地质与第四纪地质, doi: 10.3724/SP.J.1140.2014.01103
    [9] 程世秀, 李三忠, 索艳慧, 刘鑫, 余珊, 戴黎明, 马云, 赵淑娟, 王霄飞, 安慧婷, 熊莉娟, 薛友辰.  南海北部新生代盆地群构造特征及其成因 . 海洋地质与第四纪地质, doi: 10.3724/SP.J.1140.2012.06079
    [10] 贺娟, 李丽, 王慧, 赵美训.  南海北部晚第四纪颗石藻生产力变化及其影响因素 . 海洋地质与第四纪地质, doi: 10.3724/SP.J.1140.2012.04009
    [11] 戴璐, 翁成郁, 陆钧, 刘元兵.  南海北部表层沉积物的孢粉分布及其传播机制 . 海洋地质与第四纪地质, doi: 10.3724/SP.J.1140.2012.02093
    [12] 杨睿, 张媛, 雷新华, 苏正, 梁金强, 沙志彬.  南海北部天然气水合物赋存带识别与深度预测 . 海洋地质与第四纪地质, doi: 10.3724/SP.J.1140.2011.04141
    [13] 袁圣强, 吴时国, 赵宗举, 徐方建.  南海北部陆坡深水区沉积物输送模式探讨 . 海洋地质与第四纪地质, doi: 10.3724/SP.J.1140.2010.04039
    [14] 沙志彬, 郭依群, 杨木壮, 梁金强, 王力峰.  南海北部陆坡区沉积与天然气水合物成藏关系 . 海洋地质与第四纪地质, doi: 10.3724/SP.J.1140.2009.05089
    [15] 孙运宝, 吴时国, 王志君, 李清平, 王秀娟, 董冬冬, 刘峰.  南海北部白云大型海底滑坡的几何形态与变形特征 . 海洋地质与第四纪地质, doi: 10.3724/SP.J.1140.2008.06069
    [16] 谢露华, 韦刚健.  南海北部滨珊瑚微结构的SEM分析及其对气候记录重建的意义 . 海洋地质与第四纪地质,
    [17] 苗卫良, 邵磊, 庞雄, 雷永昌, 乔培军, 李昂, 吴旻哲.  南海北部渐新世以来的稀土元素地球化学特征及其意义 . 海洋地质与第四纪地质,
    [18] 黄元辉, 黄玥, 蒋辉.  南海北部15 kaBP以来表层海水温度变化:来自海洋硅藻的记录 . 海洋地质与第四纪地质,
    [19] 吴国瑄, 王汝建, 郝沪军, 邵磊.  南海北部海相中生界发育的微体化石证据 . 海洋地质与第四纪地质,
    [20] 宋少华, 周卫健, 彭子成, 刘卫国, 程鹏, 鲜锋.  海南岛滨珊瑚δ18O对环境条件的响应 . 海洋地质与第四纪地质,
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  3
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-11
  • 修回日期:  2020-03-31
  • 网络出版日期:  2020-05-18

南海北部31 ka以来GDGTs组成及其对古温度和季风变化的响应

doi: 10.16562/j.cnki.0256-1492.2020021101
    作者简介:

    刘磊(1993—),男,硕士研究生,主要研究方向为海洋地质,E-mail:sc170130@mail.ustc.edu.cn

    通讯作者: 管红香(1981—),女,副研究员,主要研究方向为冷泉碳酸盐岩的地质地球化学特征,E-mail:guanhx@ms.giec.ac.cn
基金项目:  国家自然科学基金项目“南海北部陆坡不同矿物组分冷泉碳酸盐岩”(91958105);青岛海洋科学与技术国家实验室开放基金“冷泉区双壳和管状蠕虫环境中自生碳酸盐岩的有机地球化学对比研究”(QNLM2016ORP0210);广州市科技计划项目“南海北部神狐钻探区自生黄铁矿形成机制及其指示意义” (201804010372)
  • 中图分类号: P736.4

摘要: 南海因受到高纬度气候、低纬度大洋以及东亚季风等多种因素的影响而成为研究古温度和季风变化的理想区域。本文通过研究QH-CL11柱状沉积物的GDGTs组成、含量变化特征及其延伸的86个碳原子的四醚指标(TEXH86),分析南海北部GDGTs来源,并定量计算QH-CL11柱状沉积物记录的海洋表面温度(SST),从而探讨31 ka以来南海北部古温度变化的驱动机制。通过甲烷指数和支链/异戊二烯类指标等,确定isoGDGTs主要来自于奇古菌,适用于古温度重建。TEXH86温度显示出明显的冰期—间冰期旋回,与南海北部有孔虫和UK’37 SSTs具有很好的相似性。出现在TEXH86 SST中的海因里希冷事件(H1-3)和Bølling–Allerød暖期之前的温度大幅度上升事件(14.6 ka)反映了高纬度气候对南海的影响。南海SSTs和北太平洋MD01-2421 UK’37 SST的差异(ΔSSTs)可以用来反映东亚冬季风强度的变化。ΔSSTs显示东亚冬季风强度在Bølling–Allerød暖期前增加,在新仙女木时期达到最大值,在全新世早期再次下降,然后在全新世中晚期缓慢增加,这与前人对东亚冬季风强度的认识具有很好的一致性。该方法对重建长周期东亚冬季风强度具有重要的指导意义。

