留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太康隆起上古生界稀土元素地球化学特征及其地质意义

曾秋楠 张交东 于炳松 刘旭锋 周新桂

曾秋楠, 张交东, 于炳松, 刘旭锋, 周新桂. 太康隆起上古生界稀土元素地球化学特征及其地质意义[J]. 海洋地质与第四纪地质. doi: 10.16562/j.cnki.0256-1492.2019122301
引用本文: 曾秋楠, 张交东, 于炳松, 刘旭锋, 周新桂. 太康隆起上古生界稀土元素地球化学特征及其地质意义[J]. 海洋地质与第四纪地质. doi: 10.16562/j.cnki.0256-1492.2019122301
ZENG Qiunan, ZHANG Jiaodong, YU Bingsong, LIU Xufeng, ZHOU Xingui. Geochemical characteristics of Upper Paleozoic mudstone in southern North China Basin and their geological significances[J]. Marine Geology & Quaternary Geology. doi: 10.16562/j.cnki.0256-1492.2019122301
Citation: ZENG Qiunan, ZHANG Jiaodong, YU Bingsong, LIU Xufeng, ZHOU Xingui. Geochemical characteristics of Upper Paleozoic mudstone in southern North China Basin and their geological significances[J]. Marine Geology & Quaternary Geology. doi: 10.16562/j.cnki.0256-1492.2019122301

太康隆起上古生界稀土元素地球化学特征及其地质意义


doi: 10.16562/j.cnki.0256-1492.2019122301
详细信息
    作者简介:

    曾秋楠(1988—),女,工程师,主要从事石油地质学研究,E-mail:zqn1001@foxmail.com

  • 基金项目:  国家重大科技专项“大型油气田和煤层气开发”下属课题4任务6“南华北地区海陆交互相页岩气勘查评价应用试验”(2016ZX05034004-006);地质调查项目“南华北盆地上古生界油气地质调查”(DD20190095)
  • 中图分类号: P736.4

Geochemical characteristics of Upper Paleozoic mudstone in southern North China Basin and their geological significances

More Information
  • 摘要: 南华北盆地晚古生代海陆交互相暗色泥岩较为发育,是该区主要烃源岩层系之一。本文采用电感耦合等离子体质谱仪和X射线荧光光谱(XRF)对太康隆起西部地区上古生界本溪组、太原组、山西组和下石盒子组28件暗色泥岩、粉砂质泥岩样品进行了稀土元素和微量元素测试,基于稀土元素的稳定性和其对沉积水体变化的高敏感度,结合泥岩有机碳含量及宏观沉积特征,探讨太原组、山西组古沉积环境及其对有机质富集的影响。分析结果表明,太康隆起地区太原组和山西组稀土元素总量高,轻、重稀土元素分异程度相近,明显高于本溪组和下石盒子组,同时山西组具有较弱的Ce负异常和较强的Eu负异常。Ce异常表明本溪组至下石盒子组整体形成于缺氧的还原环境。ΣREE和TOC在垂向上的变化表明古气候条件经历了由干冷向温湿的转变,沉积速率先降低再增大,太原期沉积水体深,沉降速率低,环境稳定,对有机质的富集和保存有着重要的地质意义。
  • 图  1  研究区位置及早二叠世岩相古地理图 (据曾秋楠,2019[9]修改)

    a. 太康隆起区域构造;b. 太康隆起山西组沉积相;c. 尉参1井上古生界岩性及采样位置。

    Figure  1.  Palaeogeographic map and location map of Early Permian of the study area

    图  2  南华北盆地太康隆起上古生界泥岩球粒陨石标准化稀土元素分配模式

    a. 下石盒子组,b. 山西组,c. 太原组,d. 本溪组。

    Figure  2.  Chondrite-normalized REE patterns of mudstone samples in Upper Paleozoic, Taikang Uplift, southern North China Basin

    图  3  南华北盆地太康隆起上古生界泥岩北美页岩标准化稀土元素分配模式

    a. 下石盒子组,b. 山西组,c. 太原组,d. 本溪组。

    Figure  3.  NASC-normalized REE patterns of Upper Paleozoic mudstone samples, Taikang Uplift, southern North China Basin

    图  4  研究区泥岩δCeN-δEuN、δCeN-∑REE、δCeN-(La/Sm)N相关性图解

    Figure  4.  Diagrams of δCeN-δEuN, δCeN-∑REE and δCeN-(La/Sm)N for Upper Paleozoic mudstone samples of the study area

    图  5  太康隆起尉参1井稀土元素质量分数及地球化学参数垂向分布图

    Figure  5.  Vertical distribution of REE contents and geochemical parameters of Well Weican-1 in Taikang Uplift

    图  6  太康隆起上古生界泥岩源岩构造背景判别

    a. 泥岩球粒陨石标准化稀土元素分布曲线与典型构造背景砂岩的对比,b. (La/Yb)N-ΣREE判别图 (底图据Bhatia,1985),c. 泥岩δEuP-(Gd/Yb)P散点图 (底图据McLennan等,1993[20]);d. 泥岩Ni-Cr散点图 (底图据Taylor等,1986[21])。

    Figure  6.  Tectonic settings of the mudstone samples in Upper Paleozoic, Taikang Uplift

    a. comparison of chondrite normalized REE patterns of mudstone with various tectonic settings,b.(La/Yb)N-ΣREE diagram (base map after Bhatia, 1985),c. Scattered diagram of δEup-(Gd/Yb)p of the mudstones samples (base map after McLennan et al. 1993),d. Scattered diagram of Ni-Cr of the sampled mudstones (base map after Taylor et al. 1986)

