留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天然气水合物系统的环境效应

魏合龙 孙治雷 王利波 张现荣 曹红 黄威 白凤龙 何拥军 张喜林 翟滨

魏合龙, 孙治雷, 王利波, 张现荣, 曹红, 黄威, 白凤龙, 何拥军, 张喜林, 翟滨. 天然气水合物系统的环境效应[J]. 海洋地质与第四纪地质, 2016, 36(1): 1-13. doi: 10.16562/j.cnki.0256-1492.2016.01.001
引用本文: 魏合龙, 孙治雷, 王利波, 张现荣, 曹红, 黄威, 白凤龙, 何拥军, 张喜林, 翟滨. 天然气水合物系统的环境效应[J]. 海洋地质与第四纪地质, 2016, 36(1): 1-13. doi: 10.16562/j.cnki.0256-1492.2016.01.001
WEI Helong, SUN Zhilei, WANG Libo, ZHANG Xianrong, BAI Fenglong, HE Yongjun, ZHANG Xianrong, HUANG Wei, ZHANG Xilin, ZHAI Bin. PERSPECTIVE OF THE ENVIRONMENTAL EFFECT OF NATURAL GAS HYDRATE SYSTEM[J]. Marine Geology & Quaternary Geology, 2016, 36(1): 1-13. doi: 10.16562/j.cnki.0256-1492.2016.01.001
Citation: WEI Helong, SUN Zhilei, WANG Libo, ZHANG Xianrong, BAI Fenglong, HE Yongjun, ZHANG Xianrong, HUANG Wei, ZHANG Xilin, ZHAI Bin. PERSPECTIVE OF THE ENVIRONMENTAL EFFECT OF NATURAL GAS HYDRATE SYSTEM[J]. Marine Geology & Quaternary Geology, 2016, 36(1): 1-13. doi: 10.16562/j.cnki.0256-1492.2016.01.001

天然气水合物系统的环境效应


doi: 10.16562/j.cnki.0256-1492.2016.01.001
详细信息
    作者简介:

    魏合龙(1964-),男,研究员,主要从事海洋地质学与环境地质学研究,Email:Weihelong@hotmail.com

  • 基金项目:

    中科院战略先导性科技专项子课题(XDB06020204);国家重点基础研究计划项目(2013CB429703);国家自然科学基金项目(41376077);中国地质调查局海洋地质调查计划项目(GZH201300601)

  • 中图分类号: P744.4

PERSPECTIVE OF THE ENVIRONMENTAL EFFECT OF NATURAL GAS HYDRATE SYSTEM

More Information
  • 摘要: 环境效应是天然气水合物科学体系中重要一环,同时,有关该领域的调查研究也是人类安全、环保、经济、科学地利用水合物资源的可靠保证。海底天然气水合物所孕育的独特的生态系统、与之关联的重大地学、环境问题以及资源的勘探开发均是充满魅力而又富有挑战的科学新领域。梳理了当前全球范围内有关水合物环境效应的大部分研究工作,综述了与天然气水合物环境有关的生物效应、化学效应和物理效应的研究现状及内容,着重强调了与该领域相关的基础问题和焦点问题,展望了该领域未来发展的趋势,希望藉此为我国的水合物环境效应调查与评价工作向纵深推进提供参考依据,并能引起广大研究者的兴趣与重视。
  • [1] Collett T, Johnson A, Knapp C, et al. Natural Gas Hydrates:A Review[M]//In:Collett T, Johnson A, Knapp C, and Boswell R (eds), Natural Gas Hydrates-Energy Resource Potential and Associated Geologic Hazards. American Association of Petroleum Geologists Memoir 89, 2009:146-219.
    [2] Arata N, Nagakubo S, Yamamoto K, et al. Environmental impact assessment studies on Japan's methane hydrate R&D Program[C]//In:Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, July 17-21, 2011:1-8.
    [3] 张金川, 张杰. 天然气水合物的资源与环境意义[J]. 中国能源, 2001, 11:28-30.[ZHANG Jinchuan, ZHANG Jie. The resourceful and environmental significance of natural gas hydrates[J]. Chinese Energy Resources, 2001

    , 11:28-30.]
    [4] 杨永强, 翟裕生, 薛林福, 等. 天然气水合物的资源环境效应[J]. 世界地质, 2002, 21(1):30-32.