English Abstract

  • 东亚季风在热带西太平洋和亚洲气候变化中占主导地位,其季节性变化主要受到低纬度日晒量和海陆温差变化的控制[1-5]。东亚季风由东亚夏季风和东亚冬季风组成。东亚夏季风可以将大量的降雨和水分输送到东南亚地区,其过去的强度变化可以用石笋氧同位素等来重建[2-4]。然而,寒冷干燥的东亚冬季风在水文循环中没有显示出类似的特征,其历史变化主要来自特定的沉积物性质,例如中国黄土的磁学性质、湖光岩湖的沉积钛含量等[5-6]。从现有的东亚季风强度记录来看,东亚夏季风和东亚冬季风强度变化呈负相关[2-3,5]。热带辐合带的迁移活动与这种负相关性存在密切的联系,因为其向北迁移会导致东亚夏季风增强和东亚冬季风减弱,反之亦然[5]。然而全新世以来,高精度的东亚冬季风强度记录较为匮乏;石笋氧同位素记录的东亚夏季风强度存在很多争议[7]。因此,对于东亚季风的认识仍需要进一步加强。

    作为一个半封闭的边缘海盆地,南海真实地记录了东亚季风对气候的影响,能反映过去东亚季风强度变化[8-15]。季节性变化的东亚季风控制了南海过去的海洋表面温度(SST),加剧了冰期—间冰期的温度差异[16-18]。间冰期,占主导地位的东亚夏季风给南海带来了更多的降雨和热量,导致南海的海温升高[13,19]。冰期,东亚冬季风将北太平洋冷水通过巴士海峡运输到南海北部,并显著降低海温[8, 10]。所以,南海异常的冬季降温与东亚冬季风密切相关,从而其SST记录可以反映东亚冬季风强度的变化情况[10,20-21]。研究发现南海北部和苏禄海之间的温差可以反映东亚冬季风强度变化,其温差记录表明东亚冬季风在末次间冰期和全新世早期强度较大[15]。南海南部是西太平洋暖池(WPWP)的一部分,但其冬季海温低于WPWP中心区域[10]。前人利用南海南部和WPWP中部的SST差异重建了150 ka以来的东亚冬季风强度变化,从而证实了东亚季风受低纬度日晒量变化的影响[10]。显然,南海的古气候重建对理解东亚季风的演化具有重要意义。基于浮游有孔虫分布而重建的夏季和冬季SST显示出南海海域较大的季节温差,并指示东亚冬季风在末次冰盛期(LGM)的强度比现在高[22-23]。长链不饱和烯酮指数(UK’37)和浮游有孔虫的Mg/Ca、δ18O指数也广泛应用于南海[8-11, 24-26]。它们重建的SST记录表明,南海北部的冰期变冷幅度大于南海南部[13, 18, 24]。目前的研究普遍认为东亚冬季风和其所带来的北太平洋冷水导致了南海北部明显的冰期—间冰期温度差异[10-11, 23]。然而,不同古温度计重建的SST记录显示了很大的差异[11, 25-26]。由于温度计来源于不同的微生物体,而重建的SST潜在地反映了生物源的季节性和其生存深度的温度[27]。因此,需要应用不同的古温度指标来综合解释南海海温的变化情况和东亚季风演化历程。

    基于异戊二烯甘油二烷基甘油四醚类(isoGDGTs)的TEX86指标是新兴的重建SST的温度计(表1[28]。随着环境温度的升高,海洋奇古菌(Thaumarchaeota)生产的isoGDGTs中的环戊烷环数增多[29-30]。盐度为27‰和35‰的培养实验证实,不同盐度对isoGDGTs组分分异没有影响[31]。这些特性使得TEX86成为一种受欢迎的古温度计。通过对全球海洋更广泛区域isoGDGTs数据的分析,Kim等提出了分别适用于低纬度的TEXH86公式(<15 ℃)和高纬度的TEXL86公式(>15 ℃),极大地扩展了TEX86公式的应用范围和区域适用性(表1[32]。相比于UK’37指标,TEXH86具有更高的温度上限[32-33]。2011年,TEXH86首次应用到南海的SST研究中,其重建的温度与温暖季节的SST相符合,并显示出与Mg/Ca SST相同的冰期—间冰期差异[12]。南海GDGTs分布的系统研究发现,除水深小于100 m的样品外,沉积柱顶部样品的TEXH86温度非常接近年平均SST[34]。但是,也有研究认为TEXH86在南海表示的是次表层温度[11,26]。还有研究发现由于受到东亚冬季风的影响,南海北部内部陆架的TEXH86温度与冬季SST对应较好[35]。对于TEXH86指标的不同解释揭示了该指标的复杂性和争议性。因此,需要更多的研究和新的方法来解释TEXH86在南海的适用性。

    表 1  文中用到的指标的定义式

    Table 1.  Initial definitions of the proxies used in this article.