    图  7  研究区泥岩TOC-∑REE相关性图解

    Figure  7.  Diagrams of TOC-∑REE for mudstone samples of the study area

    表  1  太康隆起上古生界泥岩稀土元素质量分数表

    Table  1.   REE content of the Upper Paleozoic samples on Taikang Uplift

    层位样品
    编号
    LaCePrNdSmEuGdTbDyHoErTmYbLuY∑REELREEHREEL/HTOC
    下石盒子组X-147.410612.851.57.821.25.40.8224.560.9743.150.5993.990.55924.6271.374226.7220.05411.310.12
    X-210.223.93.1112.52.841.092.760.5973.80.7462.260.4342.810.42819.787.17553.6413.8353.88
    X-354.41041247.18.931.927.521.186.131.233.490.634.090.60635.4288.626228.3524.8769.180.61
    X-475.714717.468.811.51.858.161.26.231.2740.7414.780.6936.8386.121322.2527.07111.900.55
    X-527.161.57.5827.83.420.4723.060.5613.680.8482.840.5763.780.54820.9164.665127.87215.8938.050.13
    X-653.198.311.340.66.361.175.440.945.441.133.40.6384.130.59631263.544210.8321.7149.710.14
    山西组S-192.317719.977.415.13.4810.81.649.151.895.611.026.510.9450.1472.84385.1837.5610.261.22
    S-286.116119.173.114.42.6510.21.457.361.494.40.7674.620.69144.3431.628356.3530.97811.500.11
    S-387.416319.1655.410.4295.150.7384.140.9623.270.6334.030.55523.6383.417340.33919.47817.47
    S-449.891.510.839.46.130.955.430.9796.091.343.990.77750.70733.9256.793198.5824.3138.170.13
    S-511320124.197.916.22.4111.91.899.812.176.531.137.311.0865561.43454.6141.8210.87
    S-670.31341554.87.950.966.240.9835.091.063.260.5863.770.5328.6333.129283.0121.51913.150.26
    S-748.782.79.940.7111.616.370.9314.931.022.90.5083.330.49127.3242.39194.6120.489.50
    S-868.91301554.181.236.210.9535.291.143.710.6484.350.61631.9332.047277.2322.91712.10
    S-935.763.67.5933.510.51.525.840.8944.450.8552.310.4222.760.39423193.335152.4117.9258.50
    S-1054.810412458.11.456.861.095.91.193.560.6083.950.58232.8281.89225.3523.749.491.04
    S-1174.51441765.511.82.0110.51.759.211.755.010.8445.390.77348.6398.637314.8135.2278.941.84
    S-1293.518721.884.415.32.4411.41.759.491.935.811.026.340.90450.6493.684404.4438.64410.471.46
    S-1381.81651972.612.92.1410.81.769.271.855.510.9666.230.91351.3442.039353.4437.2999.481.94
    太原组T-169.21381660.811.41.668.691.47.731.524.450.774.790.68140.1367.191297.0630.0319.89
    T-273.214316.56311.41.919.841.68.771.684.770.8035.150.72145.2387.544309.0133.3349.272.37
    T-379.915117.464.811.21.679.471.558.351.644.820.8265.230.74646.3404.902325.9732.6329.99
    T-459.111713.5528.861.867.521.155.621.042.930.4763.020.42829.5304.004252.3222.18411.372.18
    T-566.112113.450.28.671.87.281.186.511.273.750.6514.20.62337.5324.134261.1725.46410.261.57
    T-664.311713.449.28.081.516.91.15.971.163.390.5933.880.54434.1311.127253.4923.53710.770.97
    本溪组B-16.8181.978.52.690.6783.380.9396.851.44.060.77250.7237.399.05938.63823.1211.670.13
    B-215.31228.9239.77.950.8014.710.8715.881.314.320.7865.250.76931.3249.867194.67123.8968.150.32
    B-340.496.38.6369.171.976.381.086.241.253.650.7044.930.72631.8249.2192.4424.967.710.52
    北美页岩32.0073.007.9033.005.701.245.200.655.801.043.400.503.100.4827.00173.21152.8420.377.50
    球粒陨石0.310.810.120.600.200.070.260.050.320.070.210.320.210.031.963.582.111.481.43
    PAAS38.279.68.8333.095.551.084.660.7744.680.9912.850.4052.820.433
      注:表中 稀土元素的数据单位为10−6,TOC的单位为%,LREE表示轻稀土元素含量(La-Eu),HREE表示重稀土元素含量(Gd-Lu),∑REE=LREE+HREE+Y元素含量,L/H=LREE/HREE。
    下载: 导出CSV

    表  2  太康隆起上古生界不同层段泥岩稀土元素质量分数

    Table  2.   Comparison of REE contents in mudstone from different formations on Taikang Uplift

    层位∑REE∑LREE∑HREE
    范围均值范围均值范围均值
    下石盒子组87.18~386.12243.5853.64~322.25194.9413.84~27.0720.57
    山西组193.34~561.43371.02152.41~454.61303.117.93~41.8228.61
    太原组304.00~404.90439.82252.32~325.97283.1722.18~33.3327.86
    本溪组99.06~249.87199.3838.64~194.67141.9223.12~24.9623.99
    下载: 导出CSV

    表  3  太康隆起上古生界泥岩稀土元素地球化学参数

    Table  3.   REE geochemical parameters of samples from Upper Paleozoic, Taikang Uplift

    层位样品
    编号
    La/
    Ce
    La/
    Yb
    La/
    Sm
    Gd/
    Yb
    Sm/
    Nd
    (La/
    Sm)N
    (La/
    Yb)N
    (Ce/
    Yb)N
    (La/
    Lu)N
    (Gd/
    Yb)N
    (La/
    Yb)S
    δCeSδEuSδCeNδEuNδCeanom
    下石盒子组X-10.4511.886.061.350.153.918.056.898.211.091.150.940.811.020.600.00
    X-20.433.633.590.980.232.322.462.212.310.790.350.921.711.011.270.01
    X-30.5213.306.091.840.193.939.016.598.691.491.290.891.030.970.76−0.05
    X-40.5115.846.581.710.174.2510.737.9710.621.381.530.880.840.960.62−0.04
    X-50.447.177.920.810.125.114.864.224.790.650.690.930.641.020.480.01
    X-60.5412.868.351.320.165.398.716.178.621.061.250.870.870.960.65−0.05
    山西组S-10.5214.186.111.660.203.949.607.059.501.341.370.901.200.980.89−0.04
    S-20.5318.645.982.210.203.8612.629.0312.061.781.810.860.960.950.71−0.06
    S-30.5421.6916.161.280.0810.4214.6910.4915.241.032.100.870.360.950.26−0.05
    S-40.549.968.121.090.165.246.754.746.820.880.960.860.720.940.54−0.06
    S-50.5615.466.981.630.174.5010.477.1310.131.311.500.840.760.920.57−0.08
    S-60.5218.658.841.660.155.7112.639.2212.841.341.810.900.600.980.44−0.04
    S-70.5914.624.431.910.272.869.916.449.601.551.420.820.840.900.63−0.10
    S-80.5315.848.611.430.155.5610.737.7510.821.151.530.880.770.960.57−0.05
    S-90.5612.933.402.120.312.198.765.978.771.711.250.840.850.920.63−0.08
    S-100.5313.876.771.740.184.369.406.839.111.401.340.880.850.970.63−0.05
    S-110.5213.826.311.950.184.079.366.939.331.571.340.880.790.960.59−0.04
    S-120.5014.756.111.800.183.949.997.6510.011.451.430.900.810.990.60−0.03
    S-130.5013.136.341.730.184.098.896.878.671.401.270.910.801.000.59−0.03
    太原组T-10.5014.456.071.810.193.929.797.479.831.471.400.900.730.990.54−0.03
    T-20.5114.216.421.910.184.149.637.209.831.541.380.900.790.980.59−0.04
    T-30.5315.287.131.810.174.6010.357.4910.361.461.480.880.710.960.53−0.05
    T-40.5119.576.672.490.174.3013.2610.0413.362.011.900.901.000.990.74−0.03
    T-50.5515.747.621.730.174.9210.667.4710.271.401.520.890.990.970.74−0.06
    T-60.5516.577.961.780.165.1311.237.8211.441.441.610.870.890.950.66−0.06
    本溪组B-10.381.362.530.680.321.630.920.930.910.550.131.070.991.170.730.06
    B-20.132.911.920.900.201.241.976.021.930.720.282.270.572.490.430.44
    B-30.428.194.411.290.252.845.555.065.391.050.791.131.131.230.840.05
      注:表中数据单位为10−6;N表示采用球粒陨石标准化(据Boynton, 1984),S表示采用北美页岩标准化(据Haskin等,1968),P表示采用PAAS标准化(据McLenenan, 1989);δCe=CeN/(LaN×PrN1/2;δEu=EuN/(SmN×GdN1/2;δCeanom=lg[3CeN/(2LaN+ωNdN)]。
    下载: 导出CSV
  • [1] 陈新军, 胡宗全, 李淑筠. 华北南部地区上古生界晚期生烃潜力研究[J]. 天然气地球科学, 2011, 22(4):610-617. [CHEN Xinjun, HU Zongquan, LI Shuyun. Later hydrocarbon generation potential of upper Paleozoic source rock in southern North China [J]. Natural Gas Geoscience, 2011, 22(4): 610-617.
    [2] Rimmer S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, central Appalachian Basin (USA) [J]. Chemical Geology, 2004, 206(3-4): 373-391. doi: 10.1016/j.chemgeo.2003.12.029
    [3] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update [J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012
    [4] 龚晓峰, 何家雄, 吴从康, 等. 中国非常规天然气资源的基本地质地球化学特征及特点[J]. 海洋地质与第四纪地质, 2014, 34(5):95-105. [GONG Xiaofeng, HE Jiaxiong, WU Congkang, et al. Basic geological and geochemical background of unconventional gas resources in China [J]. Marine Geology & Quaternary Geology, 2014, 34(5): 95-105.
    [5] 郑德顺, 刘思聪, 徐江红, 等. 豫西南淅川地区灯影组白云岩地球化学特征及其古环境意义[J]. 海洋地质与第四纪地质, 2018, 38(4):112-122. [ZHENG Deshun, LIU Sicong, XU Jianghong, et al. Geochemistry of the dolomite from Dengying Formation in Xichuan, southwest Henan Province: Implications for paleoenvironment [J]. Marine Geology & Quaternary Geology, 2018, 38(4): 112-122.
    [6] 赵重远, 刘池洋. 华北克拉通沉积盆地形成与演化及其油气赋存[M]. 西安: 西北大学出版社, 1990: 45-46.