    [YANG Yongqiang, ZHAI Yusheng, XU Linfu, et al. The effects of resource and environment for gas hydrates[J]. World Geology, 2002, 21(1):30-32.]
    [5] 彭晓彤, 周怀阳, 陈光谦,等. 论天然气水合物与海底地质灾害、气象灾害和生物灾害的关系[J]. 自然灾害学报, 2002, 11(4):18-22.

    [PENG Xiaotong, ZHOU Huaiyang, CHEN Guangqian, et al. Environmental disaster of gas hydrate:its relationship with submarine geology hazard, climate hazard and biology hazard[J]. Journal of Natural Disasters, 2002, 11(4):18-22.]
    [6] 于晓果, 李家彪. 天然气水合物分解及其生态环境效应研究进展[J]. 地球科学进展, 2004, 19:947-954.[YU Xiaoguo, LI Jiabiao. Advances in gas hydrate dissociation andeffects on the ecology and environment[J]. Advances In Earth Science, 2004

    , 19:947-954.]
    [7] 王淑红, 宋海斌, 颜文. 天然气水合物的环境效应[J]. 矿物岩石地球化学通报, 2007, 23(2):160-165.

    [WANG Shu-hong, SONG Haibin, YAN Wen. Environmental effects of natural gas hydrate[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2007, 23(2):160-165.]
    [8] 梅平,刘华荣,陈武,等. 天然气水合物的勘探、开采及环境效应研究进展[J]. 化学与生物工程, 2007, 24(10):1-4.

    [MEI Ping, LIU Huarong, CHEN Wu, et al. Developments in exploration,exploitation and environmentaleffect of gas hydrate[J]. Chemistry and Bioengineering, 2007, 24(10):1-4.]
    [9] 吴时国,王秀娟,陈瑞新,等. 天然气水合物地质概论[M].北京:科学出版社, 2014:44-76.[WU Shiguo, WANG Xiujuan, CHEN Ruixin, et al. An introduction to the geology of natural gas hydrate[M]. Beijing:Science Press, 2014:44

    -76.]
    [10] Suess E. Marine cold seeps and their manifestations:geological control, biogeochemical criteria and environmental conditions[J]. International Journal of Earth Sciences, 2014, 103:1889-1916.
    [11] Paull C K, Hecker B, Commeau R, et al. Biological communities at the Florida escarpment resemble hydrothermal vent taxa[J]. Science, 1984, 226(4677):965-967.
    [12] 陈忠, 杨华平, 黄奇瑜, 等. 海底甲烷冷泉特征与冷泉生态系统的群落结构[J]. 热带海洋学报, 2007, 26(6):73-82.