    指标定义合理范围来源
    $\rm{TE{X_{86}} = \dfrac{{\left( {\left[ {GDGT - 2} \right] + \left[ {GDGT - 3} \right] + \left[ {Crenarchaeol\;regio\;isomer} \right]} \right)}}{{\left( {\left[ {GDGT - 1} \right] + \left[ {GDGT - 2} \right] + \left[ {GDGT - 3} \right] + \left[ {Crenarchaeol\;regio\;isomer} \right]} \right)}}}$[28]
    ${\rm{TEX}}_{{\rm{86}}}^{\rm{H}} = {\rm{log(TE}}{{\rm{X}}_{{\rm{86}}}}{\rm{)}}$>15 ℃[32]
    ${\rm{TEX}}_{{\rm{86}}}^{\rm{L}} = {\rm{log}}\left( {\dfrac{{{\rm{GDGT - 2}}}}{{{\rm{GDGT - 1 + GDGT - 2 + GDGT - 3}}}}} \right)$<15 ℃[32]
    ${\rm{BIT = }}\dfrac{{{\rm{(}}\left[ {{\rm{GDGT - Ia}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - IIa}}} \right]{\rm{ + [GDGT - IIIa])}}}}{{{\rm{(}}\left[ {{\rm{GDGT - Ia}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - IIa}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - IIIa}}} \right]{\rm{ + Crenarchaeol)}}}}$<0.4[36]
    ${\rm{MI = }}\dfrac{{\left[ {{\rm{GDGT - 1}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - 2}}} \right]{\rm{ + [GDGT - 3]}}}}{{\left[ {{\rm{GDGT - 1}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - 2}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - 3}}} \right]{\rm{ + }}\left[ {{\rm{Crenarchaeol}}} \right]{\rm{ + [Crenarchaeol}}\;{\rm{regio}}\;{\rm{isomer]}}}}$<0.3[37]
    ${\rm{{\text{%}} GDGT - 2 = }}\dfrac{{{\rm{GDGT - 2}}}}{{\left[ {{\rm{GDGT - 1}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - 2}}} \right]{\rm{ + }}\left[ {{\rm{GDGT - 3}}} \right]{\rm{ + [Crenarchaeol}}\;{\rm{regio}}\;{\rm{isomer]}}}}$<45[38]
    GDGT-0/ Crenarchaeol<2[39]
    GDGT-0/ Crenarchaeol<0.4[40]

    在本文中,我们根据10个有孔虫14C定年数据,利用TEXH86指标重建了南部北部QH-CL11沉积柱31 ka以来的温度;通过与南海北部3个沉积柱和南海南部1个沉积柱UK’37 SST的详细对比来揭示南海北部TEXH86温度的含义;同时,通过计算16 ka以来南海和北太平洋之间的SST差值揭示了东亚冬季风的变化情况。

    • 南海海盆位于太平洋最西端,通过台湾海峡连接到东海,通过巴士海峡连接到北太平洋,通过民都罗海峡和巴拉巴克海峡连接到苏禄海,通过马六甲海峡连接到印度洋,通过加斯帕尔海峡和卡里马塔海峡连接到爪哇海,这7个海峡将目前的南海包围成了1个半封闭的边缘海(图1[6,41]。南海北部和南部的表面环流和海温差异很大,这主要受到季节性变化的东亚季风的影响[6]。在北半球冬季,来自东海和北太平洋的主要的冷水团由东亚冬季风驱动,分别通过台湾海峡和巴士海峡进入南海北部,并进一步输送到南海西南部,导致南海逆时针的表层环流[13,41]。东亚冬季风及其带来的冷流导致南海南部和北部之间较大的海温差异(约4 ℃)[11]。在北半球夏季,东亚夏季风推动印度洋表层暖流通过巽他大陆架流入南海南部,并造成顺时针表层环流[11]。与此同时,较高的SST(约28 ℃)在南海南部占主导地位[10]。在南海北部,表层水和SST不断受到来自北太平洋的冷水的影响,导致SST比南海南部低[13]

      图  1  南海北部QH-CL11沉积柱及对比站位位置图[11]

      Figure 1.  Location of core QH-CL11 and selected paleoenvironmental settings in the South China Sea (SCS)[11]

      在研究区,现代年平均海温为26.9 ℃,冬季和夏季温度分别为24.3 ℃和29.1 ℃(表2)。QH-CL11柱状沉积物,处于南海西北部,水深约1 902 m,总长度830 cm (17.97 °N、111.33 °E),由海洋6号科学调查船于2017年采集(图1)。QH-CL11主要由黏土—淤泥沉积物组成,局部含有有孔虫淤泥和一些硅藻。样品采集后运送至实验室并在−20 ℃的冰箱中保存直至处理分析。以10 cm间隔取3 cm的样品分析,总计58个样品。

      表 2  研究区年平均及季节变化海温数据

      Table 2.  Annual mean and seasonal SST data in the study area

      冬季温度/
      春季温度/
      夏季温度/
      秋季温度/
      年平均温度/
      24.326.729.127.526.9
        注:所有数据都是在0 m水深观测,数据来源于World Ocean Atlas 2013。
    • 样品用冷冻干燥机进行冷冻干燥并磨成粉末,称取适量样品,分别用二氯甲烷、二氯甲烷/甲醇(1∶1,V/V)和甲醇超声提取3次,以获得总脂类提取物(TLE)。TEL先旋转蒸发后转移至 2 mL的细胞瓶中,再进行硅胶层析柱分离,硅胶层析柱用 100~200目活化后的硅胶填充而成,将TEL转移至硅胶层析柱上部后,分别用正己烷和甲醇试剂洗脱,得到非极性组分和极性组分。极性组分样品用0.45 μm聚四氟乙烯滤膜(PTFE)过滤去除颗粒物质,在N2气下吹干后储存在−20 ℃的冰箱中等待测试。

    • 测试前,样品重新溶解在约300 uL正己烷/异丙醇(98.2∶1.8,V/V)混合溶剂中,并加入C46GTGT作为内标[42]。GDGTs分析仪器采用中国地质大学(武汉)的安捷伦6460 3Q HPLC/MS。分析方法在Hopmans等的基础上加以改进[43]。GDGTs通过两个串联的硅化柱(BEH HILIC columns,2.1×150 mm,1.7 μm)分离,柱温保持在30 ℃。检测GDGTs 化合物条件为:正己烷(A)和异丙醇∶正己烷(1∶9,V/V;B)作为流动相, 洗脱梯度为0~25 min, 18%B;25~50 min,B的比例从18%线性增至35%;50~80 min,B的比例从35%线性增至100%,之后以100% B冲洗色谱柱20 min,最后B的比例回到18%,流速为0.2 mL·min−1,产生的最大回流压力为230 bar。单离子检测(single ion monitoring,SIM)模式进行扫描,并通过各峰面积比值确定各化合物相对含量。扫描质核比(m/z)为1 302,1 300,1 298,1 296,1 292,1 050,1 048,1 046,1 036,1 034,1 032,1 022,1 020,1 018。仪器的分析误差为± 0.008。离子大气压化学电离(APCI)和质谱(MS)条件为:雾化气压60 psi;雾化温度400 ℃;干燥气N2 流速为6 L·min−1,温度为200 ℃;毛细管温度3 500 ℃;电晕电流5 μA(约3 200 V)。