    ZHAO Chongyuan, LIU Chiyang. Formation, Evolution and Hydrocarbon Occurrence of Sedimentary Basins in North China Craton[M]. Xi’an: Northwest University Press, 1990: 45-46.
    [7] 张交东, 曾秋楠, 周新桂, 等. 南华北盆地太康隆起西部新区上古生界天然气成藏条件与钻探发现[J]. 天然气地球科学, 2017, 28(11):1637-1649. [ZHANG Jiaodong, ZENG Qiunan, ZHOU Xingui, et al. Drilling achievements and gas accumulation in the Upper Paleozoic in western new area of Taikang Uplift, southern North China Basin [J]. Natural Gas Geoscience, 2017, 28(11): 1637-1649.
    [8] 徐汉林, 赵宗举, 吕福亮, 等. 南华北地区的构造演化与含油气性[J]. 大地构造与成矿学, 2004, 28(4):450-463. [XU Hanlin, ZHAO Zongju, LV Fuliang, et al. Tectonic evolution of the Nanhuabei Area and analysis about its petroleum potential [J]. Geotectonica et Metallogenia, 2004, 28(4): 450-463. doi: 10.3969/j.issn.1001-1552.2004.04.012
    [9] 曾秋楠, 张交东, 于炳松, 等. 太康隆起上古生界海陆交互相页岩气地质条件分析[J]. 特种油气藏, 2019, 26(3):49-55. [ZENG Qiunan, ZHANG Jiaodong, YU Bingsong, et al. Shale gas geology analysis of the Upper Paleozoic marine-continental interaction facies in Taikang Uplift [J]. Special Oil & Gas Reservoirs, 2019, 26(3): 49-55. doi: 10.3969/j.issn.1006-6535.2019.03.009
    [10] 陈亮, 刘春莲, 庄畅, 等. 三水盆地古近系下部湖相沉积的稀土元素地球化学特征及其古气候意义[J]. 沉积学报, 2009, 27(6):1155-1162. [CHEN Liang, LIU Chunlian, ZHUANG Chang, et al. Rare earth element records of the lower paleogene sediments in the Sanshui Basin and their paleoclimate implications [J]. Acta Sedimentologica Sinica, 2009, 27(6): 1155-1162.
    [11] Boynton W V. Cosmochemistry of the rare earth elements[M]//Henderson P. Rare earth Element Geochemistry. Amsterdam: Elsevier, 1984: 64-114.
    [12] Haskin L A, Haskin M A, Frey F A, et al. Relative and absolute terrestrial abundances of the rare earths[M]//Ahrens L H. Origin and Distribution of the Elements. New York: Pergamon Press, 1968: 889-912.
    [13] McLennan S M. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes [J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.
    [14] Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites [J]. Chemical Geology, 2001, 175(1-2): 29-48. doi: 10.1016/S0009-2541(00)00362-4
    [15] 王中刚, 于学元, 赵振华. 稀土元素地球化学[M]. 北京: 科学出版社, 1989: 272-273.

    WANG Zhonggang, YU Xueyuan, ZHAO Zhenhua. Rare Earth Element Geochemistry[M]. Beijing: Science Press, 1989: 272-273.
    [16] Elderfield H, Sholkovitz E R. Rare earth elements in the pore waters of reducing nearshore sediments [J]. Earth and Planetary Science Letters, 1987, 82(3-4): 280-288. doi: 10.1016/0012-821X(87)90202-0
    [17] 袁伟, 柳广弟, 罗文斌. 鄂尔多斯盆地延长组长7段沉积速率及其对烃源岩有机质丰度的影响[J]. 西安石油大学学报: 自然科学版, 2016, 31(5):20-26. [YUAN Wei, LIU Guangdi, LUO Wenbin. Deposition rate of the seventh member of yangchang formation, ordos basin and its impact on organic matter abundance of hydrocarbon source rock [J]. Journal of Xi’an Shiyou University: Natural Science, 2016, 31(5): 20-26.
    [18] Taylor S R, McLennan S M. The continental crust: its composition and evolution [J]. Oxford: Blackwell, 1985: 312.
    [19] Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control [J]. Sedimentary Geology, 1985, 45(1-2): 97-113. doi: 10.1016/0037-0738(85)90025-9
    [20] McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[M]//Johnson M J, Basu A. Processes Controlling the Composition of Clastic Sediments. Boulder, Colorado: Geological Society of America, 1993: 21-40, doi: 10.1130/SPE284-p21.
    [21] Taylor S R, Rudnick R L, McLennan S M, et al. Rare earth element patterns in Archean high-grade metasediments and their tectonic significance [J]. Geochimica et Cosmochimica Acta, 1986, 50(10): 2267-2279. doi: 10.1016/0016-7037(86)90081-5
    [22] Condie K C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales [J]. Chemical Geology, 1993, 104(1-4): 1-37. doi: 10.1016/0009-2541(93)90140-E
    [23] 李树霞, 向芳, 张瑶, 等. 鄂尔多斯盆地南缘晚古生代沉积物源及其对秦岭造山带北部演化的指示[J]. 成都理工大学学报: 自然科学版, 2017, 44(5):589-601. [LI Shuxia, XIANG Fang, ZHANG Yao, et al. Provenance analysis of the late Paleozoic sediments in south margin of the Ordos Basin and its indication to evolution of the north of Qinling Orogenic Belt in China [J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2017, 44(5): 589-601.
    [24] 史基安, 郭雪莲, 王琪, 等. 青海湖QH1孔晚全新世沉积物稀土元素地球化学与气候环境关系探讨[J]. 湖泊科学, 2003, 15(1):28-34. [SHI Ji’an, GUO Xuelian, WANG Qi, et al. Geochemistry of REE in QH1 sediments of Qinghai lake since late holocene and its paleoclimatic significance [J]. Journal of Lake Science, 2003, 15(1): 28-34. doi: 10.3321/j.issn:1003-5427.2003.01.004
    [25] 黄麒, 孟昭强. 干寒地区古气候变化特征之研究I. 古气候波动模式的有机地球化学方法[J]. 海洋与湖沼, 1991, 22(6):547-552. [HUANG Qi, MENG Zhaoqiang. Study on features of evolution of Palaeolimate in arid and cold region I. Organic geochemistry method for modelling palaeoclimatic fluctuation [J]. Oceanologia et Limnologia Sinica, 1991, 22(6): 547-552.
  • [1] 孙兴全, 刘升发, 李景瑞, 曹鹏, 张辉, 赵广涛, SomkiatKhokiattiwong, NarumolKornkanitnan, 石学法.  孟加拉湾南部表层沉积物稀土元素组成及其物源指示意义 . 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2019102801
    [2] 李君, 王任, 覃军干, 邱琨祁.  北部湾盆地涠西南凹陷古、新近系古生物记录及古环境意义 . 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2019010901
    [3] 胡思谊, 曾志刚, 殷学博, 朱博文, 方雪, 齐海燕.  冲绳海槽岩心沉积物稀土元素特征及物源指示 . 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2017082301
    [4] 苏妮, 毕磊, 郭玉龙, 杨守业.  木兰溪河口及邻近海域表层沉积物稀土元素组成与物源判别 . 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2018.01.015
    [5] 郭玉龙, 杨守业, 苏妮, 印萍, 王中波.  中国东南入海河流沉积物的稀土元素地球化学特征 . 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2018.01.014
    [6] 邬黛黛, 杨飞, 黄霞, 潘梦迪, 孙甜甜, 刘丽华, 吴能友.  南海东沙海域冷泉渗漏区沉积物稀土元素地球化学特征 . 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2017.05.006
    [7] 任江波, 何高文, 姚会强, 邓希光, 朱克超, 杨胜雄.  磷酸盐化作用对富钴结壳中稀土元素的影响 . 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2017.02.004
    [8] 仇建东, 王双, 刘健, 张勇, 孔祥淮.  山东半岛南部滨浅海区QDZ03孔稀土元素组成与物源判别 . 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2016.06.017
    [9] 郭敏, 徐利强.  巢湖沉积物稀土元素地球化学特征及环境意义 . 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2016.04.016
    [10] 李景瑞, 刘升发, 冯秀丽, 孙兴全, 石学法.  孟加拉湾中部表层沉积物稀土元素特征及其物源指示意义 . 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2016.04.005
    [11] 傅飘儿, 庄畅, 刘坚, 陈道华, 张欣, 陈思海.  南海西沙海槽XH-CL16柱状沉积物稀土元素特征及其物源 . 海洋地质与第四纪地质, doi: 10.16562/j.cnki.0256-1492.2015.04.007
    [12] 陈志华, 黄元辉, 唐正, 王豪壮, 葛淑兰, 方习生, 韩喜彬, 王爱军, 武力, 朱志敏.  南极半岛东北部海域表层沉积物稀土元素特征及物源指示意义 . 海洋地质与第四纪地质, doi: 10.3724/SP.J.1140.2015.03145
    [13] 张晓波, 张勇, 孔祥淮, 李安龙, 刘珊珊, 褚宏宪, 林曼曼.  山东半岛南部近岸海域表层沉积物稀土元素的物源指示 . 海洋地质与第四纪地质, doi: 10.3724/SP.J.1140.2014.03057
    [14] 徐刚, 刘健, 孔祥淮, 张军强, 仇建东.  南黄海西部陆架区表层沉积物稀土元素及其物源分析 . 海洋地质与第四纪地质, doi: 10.3724/SP.J.1140.2012.01011
    [15] 朱爱美, 刘季花, 张辉, 白亚之, 崔菁菁, 刘升发.  东海内陆架泥质区表层沉积物稀土元素的分布特征 . 海洋地质与第四纪地质, doi: 10.3724/SP.J.1140.2012.01001
    [16] 孔凡翠, 杨瑞东, 魏怀瑞, 文雪峰, 韩晓彤, 高军波.  贵州威宁草海第四系窑上组沉积物微量元素地球化学特征及其古环境意义 . 海洋地质与第四纪地质, doi: 10.3724/SP.J.1140.2011.05117
    [17] 严杰, 高建华, 李军, 李家胜, 白凤龙, 程岩.  鸭绿江河口及近岸地区稀土元素的物源指示意义 . 海洋地质与第四纪地质, doi: 10.3724/SP.J.1140.2010.04095
    [18] 赵青芳, 龚建明, 李双林, 贺行良, 付少英.  南海神狐海域表层沉积物稀土元素地球化学 . 海洋地质与第四纪地质, doi: 10.3724/SP.J.1140.2010.01065
    [19] 苗卫良, 邵磊, 庞雄, 雷永昌, 乔培军, 李昂, 吴旻哲.  南海北部渐新世以来的稀土元素地球化学特征及其意义 . 海洋地质与第四纪地质,
    [20] 陈守余, 张海生, 赵鹏大.  中太平洋和中国南海富钴结壳稀土元素地球化学 . 海洋地质与第四纪地质,
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  7
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-23
  • 修回日期:  2020-03-11
  • 网络出版日期:  2020-05-08