    [CHEN Zhong, YANG Huaping, HUANG Chiyue, et al. Characteristics of cold seeps and structures of chemoautosynthesis-based communities in seep sediments[J]. Journal of Tropical Oceanography, 2007, 26(6):73-82.]
    [13] Sahling H, Rickert D, Lee R W, et al. Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific[J]. Marine Ecology Progress Series, 2002, 231:121-138.
    [14] Domack E, IshmanS, LeventerA, et al. A chemotrophic ecosystem found beneath Antarctic ice shelf[J]. Eos, Transactions American Geophysical Union, 2005, 86:269-276.
    [15] Sibuet M, Olu K. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep commumities at active and passive margins[J]. Deep-Sea Research Ⅱ, 1998, 45:517-567.
    [16] Levin L A. Ecology of cold seep sediments:interactions of fauna with flow, chemistry and microbes[J]. Oceanography and Marine Biology, 2005, 43:1-46.
    [17] Fisher C R, MacDonald I R, Sassen R, et al. Methane IceWorm:Hesiocaecamethanicola colonizing fossil fuel reserves[J]. Naturwissenschaften, 2000, 87:184-187.
    [18] Hashimoto J, Ohta S, Tanaka T, et al. Deep-sea communities dominated by the giant clam, Calyptogenasoyoae, along the slope foot of Hatsuchima Island, Sagami Bay, Central Japan[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1989, 71:179-192.
    [19] Olu K, Duperret A, Sibuet M, et al. Structure and distribution of cold seep communities along the Peruvian active margin:relation to geological and fluid patterns[J]. Marine Ecology Progress Series, 1996, 132:109-125.
    [20] Cordes EE, Cunha MR, Galéron J, et al. The influence of geological, geochemical, and biogenic habitat heterogeneity on seep biodiversity[J]. Marine Ecology, 2009:1-15.
    [21] Ristova P P, Wenzhöfer F, Ramette A, et al. Bacterial diversity and biogeochemistry of different chemosynthetic habitats of the REGAB cold seep (West African margin, 3160 m water depth)[J]. Biogeosciences, 2012, 9:5031-5048.
    [22] Ruff S E, Biddle JF, Teske AP, et al. Global dispersion and local diversification of the methane seep microbiome[J]. Proceedings of the National Academy of Sciencesof the United States of America, 2015, 112(13):4015-4020.
    [23] Ristova P P, Wenzhöfer F, Ramette A, et al. Spatial scales of bacterial community diversity at cold seeps (Eastern Mediterranean Sea)[J]. The ISME Journal, 2014, 9:1306-1318.
    [24] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407:623-626.
    [25] Vanreusel A, De Groote A, Gollner S, et al.Ecology and Biogeography of Free-Living Nematodes Associated with Chemosynthetic Environments in the Deep Sea:A Review[J]. PLoS ONE, 2010, 5(8):e12449. doi:10.1371/journal.pone.0012449.
    [26] Knittel K, Boetius A. Anaerobic oxidation of methane:progress with an unknown process[J]. Annual Review of Microbiology, 2009, 63:311-34.
    [27] Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps[J]. Nature Geoscience, 2013, 6(9):725-734.
    [28] Levin L A, Michener R. Isotopic evidence of chemosynthesis-based nutrition of macrobenthos:the lightness of being at Pacific methane seeps[J]. Limnology and Oceanography, 2002, 47:1336-1345.
    [29] Van Dover C L, Aharon P, Bernhard J M, et al. Blake Ridge methane seeps:characterization of a soft sediment, chemosynthetically based ecosystem[J]. Deep-Sea Research I, 2003, 50:281-300.