      南海北部QH-CL11的数据适用TEXH86经验公式来计算SST(表1[30]。该公式适合低纬度(>15 ℃)地区SST重建[29-30]

      $ {\rm{SST = 68}}{\rm{.4 \times }}\left( {{\rm{TEX}}_{{\rm{86}}}^{\rm{H}}} \right){\rm{ + 38}}{\rm{.6}} $

      (1)

      式中,SST单位为℃,TEXH86指标的定义式及使用范围详见表1。对应于仪器分析误差,公式(1)的校正误差为± 0.4 ℃。

      同时,为了衡量陆源GDGTs输入和甲烷渗漏等情况对TEXH86指标的影响,计算了甲烷指数(MI)、支链/异戊二烯指标(BIT)等(表1[36-40]

    • 为了获得有孔虫定年数据,等间隔的在沉积柱QH-CL11挑选了10个含有有孔虫的样品(表3)。对样品的预处理如下:将样品放置在500 mL烧杯中, 用去离子水浸泡24 h使其分散;用100目(孔径0.154 mm)的标准不锈钢筛在流动的自来水水流下冲洗并振荡至壳体无泥沙残留为止;冲洗后的筛上物质用去离子水转存至培养皿并于40 ℃干燥。在尼康™SMZ 1500型体视镜下对壳体进行鉴定、拍照和挑选。挑选的有孔虫种类主要为Globigerinoides ruberG.ruber)和Globigerinoides sacculiferG.sacculifer)两种, 后送往美国的Beta实验室进行测试。

      表 3  南海北部QH-CL11沉积柱有孔虫AMS14C年龄

      Table 3.  14C-AMS ages from core QH-CL11 in the northern South China Sea(SCS)

      实验室编号深度/(cmbsf a有孔虫种类14C测定年龄/aBP校正后年龄/aBP
      5263672~5G.ruber + G.sacculifer200 ±300~71
      52475562~65G.ruber + G.sacculifer3 450 ±303 174~3 426
      526368182~185G.ruber + G.sacculifer8 710 ±3092 43~9 469
      524758242~245G.ruber + G.sacculifer11 100 ±3012 530~12 710
      524759302~305G.ruber + G.sacculifer12 650±3013 950~14 305
      524760362~365G.ruber + G.sacculifer13 410±3015 745~15 306
      526370482~485G.ruber + G.sacculifer18 890±6022 132~22 523
      526371542~545G.ruber + G.sacculifer22 500±7026 045~26 543
      526372602~605G.ruber + G.sacculifer24 820±9028 160~28 715
      524765672~675G.ruber + G.sacculifer28 080±12031 160~31 649
        注:a 海底以下以厘米为单位的深度。
    • 为了深入理解南海古温度变化过程,收集了南海北部17940、17954和MD97-2146沉积柱和南海南部MD97-2151沉积柱的古温度数据(表4)。UK’37作为成熟的温度计指标,研究证明其重建的温度反映了南海0~30 m混合层的SST[33, 44-45]。31 ka以来,南海北部17940、17954和MD997-2146共3个沉积柱UK’37数据采用相同的校正公式来重建SST,其温度存在差异,但差异不大(图2);它们都是有孔虫定年,年代模型也是线性拟合和外推法建立的,理论上是可以对比的。因此,使用MATLAB对南海北部UK’37数据进行插值处理,得到其平均后的数据UK’37 north SST(图2)。平均方法是用MATLAB进行统一标准的线性加密、平均,不会改变原始数据的可靠性。单个沉积柱重建的UK’37 SST一定程度上受到当地水文和沿岸流的影响,使得温度信息变的更区域化,而平均后的UK’37 SST可以降低当地水文和洋流的干扰。同时,因为东亚季风是南海影响SST的主控因素,所以南海北部平均后的UK’37 north SST能更好的反映东亚季风的影响程度。

      图  2  南海北部17940、17954和MD997-2146沉积柱UK’37数据及MATLAB拟合的平均UK’37 north温度[9, 17]

      Figure 2.  UK'37 data of core 17940, 17954 and MD997-2146 in northern south China sea(SCS)and averaged UK'37 north temperatures fitted by MATLAB[9, 17]

      表 4  文中收集的古温度和古环境数据来源与信息

      Table 4.  Sources of paleotemperature and paleoenvironment data collected in the paper

      名称纬度(°N)经度(°E)数据类型来源
      GISP2冰心72.970−38.800δ18O [‰ SMOW][46]
      董哥洞25.283108.083δ18O [‰ VPDB][2]
      湖光岩湖 21.250110.472Ti [counts·s−1][5]
      MD01-242136.033141.783UK’37[47]
      1794020.117117.383UK’37[17]
      MD97-214620.117117.385UK’37/TEXH86[9, 12, 25]
      1795414.797111.525UK’37[17]
      MD97-21518.728109.869UK’37[48]
    • QH-CL11沉积柱的年龄模型由浮游有孔虫的10个14C AMS年龄确定(表3)。传统的有孔虫AMS14C年代用MARINE13进行2σ校正,然后转换为现在的日历年(BP,相对于公元1950年)[49]。区域碳库校正年龄(Δ±R)为18±37 (http://calib.qub.ac.uk/marine/)。年代模型采用线性拟合和外推法建立。根据10个有孔虫定年数据,建立了QH-CL11的年代模型(图3)。QH-CL11沉积柱31 ka以来的平均沉积速率为约21 cm/ka。