太康隆起上古生界稀土元素地球化学特征及其地质意义

doi: 10.16562/j.cnki.0256-1492.2019122301
    作者简介:

    曾秋楠(1988—),女,工程师,主要从事石油地质学研究,E-mail:zqn1001@foxmail.com

基金项目:  国家重大科技专项“大型油气田和煤层气开发”下属课题4任务6“南华北地区海陆交互相页岩气勘查评价应用试验”(2016ZX05034004-006);地质调查项目“南华北盆地上古生界油气地质调查”(DD20190095)
  • 中图分类号: P736.4

摘要: 南华北盆地晚古生代海陆交互相暗色泥岩较为发育,是该区主要烃源岩层系之一。本文采用电感耦合等离子体质谱仪和X射线荧光光谱(XRF)对太康隆起西部地区上古生界本溪组、太原组、山西组和下石盒子组28件暗色泥岩、粉砂质泥岩样品进行了稀土元素和微量元素测试,基于稀土元素的稳定性和其对沉积水体变化的高敏感度,结合泥岩有机碳含量及宏观沉积特征,探讨太原组、山西组古沉积环境及其对有机质富集的影响。分析结果表明,太康隆起地区太原组和山西组稀土元素总量高,轻、重稀土元素分异程度相近,明显高于本溪组和下石盒子组,同时山西组具有较弱的Ce负异常和较强的Eu负异常。Ce异常表明本溪组至下石盒子组整体形成于缺氧的还原环境。ΣREE和TOC在垂向上的变化表明古气候条件经历了由干冷向温湿的转变,沉积速率先降低再增大,太原期沉积水体深,沉降速率低,环境稳定,对有机质的富集和保存有着重要的地质意义。

English Abstract

  • 南华北盆地位于华北板块东南部,是在华北古生代克拉通基础上发育起来的的中、新生代叠合盆地。盆地晚古生代沉积背景与华北古陆一致,海水自东北向西南侵进,石炭—二叠纪发育一套以海陆交互相为主的具陆源碎屑含煤建造特征的内陆盆地沉积[1]。作为我国东部重要的油气远景区之一,南华北盆地石炭—二叠系沉积地层记录完整,煤系地层发育,是该区重要的页岩气生储有利层系。但是,海陆交互相地层砂岩和泥岩频繁交互,垂向上具有较强的非均质性,泥页岩的发育受到沉积相带的控制,泥页岩中有机质的富集和保存也受到沉积环境的古气候、古水深、古盐度和氧化还原特性等多方面的影响。因此,恢复煤系地层的古沉积环境在研究本区有机质富集规律、确定页岩气有利层段等方面有重要意义。

    稀土元素化学性质稳定,在风化剥蚀和沉积成岩过程中不易受变质作用影响,可以被定量地保存下来,因此已被广泛运用于确定沉积源区、研究古气候特征和沉积水体条件等诸多方面[2-5]。本研究对南华北盆地太康隆起上古生界山西组和太原组岩心进行系统取样,通过泥岩样品稀土元素在垂向上的变化特征,探讨本区石炭—二叠系含煤地层沉积过程中的古水体条件、古气候条件及其对有机质富集的影响。

    • 南华北盆地西起豫西隆起,东临郯庐断裂带,北接渤海湾盆地,南至秦岭大别造山带,大地构造上分为豫西隆起区、开封坳陷、太康隆起、周口坳陷、长山隆起、信阳—合肥坳陷、淮北隆起等7 个一级构造单元[6]。太康隆起是南华北盆地的次级构造单元,东为徐蚌隆起,西接豫西隆起,南与周口坳陷相邻,北为开封坳陷,区内发育新近系、古近系、三叠系、二叠系、石炭系、奥陶系、寒武系等地层,经历了嵩阳、五台、晋宁、加里东、海西、印支、燕山、喜马拉雅运动等多次构造运动,其内部构造格局及地层保存等多受东秦岭-大别造山带及郯庐断裂系影响[7]。晚石炭世,华北板块与西伯利亚I板块发生对接碰撞,古地势演化为北高南低,海水由东南方向入侵,在华北地区形成了广阔的陆表海环境,沉积了一套准碳酸盐台地相和三角洲—潟湖潮坪相的暗色砂泥岩、灰岩和煤层,是华北地区主要的成煤期之一[8]。在此背景下,本区形成了连片发育的泥页岩和煤层,具备一定的烃源岩基础。