    [30] Sahling H, Galkin S V, Salyuk A, et al. Depthrelated structure and ecological significance of cold-seep communities-a case study from the Sea of Okhotsk[J]. Deep-Sea Research I, 2003, 50:1391-1409.
    [31] Hinrichs K U, Hayes J M, Sylva S P O, et al. Methane-consuming archaebacteria in marine sediments[J]. Nature, 1999, 398:802-805.
    [32] Rossel P E, Lipp J S, Fredricks H F, et al. Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria[J]. Organic Geochemistry, 2008, 39(8):992-999.
    [33] Guan H, Sun Y, Zhu X, et al. Factors controlling the types of microbial consortia in cold-seep environments:A molecular and isotopic investigation of authigenic carbonates from the South China Sea[J]. Chemical Geology, 2013, 354:55-64.
    [34] Campbell K A, Farmer J D, DeMarais D. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California:carbonate geochemistry, fluids and paleoenvironment[J]. Geofluids, 2002, 2:63-94.
    [35] Yang JY, Chung K-H, Jin Y-K, et al. Characterizing lipid biomarkers in methanotrophic communities of gas hydratebearing sediments in the Sea of Okhotsk[J]. Marine and Petroleum Geology, 2011, 28(10):1884-1898.
    [36] Birgel D, Himmler T, Freiwald A, et al. A new constraint on the antiquity of anaerobic oxidation of methane:late Pennsylvanian seep limestones from southern Nambia[J]. Geology, 2008, 36:543-546.
    [37] Rossel P E, Elvert M, Ramette A, et al. Factors controlling the distribution of anaerobic methanotrophic communities in marine environments:Evidence from intact polar membrane lipids[J]. Geochimica et Cosmochimica Acta, 2011, 75(1):164-184.
    [38] Matsumoto R, Borowski W S. Gas hydrate estimates from newly determined oxygen isotopic fractionation aGH-IW and δ18O anomalies of the interstitial waters:Leg 164, Blake Ridge[M]//In:Paull C K, Matsumoto R, Wallace P J, Dillon W P (eds),Proceedings of Ocean Drilling Program, Scientific Results, 2000, 164:59-66.
    [39] Haeckel M, Suess E, Wallmann K, et al. Rising methane gas-bubbles form massive hydrate layers at the seafloor[J]. Geochimica et Cosmochimica Acta, 2004, 68:4335-4345.
    [40] Kvenvolden K A, Lorenson T D. The global occurrence of natural gas hydrate[M]//In:Paull C K, Dillon W P(eds), Natural Gas Hydrates:Occurrence, Distribution, and Detection, American Geophysical Union,2001, 124:3-18.
    [41] Kvenvolden K A, Barnard L A. Gas hydrates of the Blake Outer Ridge, Site 533, Deep Sea Drilling Project Leg 76[J].Initial Reports, Deep Sea Drilling Project, 1983, 76:353-365.
    [42] Kvenvolden K A, Kastner M. Gas hydrates of the Peruvian Outer Continental Margin[M]//In:Suess E, von Huene R (eds), Proceedings of Ocean Drilling Program, Scientific Results, 1990, 112:517-526.
    [43] Whiticar M J, Hovland M, Kastner M, et al. Organic Geochemistry of Gases, Fluids, and Hydrates at the Cascadia Accretionary Margin[M]//Carson B, Westbrook G K, Musgrave R J (eds), Proceedings of the Ocean Drilling Program, Scientific Results, 1995, 146:385-397.
    [44] Cranston R E. Pore-water geochemistry, JAPEX/JNOC/GNC Mallik 2L-38 gas hydrate research well[J]. Geological Survey of Canada Bulletin, 1999, 544:165-175.
    [45] 杨涛, 蒋少涌, 葛璐, 等. 南海北部神狐海域浅表层沉积物中孔隙水的地球化学特征及其对天然气水合物的指示意义[J]. 科学通报, 2009, 54(20), 3231-3240.