      图  3  QH-CL11柱状沉积物年代模型

      Figure 3.  Age model of the sediment core QH-CL11

    • QH-CL11柱状沉积物中的GDGTs化合物主要为isoGDGTs和支链GDGTs(brGDGTs)。isoGDGTs占总GDGTs含量的98%~99%。在isoGDGTs中,Crenarchaeol含量最高,占总isoGDGTs的45%~51%,其次是GDGT-0占总isoGDGTs的17%~28%,而GDGTs-1,-2,-3以及Crenarchaeol regio isomer(Crenarchaeol异构体)的含量都低于10%(图4)。brGDGTs的相对含量较低,占总GDGTs的1%~2%。 正常海洋环境中绝大多数isoGDGTs来自于海洋奇古菌,但同时也有少量的isoGDGTs来源于河流输入以及产甲烷古菌等。QH-CL11站位样品中BIT平均值为0.021(0.013~0.030),远小于0.4,这说明陆源输入的isoGDGTs很少[36],对TEXH86指标应用的影响可忽略不计。同时,为评价广古菌如产甲烷古菌等对isoGDGTs的贡献,计算了GDGT-0/Crenarchaeol、GDGT-2/Crenarchaeol比值、MI指数和%GDGT-2指标(表2表5)。本研究中,GDGT-0/Crenarchaeol比值为0.33~0.60;GDGT-2/Crenarchaeol比值范围是0.08~0.14;MI值为0.16~0.21;%GDGT-2值为35~41,说明非奇古菌源isoGDGTs的影响基本可以忽略,isoGDGTs主要来自于海洋奇古菌[37-40]。因此,本文中TEXH86指标用于古温度重建是合理的。

      图  4  QH-CL11中检测到的GDGTs的相对含量。Crenarchaeol' 表示Crenarchaeol异构体

      Figure 4.  The Changes of GDGTs contents with depth in core QH-CL11. Crenarchaeol' represents Crenarchaeol regio isomer

      表 5  南海北部QH-CL11柱状沉积物中各指标及TEXH86 SST数据

      Table 5.  The indices used to evaluate the application of TEX86 and TEXH86 SST in core QH-CL11

      编号深度/
      cmbsf
      年龄/
      ka
      甲烷指数MIGDGT-0/
      Crenarchaeol
      GDGT-2/
      Crenarchaeol
      %GDGT-2BITTEXH86TEXH86 SST/
      19043810.010.210.440.1439.80.026−0.18026.3
      190439110.440.190.400.1238.20.019−0.18426.0
      190440210.990.190.370.1237.80.018−0.19225.5
      190441311.530.190.390.1338.40.024−0.17426.7
      190442412.080.200.370.1340.50.017−0.17526.6
      190443613.160.190.390.1340.80.023−0.17826.5
      190444713.830.200.400.1339.80.029−0.17226.9
      190445814.540.190.370.1239.70.021−0.17826.5
      190446915.250.190.350.1338.90.028−0.17426.7
      1904471015.960.200.390.1439.90.029−0.17526.6
      1904481217.380.210.390.1440.80.021−0.17626.6
      1904491317.780.180.340.1239.40.019−0.16527.3
      1904501418.080.190.330.1341.30.017−0.15727.8
      1904511518.390.190.350.1339.90.016−0.17026.9
      1904521618.690.190.360.1341.00.014−0.17126.9
      1904531819.290.180.360.1240.20.017−0.17426.7
      1904541919.760.190.370.1340.20.018−0.18026.3
      19045520110.310.190.360.1340.80.016−0.17526.6
      19045621110.850.190.380.1340.30.016−0.17826.4
      19045722111.400.200.410.1340.70.016−0.18426.0
      19045824112.480.200.500.1241.40.019−0.20924.3
      19045925112.800.170.410.1038.70.016−0.21623.8
      19046026113.050.190.430.1240.50.021−0.20624.5
      19046127113.300.190.420.1138.70.017−0.20924.3
      19046228113.560.200.450.1239.50.015−0.21623.8
      19046330114.060.180.480.1139.90.014−0.21424.0
      19046431114.300.210.580.1339.90.013−0.23422.6
      19046532114.540.190.540.1139.40.015−0.23422.6
      19046633114.770.190.580.1039.00.014−0.25621.1
      19046734115.000.190.600.1139.80.023−0.24322.0
      19046836115.470.190.590.1039.30.021−0.25721.0
      19046937116.090.190.570.1037.70.025−0.25421.2
      19047038116.850.180.550.1037.60.030−0.26720.3
      19047139117.600.180.570.1036.90.027−0.25920.9
      19047240118.360.170.530.0936.40.022−0.25221.4
      19047342119.860.190.540.1140.30.023−0.23122.8
      19047443120.340.200.540.1139.10.023−0.24322.0
      19047544120.720.160.490.0836.90.023−0.25820.9
      19047645121.100.180.540.1037.90.025−0.25221.3
      19047746121.480.180.560.1039.10.022−0.25221.4
      19047848122.240.190.540.1035.20.016−0.22823.0
      19047949122.820.200.600.1238.70.018−0.24721.7
      19048050123.480.190.530.1038.40.021−0.24621.7
      19048151124.140.200.600.1239.60.022−0.23822.3
      19048252124.800.180.510.1038.20.022−0.23522.5
      19048354126.120.170.510.1036.00.024−0.20524.6
      19048455126.550.180.510.1036.00.020−0.23122.8
      19048556126.910.190.520.1137.80.023−0.24122.1
      19048657127.260.200.520.1240.70.022−0.21923.6
      19048758127.620.190.540.1136.40.028−0.22223.4
      19048860128.330.180.530.1036.20.022−0.23822.3
      19048961128.760.190.520.1138.20.019−0.21723.7
      19049062129.190.190.580.1036.40.028−0.23922.2
      19049163129.610.190.540.1037.40.022−0.24921.6
      19049264130.040.200.580.1138.00.029−0.23722.4
      19049366130.880.200.580.1139.10.027−0.24022.2
      19049467131.310.190.500.1138.30.024−0.21224.1
      19049568131.670.200.570.1240.40.024−0.22923.0
    • 31 ka以来,QH-CL11站位的TEXH86值为−0.27~−0.16,对应温度的变化为20.3~27.8 ℃(表5)。沉积柱表层TEXH86温度为26.3 ℃,与研究区年平均温度(26.9 ℃)较接近(表2)。31 ka以来,TEXH86温度在末次冰期为20.3~24.6 ℃,在全新世为25.5~27.8 ℃,显示出明显的冰期—间冰期旋回(图5b)。在深海氧同位素周期MIS 3阶段(约31~24 ka),TEXH86温度基本保持在22.8 ℃(±1 ℃)。TEXH86温度在LGM阶段约为22.3 ℃,比全新世低3~5 ℃,约16.8 ka时降至20.3 ℃,然而约14.6 ka时突然升高到24.0 ℃。14.6~12.5 ka期间,TEXH86温度处于稳定的状态(24.0 ℃),之后逐渐升高到26.6 ℃(10.3 ka)并基本保持不变(图5b)。