    • 本次研究所选剖面位于南华北盆地太康隆起西部开封市尉氏县,所有样品采自上古生界参数井尉参1井,具体井位见图1。本文以上古生界煤系地层—山西组和太原组为主要研究对象,另从上下整合接触地层本溪组和下石盒子组中选择性采样,作为垂向连续变化趋势参照对比,自本溪组顶部至下石盒子组共取样28件,其中本溪组3件、太原组6件、山西组13件、下石盒子组6件。样品均为泥岩或粉砂质泥岩,未受风化作用影响,具体采样位置见图2。样品分析由中石化胜利油田研究院石油地质测试中心完成,稀土元素和微量元素(Ni和Cr)采用NexION300D 等离子体质谱仪进行测定,岩石中有机碳分析采用有机碳分析仪(CS-600)依据GB/T 19145—2003测定。分析结果见表1

      图  1  研究区位置及早二叠世岩相古地理图 (据曾秋楠,2019[9]修改)

      Figure 1.  Palaeogeographic map and location map of Early Permian of the study area

      表 1  太康隆起上古生界泥岩稀土元素质量分数表

      Table 1.  REE content of the Upper Paleozoic samples on Taikang Uplift

      层位样品
      编号
      LaCePrNdSmEuGdTbDyHoErTmYbLuY∑REELREEHREEL/HTOC
      下石盒子组X-147.410612.851.57.821.25.40.8224.560.9743.150.5993.990.55924.6271.374226.7220.05411.310.12
      X-210.223.93.1112.52.841.092.760.5973.80.7462.260.4342.810.42819.787.17553.6413.8353.88
      X-354.41041247.18.931.927.521.186.131.233.490.634.090.60635.4288.626228.3524.8769.180.61
      X-475.714717.468.811.51.858.161.26.231.2740.7414.780.6936.8386.121322.2527.07111.900.55
      X-527.161.57.5827.83.420.4723.060.5613.680.8482.840.5763.780.54820.9164.665127.87215.8938.050.13
      X-653.198.311.340.66.361.175.440.945.441.133.40.6384.130.59631263.544210.8321.7149.710.14
      山西组S-192.317719.977.415.13.4810.81.649.151.895.611.026.510.9450.1472.84385.1837.5610.261.22
      S-286.116119.173.114.42.6510.21.457.361.494.40.7674.620.69144.3431.628356.3530.97811.500.11
      S-387.416319.1655.410.4295.150.7384.140.9623.270.6334.030.55523.6383.417340.33919.47817.47
      S-449.891.510.839.46.130.955.430.9796.091.343.990.77750.70733.9256.793198.5824.3138.170.13
      S-511320124.197.916.22.4111.91.899.812.176.531.137.311.0865561.43454.6141.8210.87
      S-670.31341554.87.950.966.240.9835.091.063.260.5863.770.5328.6333.129283.0121.51913.150.26
      S-748.782.79.940.7111.616.370.9314.931.022.90.5083.330.49127.3242.39194.6120.489.50
      S-868.91301554.181.236.210.9535.291.143.710.6484.350.61631.9332.047277.2322.91712.10
      S-935.763.67.5933.510.51.525.840.8944.450.8552.310.4222.760.39423193.335152.4117.9258.50
      S-1054.810412458.11.456.861.095.91.193.560.6083.950.58232.8281.89225.3523.749.491.04
      S-1174.51441765.511.82.0110.51.759.211.755.010.8445.390.77348.6398.637314.8135.2278.941.84
      S-1293.518721.884.415.32.4411.41.759.491.935.811.026.340.90450.6493.684404.4438.64410.471.46
      S-1381.81651972.612.92.1410.81.769.271.855.510.9666.230.91351.3442.039353.4437.2999.481.94
      太原组T-169.21381660.811.41.668.691.47.731.524.450.774.790.68140.1367.191297.0630.0319.89
      T-273.214316.56311.41.919.841.68.771.684.770.8035.150.72145.2387.544309.0133.3349.272.37
      T-379.915117.464.811.21.679.471.558.351.644.820.8265.230.74646.3404.902325.9732.6329.99
      T-459.111713.5528.861.867.521.155.621.042.930.4763.020.42829.5304.004252.3222.18411.372.18
      T-566.112113.450.28.671.87.281.186.511.273.750.6514.20.62337.5324.134261.1725.46410.261.57
      T-664.311713.449.28.081.516.91.15.971.163.390.5933.880.54434.1311.127253.4923.53710.770.97
      本溪组B-16.8181.978.52.690.6783.380.9396.851.44.060.77250.7237.399.05938.63823.1211.670.13
      B-215.31228.9239.77.950.8014.710.8715.881.314.320.7865.250.76931.3249.867194.67123.8968.150.32
      B-340.496.38.6369.171.976.381.086.241.253.650.7044.930.72631.8249.2192.4424.967.710.52
      北美页岩32.0073.007.9033.005.701.245.200.655.801.043.400.503.100.4827.00173.21152.8420.377.50
      球粒陨石0.310.810.120.600.200.070.260.050.320.070.210.320.210.031.963.582.111.481.43
      PAAS38.279.68.8333.095.551.084.660.7744.680.9912.850.4052.820.433
        注:表中 稀土元素的数据单位为10−6,TOC的单位为%,LREE表示轻稀土元素含量(La-Eu),HREE表示重稀土元素含量(Gd-Lu),∑REE=LREE+HREE+Y元素含量,L/H=LREE/HREE。

      图  2  南华北盆地太康隆起上古生界泥岩球粒陨石标准化稀土元素分配模式

      Figure 2.  Chondrite-normalized REE patterns of mudstone samples in Upper Paleozoic, Taikang Uplift, southern North China Basin

    • 测试共检测出La、Ce、Pr、Eu、Y等15种稀土元素(表1)。测试结果表明,本区上古生界本溪组、太原组、山西组和下石盒子组泥岩稀土元素具有不同的地球化学特征。本溪组泥岩稀土总量(∑REE)明显相对较小,为99.06×10−6~249.87×10−6,平均值199.38×10−6;太原组∑REE为304.00×10−6~404.90×10−6,平均值349.82×10−6;山西组∑REE平均值略高于太原组,为371.02×10−6,但波动幅度明显较大,为193.34×10−6~561.43×10−6,最高值与最低值之差达368.09×10−6;下石盒子组∑REE为87.18×10−6~386.12×10−6,平均值243.58×10−6,相较山西组有所下降,但仍明显高于本溪组(表2)。

      表 2  太康隆起上古生界不同层段泥岩稀土元素质量分数

      Table 2.  Comparison of REE contents in mudstone from different formations on Taikang Uplift

      层位∑REE∑LREE∑HREE
      范围均值范围均值范围均值
      下石盒子组87.18~386.12243.5853.64~322.25194.9413.84~27.0720.57
      山西组193.34~561.43371.02152.41~454.61303.117.93~41.8228.61
      太原组304.00~404.90439.82252.32~325.97283.1722.18~33.3327.86
      本溪组99.06~249.87199.3838.64~194.67141.9223.12~24.9623.99

      上古生界泥岩整体表现出明显的REE富集特征,高于大陆上地壳(UCC)(稀土平均含量∑REE为146.4×10−6),也高于北美页岩(173.21×10−6)。垂向上本溪组和太原组之间存在一期REE富集程度加剧事件,太原组和山西组泥岩存在REE超常富集现象(ΣREE分别为UCC标准值的2.12倍和2.27倍),至下石盒子组该趋势波动下降。各稀土元素在垂向上的变化规律与∑REE基本一致,表明沉积过程中具有相同的物源[10]

    • 研究沉积物稀土元素分配模式可以采用球粒陨石标准化[11]、北美页岩(NASC)标准化[12]和澳大利亚后太古宙平均页岩(PAAS)[13]标准化等多个方式。本文采用球粒陨石标准化研究样品相对地球原始物质的分异程度,以此讨论沉积物源区特征;采用北美页岩标准化研究沉积过程中的分异程度。

      轻、重稀土元素比值∑LREE/∑HREE可以在一定程度上反映二者的分异程度。比值越大,轻稀土越富集,重稀土越亏损。研究区本溪组、太原组、山西组和下石盒子组4个层位的∑LREE/∑HREE平均值分别为5.84、10.26、10.76和9.00,具有明显的轻稀土元素富集、重稀土元素亏损的特征。轻稀土元素的变化特征基本决定了稀土总量的变化特征。除本溪组外,太原组、山西组和下石盒子组的∑LREE/∑HREE比值与上地壳的∑LREE/∑HREE比值(9.5)相近,与上地壳稀土元素分异情况相似,表明沉积过程中主要受到陆源碎屑物质的影响。

      (La/Yb)N和(Ce/Yb)N可以反映稀土元素标准化图解中曲线的倾斜程度。经球粒陨石标准化后,研究区本溪组泥岩(La/Yb)N为0.92~5.55,平均值为2.82,(Ce/Yb)N为0.93~6.02,平均值为4.01;太原组泥岩(La/Yb)N为9.63~13.26,平均值为10.82,(Ce/Yb)N为7.20~10.04,平均值为7.91;山西组泥岩(La/Yb)N为6.75~14.69,平均值为10.29,(Ce/Yb)N为4.74~10.49,平均值为7.39;下石盒子组泥岩(La/Yb)N为2.46~10.73,平均值为7.30,(Ce/Yb)N为2.21~7.97,平均值为5.67。4个层位泥岩样品的轻、重稀土元素分异程度均较大,其中太原组和山西组分异程度相近,明显高于本溪组和下石盒子组(表3)。

      表 3  太康隆起上古生界泥岩稀土元素地球化学参数

      Table 3.  REE geochemical parameters of samples from Upper Paleozoic, Taikang Uplift

      层位样品
      编号
      La/
      Ce
      La/
      Yb
      La/
      Sm
      Gd/
      Yb
      Sm/
      Nd
      (La/
      Sm)N
      (La/
      Yb)N
      (Ce/
      Yb)N
      (La/
      Lu)N
      (Gd/
      Yb)N
      (La/
      Yb)S
      δCeSδEuSδCeNδEuNδCeanom
      下石盒子组X-10.4511.886.061.350.153.918.056.898.211.091.150.940.811.020.600.00
      X-20.433.633.590.980.232.322.462.212.310.790.350.921.711.011.270.01
      X-30.5213.306.091.840.193.939.016.598.691.491.290.891.030.970.76−0.05
      X-40.5115.846.581.710.174.2510.737.9710.621.381.530.880.840.960.62−0.04
      X-50.447.177.920.810.125.114.864.224.790.650.690.930.641.020.480.01
      X-60.5412.868.351.320.165.398.716.178.621.061.250.870.870.960.65−0.05
      山西组S-10.5214.186.111.660.203.949.607.059.501.341.370.901.200.980.89−0.04
      S-20.5318.645.982.210.203.8612.629.0312.061.781.810.860.960.950.71−0.06
      S-30.5421.6916.161.280.0810.4214.6910.4915.241.032.100.870.360.950.26−0.05
      S-40.549.968.121.090.165.246.754.746.820.880.960.860.720.940.54−0.06
      S-50.5615.466.981.630.174.5010.477.1310.131.311.500.840.760.920.57−0.08
      S-60.5218.658.841.660.155.7112.639.2212.841.341.810.900.600.980.44−0.04
      S-70.5914.624.431.910.272.869.916.449.601.551.420.820.840.900.63−0.10
      S-80.5315.848.611.430.155.5610.737.7510.821.151.530.880.770.960.57−0.05
      S-90.5612.933.402.120.312.198.765.978.771.711.250.840.850.920.63−0.08
      S-100.5313.876.771.740.184.369.406.839.111.401.340.880.850.970.63−0.05
      S-110.5213.826.311.950.184.079.366.939.331.571.340.880.790.960.59−0.04
      S-120.5014.756.111.800.183.949.997.6510.011.451.430.900.810.990.60−0.03
      S-130.5013.136.341.730.184.098.896.878.671.401.270.910.801.000.59−0.03
      太原组T-10.5014.456.071.810.193.929.797.479.831.471.400.900.730.990.54−0.03
      T-20.5114.216.421.910.184.149.637.209.831.541.380.900.790.980.59−0.04
      T-30.5315.287.131.810.174.6010.357.4910.361.461.480.880.710.960.53−0.05
      T-40.5119.576.672.490.174.3013.2610.0413.362.011.900.901.000.990.74−0.03
      T-50.5515.747.621.730.174.9210.667.4710.271.401.520.890.990.970.74−0.06
      T-60.5516.577.961.780.165.1311.237.8211.441.441.610.870.890.950.66−0.06
      本溪组B-10.381.362.530.680.321.630.920.930.910.550.131.070.991.170.730.06
      B-20.132.911.920.900.201.241.976.021.930.720.282.270.572.490.430.44
      B-30.428.194.411.290.252.845.555.065.391.050.791.131.131.230.840.05
        注:表中数据单位为10−6;N表示采用球粒陨石标准化(据Boynton, 1984),S表示采用北美页岩标准化(据Haskin等,1968),P表示采用PAAS标准化(据McLenenan, 1989);δCe=CeN/(LaN×PrN1/2;δEu=EuN/(SmN×GdN1/2;δCeanom=lg[3CeN/(2LaN+ωNdN)]。

      经球粒陨石标准化后可知,除本溪组泥岩样品表现出明显的Ce正异常以外(δCeN平均值为1.63),太原组、山西组和下石盒子组泥岩样品均表现为极弱的Ce负异常(δCeN平均值分别为0.97、0.95和0.99),相对于球粒陨石分异不明显。4个层位的泥岩样品相对于球粒陨石均表现为明显的Eu负异常(δEuN平均值由下至上分别为0.67、0.63、0.59和0.73)(表3)。

      北美页岩标准化的下石盒子组(La/Yb)S的平均值为1.04,与北美页岩(1.00)基本相近;太原组和山西组的(La/Yb)S的平均值分别为1.55和1.47,明显高于北美页岩,表明轻、重稀土元素分异程度较大,轻稀土元素相对富集;本溪组的(La/Yb)S的平均值为0.40,表明轻稀土元素亏损,重稀土元素相对富集。δCeS由下至上平均值分别为1.49、0.89、0.87和0.91,即太原组、山西组和下石盒子组泥岩样品相对于北美页岩整体呈较弱的Ce负异常,本溪组为较弱的正异常。δEuS由下至上平均值分别为0.90、0.85、0.79和0.98,即本溪组、太原组和山西组泥岩样品相对于北美页岩整体呈较弱的Eu负异常,下石盒子组泥岩样品相对于北美页岩分异不明显(表3)。

    • 由球粒陨石标准化稀土元素配分模式图(图2)可以看出,从太原组到下石盒子组的配分曲线均显示La-Sm段曲线斜率相对较大,Gd-Er段曲线平缓,Eu和Tm呈谷状负异常,表明轻稀土元素富集且分异程度较大,重稀土元素相对亏损,分异程度较低,基本为典型的沉积岩稀土配分特征。

      北美页岩标准化元素配分模式图显示,本溪组样品的REE配分曲线表现为较为平缓的左倾型(图3d),表明本溪组轻稀土元素相对亏损,重稀土元素相对富集,Ce异常变化范围较大,整体表现为较弱的Ce负异常(δCeS:0.14~1.97,平均值0.90),并具有明显的Eu负异常(δEuS:0.21~0.61,平均值0.40)。太原组、山西组和下石盒子组的REE分布特征均表现为平坦的NASC标准化配分模式,其中山西组相比太原组具有较弱的Ce负异常和较强的Eu负异常(图3b3c),下石盒子组,轻稀土元素的富集程度和轻、重稀土元素的分异程度均略低(图3a)。