      图  5  (a)南海北部UK’37 north SST和(b)QH-CL11 TEXH86温度,以及(c)UK’37 north SST与QH-CL11 TEXH86温度之间的差值 (夏季、冬季及年平均SST来自19740站位的有孔虫数据[16]

      Figure 5.  (a)The averaged UK’37 north SSTs in the northern SCS and(b)TEXH86 temperatures in core QH-CL11, and(c)Temperature differences between the UK’37 north SSTs and TEXH86 temperatures (The summer, winter and mean annual SSTs are from core 19740[16]

    • 31 ka以来,南海北部17940、17954和MD997-2146沉积柱UK’37数据表现出很好的一致性(图2),所以假定UK’37 north 温度可以粗略地作为整个南海北部和沉积柱QH-CL11的年平均SST。在过去的31 ka,UK’37north SST在末次冰期为23.4~24.9 ℃,在全新世为25.1~27.2 ℃,表现出冰期—间冰期旋回的特征(图5a)。UK’37 north SST在31~16 ka时略有波动,平均维持在23.8 ℃。UK’37 north SST在LGM时,约为23.7 ℃,比全新世低约3 ℃;约13.3 ka时增加到24.9 ℃;约13.3 ka以来略有上升趋势(24.9~27.2 ℃;图5a)。

      QH-CL11沉积柱表层TEXH86温度为26.3 ℃,与研究区年4月和11月SST也较为一致(World Ocean Atlas 2013)。然而,TEXH86温度不太可能反映特定月份的海温,主要原因如下:研究证明水体中GDGTs浓度会随季节变化而变化,且往往在浮游植物生产力较低时表现为富集状态[50-51]。而在研究区域,卫星观测到恒定的叶绿素浓度,只在冬季相对略高[52]。这表明GDGTs的浓度也相对较为稳定,不会随季节出现较大波动[12]。除此之外,有研究证实海洋奇古菌在不同季节生产的GDGTs会在沉淀的过程中混合,使得其TEXH86温度最终反映的是年平均温度[53-55]。比如,西北太平洋的深海沉积物中,没有观察到奇古菌丰度的季节性变化,并且下沉沉积物颗粒中的TEXH86与年平均SST[53]具有很好的响应关系。印度洋和阿拉伯海的GDGTs研究也发现了类似的现象[54-55]。而在南海,研究发现,除了水深小于100 m的样品,由南海沉积柱顶部样品得出的TEXH86温度与年平均SST相符合[34]。因此,南海北部的TEXH86温度应该反映的是年平均海水温度,而非特定月份的温度。但是,不同的时间尺度和不同的区域位置,TEXH86温度所代表的海水层位也大不相同[26,34]。在南海,大多数研究认为TEXH86温度反映的是年平均海洋次表层海水的温度(30~125 m),并给出了相关的校正公式[26]。但是,南海地质背景复杂,不同区域的上升流、沿岸流和洋流的影响各不相同,可能会使得不同层位的海水混合。这样的地质系统给TEX86指标的正确理解带来了困难。全球尺度来看,Zhang等对全球30°N和30°S之间的TEX86数据进行了收集和分析,发现TEX86与海洋表面温度的相关度最高[56]。因此,在热带海洋,TEX86可以作为海洋表面温度的校正指标[56-57]。本文倾向于把TEX86温度理解成海洋表面温度,主要有以下几点原因:QH-CL11沉积柱顶部TEXH86温度(26.3 ℃)与研究区年平均SST较为接近(26.9 ℃)。基于区域Imbrie-Kipp转换函数法的浮游有孔虫数据,南海北部19740站位粗略地重建了夏季和冬季SST(图5[16,58]。在图5b中,QH-CL11的TEXH86 温度在全新世期间与有孔虫年平均SST相一致;在末次冰期,TEXH86 温度处于冬季和夏季SST之间[16]。而31 ka以来,UK’37 north SST一直与19740站位的有孔虫年平均SST相一致(图5a)。在深海氧同位素阶段MIS1期间,UK’37 north SST与QH-CL11 TEXH86温度的温差都落在±1.5区间,相差较小(图5c)。而TEXH86和UK’37指标的校正误差范围约为1.5 ℃[45,57]。因此,在MIS1阶段,TEXH86 温度与UK’37 north SST较为一致(图5c)。而在MIS2阶段,UK’37 north SST与QH-CL11的TEXH86温度的温差大多数都落在±1.5区间外(图5c)。类似的规律在沉积柱MD97-2151的TEXH86和UK’37数据中也有发现[8,47]。在MIS3期间,UK’37 north SST与QH-CL11的TEXH86温度的温差大多落在±1.5区间,但波动较大。而造成TEXH86和UK’37温度有所差异的原因可能是古菌和浮游植物对水温、生存环境的变化有不同的响应特征,进而导致相应的指标对古温度变化有不同的敏感性[44,57]。同时,不同站位的水文、洋流和沿岸流等因素也会影响到古温度记录。为了进一步验证TEXH86指标作为SST指标的可行性,把本文的TEXH86数据和UK’37 north SST进行了投图(图6a),得到的相关系数为0.74,与南海北部ODP1147站位的TEXH86数据和UK’37 SST投图的相关系数(0.73)接近[11]。而MD97-2146的TEXH86和UK’37 SST数据投图,得到的相关系数为0.79[9,12,25]。MD97-2146与QH-CL11沉积柱都处于南海北部,采用有孔虫定年和线性拟合、外推法建立年代模型,因此,它们的古温度数据具有可对比性。于是,将QH-CL11和MD97-2146的TEXH86数据按照同等精度(以QH-CL11的精度为标准)进行了线性差分和平均,平均值与 UK’37 north SST拟合的相关系数为0.87(图6b)。目前,UK’37被广泛地用来重建SST[44-45]。如果TEXH86数据反映的也是年平均SST,那么TEXH86数据和UK’37 SST之间的相关性将非常高。但单个沉积柱的TEXH86数据和UK’37 SST拟合的相关系数不是十分高,推测可能是因为古菌和浮游植物对沿岸流和洋流等干扰的响应有差异[44,57]。而几个沉积柱平均后的数据进行拟合,其相关度大大增加,说明平均化过程弱化了TEXH86和UK’37指标对某些环境因素如沿岸流的响应差异。因此,TEXH86指标在南海有作为海洋表面温度计的潜力。在本文中,把QH-CL11 TEXH86温度理解成海洋表面温度。