      图  3  南华北盆地太康隆起上古生界泥岩北美页岩标准化稀土元素分配模式

      Figure 3.  NASC-normalized REE patterns of Upper Paleozoic mudstone samples, Taikang Uplift, southern North China Basin

    • 前人研究表明,成岩作用对泥岩REE存在一定的影响,可能改变Ce的异常值,使δCeN与δEuN呈良好的负相关、δCeN与∑REE呈良好的正相关[14]。研究区4个层位泥岩样品的δCeN、δEuN和∑REE之间不存在明显的相关性(图4),表明成岩作用对样品REE的影响十分有限,δCeN与(La/Sm)N之间较差的相关性也表明样品的Ce异常可以代表原始沉积物的信息,利用稀土元素恢复古沉积环境具有较大的可靠度。

      图  4  研究区泥岩δCeN-δEuN、δCeN-∑REE、δCeN-(La/Sm)N相关性图解

      Figure 4.  Diagrams of δCeN-δEuN, δCeN-∑REE and δCeN-(La/Sm)N for Upper Paleozoic mudstone samples of the study area

    • 沉积物的Ce异常可以反映沉积水体的氧化—还原条件。前文已述δCeS由下至上平均值分别为1.49、0.89、0.87和0.91,即太原组、山西组和下石盒子组泥岩样品相对于北美页岩整体呈较弱的Ce负异常,本溪组为较弱的正异常。一般认为δCeS负异常是海相沉积环境的指标,但在边缘海、浅海及封闭海域中Ce异常一般不明显,不发生亏损,在开阔海域则会发生严重亏损[15]。因此,可以认为研究区泥岩受到一定程度的海水影响,太原期和山西期影响更大,整体为弱还原—弱氧化环境。

      此外,Ce异常指数还可以用δCeanom表示,依据Elderfield H等提出的定义,其计算公式为:

      δCeanom=lg[3ω(Ce)N/(2ω(La)N+ω(Nd)N)]

      当δCeanom<−0.1时,表明Ce亏损,反映沉积水体为氧化环境;当δCeanom>−0.1时,表明Ce富集,反映沉积水体为还原环境[16]

      研究区本溪组δCeanom为0.05~0.44,平均值为0.18;太原组δCeanom为−0.06~−0.03,平均值为−0.04;山西组δCeanom为−0.08~−0.03,平均值为−0.05;下石盒子组δCeanom为−0.05~0.01,平均值为−0.02。4个层位的δCeanom均大于−0.1,表明各段地层氧化还原条件差别不大,整体形成于缺氧的还原环境。其中,太原组沉积时海侵范围扩大,沉积水体变深,沉积环境整体比较稳定,更利于有机质的保存,进而形成富有机质泥岩;山西组含煤地层沉积期发生过多期区域性海侵海退事件,沉积环境相对动荡,沉积物阶段性暴露于地表,受到一定程度的氧化,导致呈δCeanom弱负异常,并且波动范围明显较大。

    • 前人研究表明,REE的分异程度可以反映沉积速率[15]。由于各稀土元素在电价、吸附性等方面的差异,稀土元素会随沉积水体的变化发生分异,主要表现为轻、重稀土元素之间的分异,以及铈元素和铕元素与其他元素之间的分异。这是因为在海(湖)水环境中,黏土等细碎屑质和悬浮物是吸附REE的主要载体,当悬浮物在海水中停留时间较长时,REE有充分的时间被分解,进入海水的REE也有充足的时间被细粒物质或悬浮物吸附,导致REE强烈分异,沉积物的轻、重稀土元素相应地出现富集或亏损,Ce也会随沉积水体的氧化还原条件发生选择性分异。当沉降速率较快时,REE随吸附物快速沉降,与海水发生交换的机会少,其分异程度相应较弱,沉积物的REE页岩标准化分配曲线平缓,Ce分异不明显或呈弱负异常,曲线斜率(可以用(La/Yb)S的值表示)一般在1左右。

      由(La/Yb)S来指示的REE分异程度可以看出,本溪组的沉积速率明显较高,(La/Yb)S平均值为0.40;太原组样品的(La/Yb)S为1.38~1.90,平均值为1.55,反映了太原组的沉积速率显著降低,为低能、缺氧环境,与太原组沉积期海侵面积扩大,沉积水体变深的构造背景相符;山西组沉积速率波动幅度大,整体与太原组相近,(La/Yb)S为0.96~2.10,平均值为1.47;下石盒子组(La/Yb)S为0.35~1.53,平均值为1.04,表明沉积速率随环境变化再次升高。各层段残余有机碳含量(TOC)的差别也证实了这一点。水体中黏土等细碎屑质和悬浮物除了易吸附REE以外,也是吸附有机质的主要载体,因此有机质具有随沉积速率变大而减小的趋势[17]。本溪组沉降速率大,泥岩TOC平均值为0.32(n=3);太原组和山西组泥岩TOC则分别为1.77(n=4)和1.00(n=8),表明沉积速率较低时,有机质能够充分被吸附,并随细粒物质的沉降而保存下来。这一特征在垂向剖面上也很明显,太原组和山西组泥岩样品的TOC高值与(La/Yb)S低值有良好的对应关系(图5)。

      图  5  太康隆起尉参1井稀土元素质量分数及地球化学参数垂向分布图

      Figure 5.  Vertical distribution of REE contents and geochemical parameters of Well Weican-1 in Taikang Uplift

    • 稀土元素由于其自身稳定的化学性质,后期风化作用、沉积分选、成岩作用和蚀变作用对沉积物中稀土元素的组成影响较弱,可以在一定程度上保存源岩的稀土特征[18]。REE特征相近代表物源相同或存在一定的相关性,因此,可以利用沉积岩稀土元素特征对物源区构造环境进行讨论。

      从本区样品球粒陨石标准化的稀土元素分配与典型构造背景模式的对比可知,太原组、山西组和下石盒子组典型泥岩样品的REE分布曲线特征整体相近,显示物源具有大陆边缘构造背景的亲和性;本溪组典型泥岩样品以轻微的Ce正异常和Eu异常不明显为特征区别于另外3个层位,但整体仍具有大陆边缘构造背景的亲和性(图6a)。本次测试中所有样品均出现显著的铥(Tm)负异常,与常规稀土元素分配模式不符。铥元素是稀土元素中含量最少的元素,可以认为是实验误差所致。由于其化学性质稳定,不涉及关键化学参数,不影响其他元素数据的使用。

      图  6  太康隆起上古生界泥岩源岩构造背景判别

      Figure 6.  Tectonic settings of the mudstone samples in Upper Paleozoic, Taikang Uplift

      Sm/Nd比值也可以反映物质来源。Sm和Nd均为不相容元素,通常在地质地壳作用过程中不发生分异。不同性质地球物质的Sm/Nd比值变化范围较小,如地幔为0.260~0.375,大洋玄武岩为0.234~0.425,海水为0.211,页岩为0.209。本区除本溪组样品的Sm/Nd比值相对较高以外(平均值为0.26),太原组、山西组和下石盒子组泥岩样品的Sm/Nd比值相近,主要分布在0.16~0.23,平均值分别为0.17、0.18和0.17,反映物源为上地壳。

      (La/Yb)N-ΣREE判别图可以进一步揭示源岩的属性[19]。太原组和山西组样品分布点高度集中,大部分落在花岗岩区和花岗岩与沉积岩重叠区,山西组另有部分样品落在沉积岩区,表明太原期和山西期具有较为统一的物源,沉积物源主要来自上地壳长英质源区,但二者之间仍存在一定的差异。本溪组样品主要落在玄武岩区,表明物源受海相环境控制;下石盒子组样品点较为分散,横跨多个区域,揭示了较为动荡的沉积环境和混杂物源,与沉积速率的变化相符。