      图  6  (a)沉积柱QH-CL11的TEXH86数据和UK’37 north SST投图;(b)QH-CL11和 MD97-2146平均后的TEXH86数据(AVETEXH86)和UK’37 north SST投图[9, 12, 25]

      Figure 6.  (a)X–Y plots of UK’37 north SSTs versus TEXH86 temperatures in QH-CL11; (b)X–Y plots of UK’37 north SSTs versus TEXH86 temperatures averaged from QH-CL11 and MD97-2146(AVETEXH86[9, 12,25]

    • QH-CL11 TEXH86 SST在全新世基本保持恒定,约为26.5 ℃;在末次冰期的平均温度约为22.5 ℃。而研究区,夏季和冬季SST分别为29.1 ℃和 24.3 ℃(表2)。QH-CL11 TEXH86 SST在冰期—间冰期振荡幅度(约4 ℃)相对略小于高纬度SST变化幅度和南海的季节差异(约5 ℃)[46],表明热带海洋的表层环流系统可能比高纬度区域更持久和稳定[9,12]。根据年龄模型,TEXH86 SST在14.6 ka时发生了一次温度的急剧上升(约2 ℃),与GISP2冰心δ18O记录的Bølling–Allerød暖期之前的温度上升同步(图7c7d)。南海南部的UK’37 SST和δ18O记录中也发现了类似的现象[59]。这一发现不仅支持热带和高纬度地区气候变化的同步性[59-60],还表明TEXH86指标可以捕捉到快速的气候变化事件[12]。末次冰期以来,高纬度地区的海因里希事件(H)经常出现在低纬度海洋的SST记录中,体现了高—低纬度气候变化的一致性[61-62]。本文TEXH86 SST很好的记录了海因里希事件H1-H3,与GISP2冰心δ18O记录相一致(图7c7d)。在H1和H3时,沉积速率和BIT相对稳定,表明陆源输入没有显著波动,TEXH86指标能准确记录冷事件(图7a7b)。在H3时,TEXH86 SST相对较低,BIT处于正常变化范围,但沉积速率突然增加(图7a7d),这时的古温度可能记录了高纬度气候的影响以及当地水文的特点。由于精度的限制,TEXH86 SST没能够捕捉到新仙女木事件(YD;图7d)。而对全球海洋相互作用的模拟实验表明,在北半球高纬度地区,像H和YD这样广泛的气候事件是大西洋经向翻转环流变化的产物[9,63-64]。高纬度地区重新分配海洋热量和温度,然后通过环流运送到低纬度地区[5,20, 65-66]。QH-CL11 TEXH86 SST与GISP2 δ18O记录相似的气候模式和同步的气候事件显示了末次冰期以来,高纬度和低纬度气候是相互作用和相互影响的。高纬度和低纬度之间的密切联系也广泛地记录在南海的UK’37 SST中。这些记录与QH-CL11 TEXH86 SST相当,表明TEXH86是南海气候重建的有力工具[12]

      图  7  (a)QH-CL11的沉积速率,(b)QH-CL11的支链/异戊二烯指标BIT,(c)GISP2冰心δ18O记录[46],(d)QH-CL11 TEXH86 SST