      稀土元素比值中,δEuP和(Gd/Yb)P可以用来判定源岩性质和形成地质年代。一般认为显生宙形成的花岗岩类由于富含富钾长石,通常具有Eu弱亏损、HREE强烈亏损和(Gd/Yb)P<2的特征。δEuP-(Gd/Yb)P图解表明,研究区石炭—二叠系泥岩样品的(Gd/Yb)P为0.41~1.51,落在后太古宇区域;山西组泥岩样品中δEuP<0.85的样品相对其他组明显较多,表明山西组有部分物源是形成于后太古宙的花岗岩类,与(La/Yb)N-ΣREE图解所示结论相符。结合微量元素Ni-Cr图解,可以进一步验证太原组、山西组和下石盒子组泥岩的母岩主要形成于后太古宙,因为后太古宙泥岩相较于太古宙具有更高的长英质组分含量,而镁铁质元素,尤其是Ni和Co的含量更低[22]

      区域资料显示,晚石炭世中期本溪组沉积时,南华北地区为南、北、西三面高,向东、东北倾斜的斜坡环境,沉积中心在研究区东北方的邯郸—肥城以北地区。本次研究采集的本溪组样品均位于本溪组顶层,对应晚石炭世末期,该时期海水退缩。早二叠世初再次发生海侵,由东向南、向西的海侵范围进一步扩大,沉积中心来到研究区所在的郑州—临沂一带,沉积环境为典型的浅水陆表海,发育海相灰岩和煤层交互出现的沉积序列,这一点在尉参1井钻遇地层岩性上有所体现。至早二叠世末,受兴蒙洋向华北板块俯冲加剧的影响,华北北缘的古阴山再度上升,沉积范围大规模向东南退缩。受海西运动影响,盆地整体上表现为由弱伸展背景的克拉通内坳陷向克拉通内陆(含煤)坳陷转变。

      结合上古生界泥岩稀土元素对物源属性的指示和已有的区域构造演化认识,可以认为太康隆起地区太原组和山西组具有不同的物源亚区,太原组沉积物源可能来自秦岭造山带中的华北板块南缘带,山西组沉积物源可能还包括北秦岭构造带[23],母岩物质均源自上地壳,为花岗岩和沉积岩混合物源。

    • 稀土元素在垂向上的变化规律可以反映沉积水体的变化,而沉积水体成分的变化又受到古气候的直接影响,因此,可以用稀土元素的变化特征来讨论古气候的演变[24]。一般认为,ΣREE的高值代表陆源碎屑输入大,指示温湿气候条件,低值代表陆源输入少,指示干旱气候[10]。研究区各层位样品的ΣREE与TOC均具有一定的正相关性(图7),垂向上TOC高值段与ΣREE高值段对应良好(图5),表明稀土元素丰度高的泥岩主要对应富有机质层段。根据有机质的形成与保存条件可知,残余有机碳质量分数高的层段指示温暖湿润的气候环境,低值段指示干冷或干燥的气候环境[25]

      图  7  研究区泥岩TOC-∑REE相关性图解

      Figure 7.  Diagrams of TOC-∑REE for mudstone samples of the study area

      根据ΣREE、(La/Yb)S和TOC垂向上的变化规律,结合区域沉积背景,尉参1井本溪组顶部至下石盒子组底部的连续剖面可以分为5个层段(图5)。

      (1)本溪组顶部铝土泥岩段沉积时期(对应井段2 809~2 822 m),∑REE值和(La/Yb)S明显较低,表明沉积水体浅,沉降速率大,陆源物质注入不丰富,表现出相对干旱的气候特征。有机碳含量也相应较低,为全井段最低处,本溪组顶部泥岩宏观表现为浅灰色—灰色。

      (2)向上至太原组上部泥岩段沉积初期(2 774~2 809 m),∑REE值和(La/Yb)S稳步增大,且二者变化趋势相同,表明沉积水体加深的同时,物源注入加大,沉降速率降低致使REE发生充分分异,表现为温暖湿润的气候条件。有机质在这一时期得到充分的富集,表现为在太原组泥岩的TOC为全井段碳质泥岩和煤以外的最大值,向上随(La/Yb)S的减小稳定降低。

      (3)太原组顶部碳质泥岩到山西组中部煤层以下的泥岩连续发育层段(2 718~2 774 m),∑REE值和(La/Yb)S不再具有相同的变化趋势,太原组顶部和山西组底部灰色泥岩夹灰岩层段,∑REE值整体较高,波动较明显,但(La/Yb)S曲线平缓无波动,小于下伏层段,表明物源丰富且稳定,沉降速率升高,稀土元素分异不明显,有机质含量最高值低于下伏层段,但整体较高,基本保持在约2%,指示温暖湿润的气候环境。

      (4)山西组中部灰黑色含煤泥页岩段(2 702~2 718 m)∑REE值和(La/Yb)S变化趋势相近,波动明显但范围较小,∑REE值整体较下伏地层略有降低,(La/Yb)S值整体较下伏地层略有升高,表明物源丰富,沉降速率大,水平面相对下伏地层沉积时期略有降低,泥岩TOC含量较高并发育3 m厚煤层,结合区域沉积背景,代表了温湿气候条件下浅水三角洲沉积体系中的分流间沼泽环境。

      (5)山西组上部碎屑岩层段(俗称大占砂岩、香炭砂岩和小紫泥岩段)(对应井深2 670~2 702 m),∑REE值和(La/Yb)S变化趋势一致,波动范围大,整体均高于下伏泥岩段,但TOC降低,表明沉积环境较为动荡,结合区域沉积背景,可以认为该时期为经历了一次海侵—海退变化的三角洲平原环境。

    • (1)太康隆起上古生界泥岩中稀土元素总量较高,高于大陆上地壳(UCC)和北美页岩。∑LREE/∑HREE、(La/Yb)N和(Ce/Yb)N等化学参数表明本溪组稀土元素特征与太原组、山西组和下石盒子组明显不同,其∑REE相对较低,稀土元素分异程度较低,具有明显的δCeS正异常和(La/Yb)S负异常,轻稀土元素相对亏损,重稀土元素相对富集。太原组和山西组稀土元素总量高,轻、重稀土元素分异程度相近,明显高于本溪组和下石盒子组,分配模式为轻稀土元素富集且分异程度较大,重稀土元素相对亏损且分异程度较低,具有较弱的Ce负异常和较弱的Eu负异常。

      (2)泥岩的Ce异常值反映本溪组至下石盒子组氧化还原条件相近,整体形成于缺氧的还原环境,受到一定程度的海水影响。太原组沉积时海侵范围扩大,沉积水体变深,沉积环境整体比较稳定;山西组含煤地层沉积期发生过多期区域性海侵海退事件,沉积环境相对动荡。

      (3)稀土元素分布模式、Sm/Nd比值和(La/Yb)N-ΣREE判别图等显示太原组和山西组样品分布点高度集中,大部分落在花岗岩区和花岗岩与沉积岩重叠区,沉积物源主要来自上地壳长英质源区。结合δEuP-(Gd/Yb)P图解可以认为太原组和山西组泥岩的母岩形成于后太古宙,主要为活动性大陆边缘抬升基地物源。

      (4)(La/Yb)S 可以表示REE的分异程度,进一步反映沉积速率。本溪组的(La/Yb)S平均值最小,太原组和山西组明显增大,且山西组的(La/Yb)S波动范围相对更大,下石盒子组的(La/Yb)S平均值减小,表明沉积速率先降低再增大。结合泥岩TOC在垂向上的变化特征可知,研究层位自下而上沉积时期气候条件经历了由冷干向温湿的转变,太原组沉降速率低,沉积环境稳定,气候条件温湿,是最有利于有机质富集和保存的层段。

参考文献 (25)

目录

    /

    返回文章
    返回