      Figure 7.  (a)Sedimentation rates of core QH-CL11; (b)The branched and isoprenoid tetraether(BIT)index values of core QH-CL11; (c)δ18O records of GISP2 ice core [46]; (d)TEXH86 SSTs in QH-CL11

    • 南海北部的古气候系统主要受东亚冬季风及其带来的冷流的控制[5,10,14,47-48]。东亚冬季风和北太平洋冷水通过巴士海峡进入南海,进而影响南海北部的表层环流和SST[13]。在南海北部,沉积柱QH-CL11和MD97-2146会接收到东亚冬季风及其携带的北太平洋冷流的信息[9, 12]。而在东亚冬季风路径上,位于北太平洋的沉积柱MD01-2421能够接收到更多东亚冬季风的影响和信息[47]。因此,南海北部的SST与北太平洋MD01-2421的SST的差值可以用来反映东亚冬季风强度的变化,而且其差值越大,表明东亚冬季风强度越高[10-12,47]。基于这样的原理,计算了16 ka以来南海SST和MD01-2421 UK’37 SST的差值(图8)。其中,QH-CL11 TEXH86 SST与MD01-2421 UK’37 SST的差值(图8c)、UK’37 north SST与MD01-2421 UK’37 SST的差值(图8d)以及MD97-2151 UK’37 SST与MD01-2421 UK’37 SST的差值(ΔSSTs)具有很好的一致性(图8e)。ΔSSTs记录都显示东亚冬季风强度在16~15 ka(Bølling–Allerød暖期之前)增加,15~14 ka轻微降低,14~12 ka达到最大值(新仙女木时期),随后在12~8 ka降低,8 ka至今一直在缓慢增加。值得注意的是,QH-CL11与MD01-2421的ΔSST在16~15 ka的变化不是很明显。考虑到TEXH86 SST在约18~15 ka时存在冷异常事件,推测其在16~15 ka时未能准确捕捉东亚冬季风强度的变化。本文ΔSSTs记录的东亚冬季风强度变化与前人研究较为吻合[5,13,15]。南海北部与苏禄海的温差数据表明末次冰期以来,东亚冬季风一直处于强度较高的状态,尤其是YD时期[13,15]。湖光岩湖的沉积Ti含量指示东亚冬季风强度在Bølling–Allerød暖期之前、YD时期以及中晚全新世都有所加强(图8b[5]。除此之外,南海与MD01-2421的ΔSST记录证实了东亚夏季风与东亚冬季风的负相关关系(图8a8c)。长周期的东亚冬季风强度记录证实低纬度日晒量是控制东亚季风变化的内在因素[5,67];而东亚季风季节性变化的负相关关系与热带辐合带的迁移密切相关[5]。董哥洞δ18O记录的东亚夏季风强度与本文的ΔSST记录都显示在YD时期,低纬度日晒量与东亚季风变化是不一致的[2]。而导致这种不一致的原因可能是该时期,热带辐合带的向北迁移引起了东亚冬季风加强和东亚夏季风减弱[5]。同时,南海南部MD97-2151 UK’37 SST与QH-CL11 TEXH86 SST的差值显示其变化没有明显规律(图8f)。在北半球夏季时,南海南部的古温度会受到东亚夏季风的影响[11]。所以南海南部和北部的SST差异反映的是东亚冬季风和东亚夏季风两者共同的影响。

      图  8  (a)董哥洞δ18O记录[2],(b)湖光岩湖Ti含量记录[5],(c)QH-CL11 TEXH86 SST与MD01-2421 UK’37 SST的差值[47],(d)UK’37 north SST与MD01-2421 UK’37 SST的差值[9,17,47],(e)MD97-2151 UK’37 SST与MD01-2421 UK’37 SST的差值[47-48],(f)MD97-2151 UK’37 SST与QH-CL11 TEXH86 SST的差值[48]

      Figure 8.  (a)δ18O records from Dongge Cave stalagmites, China [2]; (b)Ti contents from from the sediment sequence of Lake Huguang Maar [5]; (c)The differences between TEXH86 SSTs in QH-CL11 and UK’37 SSTs in MD01-2421[47]; (d)The differences between UK’37 north SSTs and UK’37 SSTs in MD01-2421[9,17,47]; (e)The differences between UK’37 SSTs in MD97-2151 and UK’37 SSTs in MD01-2421[47-48]; (f)The differences between UK’37 SSTs in MD97-2151 and TEXH86 SSTs in QH-CL11[48]

    • (1)通过计算BIT、%GDGT-2和MI等指标,发现海洋奇古菌来源的isoGDGTs在QH-CL11沉积柱占主导地位,该地区适合TEXH86公式的应用。

      (2)TEXH86温度显示出明显的冰期—间冰期旋回。QH-CL11 TEXH86温度与南海北部有孔虫年平均SST和UK’37 SST有很高的相似度,可用来表示年平均SST。

      (3)QH-CL11 TEXH86 SST记录了海因里希事件(H1-3)和Bølling–Allerød暖期之前的温度大幅上升事件,与格陵兰冰心δ18O的记录具有很好的一致性,证实了高—低纬度气候变化的同步性。

      (4)南海北部SST和北太平洋MD01-2421 UK’37 SST的差异可以用来指示东亚冬季风强度的变化,其结果显示东亚冬季风强度在Bølling–Allerød暖期前增加,在新仙女木时期达到最大值,在全新世早期再次下降,然后在全新世中晚期缓慢增加。

      致谢: 感谢中国地质大学(武汉)杨欢老师在GDGTs测试过程中的支持。感谢海洋6号全体船员在航次采样过程中提供的帮助。

参考文献 (67)

目录

    /

    返回文章
    返回