    [YANG Tao, JIANG Shaoyong, GE Lu, et al. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence[J]. Chinese Science Bulletin, 2010, 55(8):752-760.]
    [46] 杨涛, 蒋少涌, 葛璐, 等. 南海北部琼东南盆地HQ-1PC沉积物孔隙水的地球化学特征及其对天然气水合物的指示意义[J]. 中国科学:地球科学, 2013, 43(3), 329-338.

    [YANG Tao, JIANG Shaoyong, GE Lu, et al. Geochemistry of pore waters from HQ-1PC of the Qiongdongnan Basin, northern South China Sea, and its implications for gas hydrate exploration[J]. Science China Earth Sciences, 2013, 56(4):521-529.]
    [47] Hesse R, HarrisonWE. Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins[J]. Earth and Planetary Science Letters, 1981, 55(3):453-462.
    [48] Bohrmann G, Greinert J, Suess E, et al. Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability[J]. Geology, 1998, 26:647-650.
    [49] Maekawa T. Experimental study on isotopic fractionation in water during gas hydrate formation[J]. Geochemical Journal, 2004, 38:129-138.
    [50] Pohlman J W, Bauer J E, Waite W F, et al. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans[J]. Nature Geoscience, 2010, 4:37-41.
    [51] Luff R, Wallmann K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin:Numerical modeling and mass balances[J]. Geochimica et CosmochimicaActa, 2003, 67:3403-3421.
    [52] Teichert B M A, Bohrmann G, Suess E. Chemoherms on Hydrate Ridge-unique microbially-mediated carbonate buildups growing into the water column[J].Palaeogeography Palaeoclimatology Palaeoecology, 2005, 227:67-85.
    [53] Han X, Suess E, Huang Y, et al. Jiulong methane reef:microbial mediation of seep carbonates in the South China Sea[J]. Marine Geology, 2008, 249:243-256.
    [54] Liebetrau V, Augustin N, Kutterolf S, et al. Cold seep driven carbonate deposits at the Central American Forearc-contrasting evolution and timing in escarpment and mound settings[J]. International Journal of Earth Sciences, 2014, 103:1845-1872.
    [55] Michaelis W, Seifert R, Nauhaus K, et al. Microbial Reefs in the Black Sea Fueled by Anaerobic Oxidation of Methane[J]. Science, 2002, 297:1013-1015.
    [56] Bayon G, Dupré S, Ponzevera E, et al. Formation of carbonate chimneys in the Mediterranean Sea linked to deep-water oxygen depletion[J]. Nature Geoscience, 2013, 6:755-760.
    [57] Sun Z, Wei H, Zhang X, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea[J]. Deep-Sea Research I, 2015, 95:37-53.
    [58] Dando P R, Hovland M. Environmental effects of submarine seeping natural gas[J]. Continental Shelf Research, 1992, 12(10):1197-1207.
    [59] Haas A, Peckmann J, Elvert M, et al. Patterns of carbonate authigenesis at the Kouilou pockmarks on the Congo deep-sea fan[J]. Marine Geology, 2010, 268:129-136.
    [60] Taylor K G, Curtis C D. Stability and facies association of early diagenetic mineral assemblages:an example from a Jurassic ironstone-mudstone succession, U K[J].Journal of Sedimentary Petrology, 1995, 65:358-368.
    [61] Mozley P S, Carothers W W. Elemental and isotopic compositions of siderite in the Kuparuk Formation, Alaska:effect of microbial activity and water/sediment interaction on early pore-water chemistry[J]. Journal of Sedimentary Petrology, 1992, 62:681-692.
    [62] Hicks K S, Compton J S, McCracken S, et al. Origin of diagenetic carbonate minerals recovered from the New Jersey continental slope[M]//In:Mountain G S, Miller K G, Blum P, Poag C W, Twichell D C(eds), Proceedings of the Ocean Drilling Program, Scientific Results, 1996, 150:311-323.
    [63] Burns S J. Early diagenesis in Amazon Fan sediments[M]//In:Flood R D, Piper D J W, Klaus A, Peterson L C (eds), Proceedings of the Ocean Drilling Program, Scientific Results, 1997, 155:497-504.
    [64] Baker P A, Burns S J. The occurrence and formation of dolomite in organic-rich continental margin sediments[J]. AAPG Bulletin, 1985, 69:1917-1930.
    [65] Han X, Suess E, Liebetrau V, et al. Past methane release events and environmental conditions at the upper continental slope of the South China Sea:constraints from seep carbonates[J]. International Journal of Earth Sciences, 2014, 103(7):1873-1877.
    [66] Mavromatis V, Botz R, Schmidt M, et al. Formation of carbonate concretions in surface sediments of two mud mounds offshore Costa Rica:a stable isotope study[J]. International Journal of Earth Sciences, 2014, 103(7):1831-1844.
    [67] Kutterolf S, Liebetrau V, Möz T, et al. Lifetime and cyclicity of fluid venting at forearc mound structures determined by tephrostratigraphy and radiometric dating of authigenic carbonates[J]. Geology, 2008, 36(9):707-710.
    [68] Lim Y C, Lin S, Yang T F, et al. Variations of methane induced pyrite formation in the accretionary wedge sediments offshore southwestern Taiwan[J]. Marine and Petroleum Geology, 2011, 28:1829-1837.
    [69] Borowski W S, Rodriguez N M, Paull C K, et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record[J]. Marine and Petroleum Geology, 2013, 43:381-395.
    [70] 陆红锋, 陈芳, 廖志良, 等. 南海东北部HD196A岩心的自生条状黄铁矿[J]. 地质学报, 2007, 81:519-525.[LU Hongfeng, CHEN Fan, LIAO Zhiliang, et al. Authigenic pyrite rods from the core HD196

    A in the northeastern South China Sea[J]. Acta Geologica Sinica, 2007, 81:519-525.]
    [71] Neretin L N, Bottcher M E, Jørgensen B B. Pyritization processes and greigite formation in the advancing sulfidization front in the upper Pleistocene sediments of the Black Sea[J]. Geochimica et Cosmochima Acta, 2004, 68:2081-2093.
    [72] Bhatnagar G, Chapman W G, Dickens G R, et al. Sulfate-methane transition as a proxy for average methane hydrate saturation in marine sediments[J]. Geophysical Research Letters, 2008, 35:L03611.
    [73] Lonsdale P. A deep-sea hydrothermal site on a strike-slip fault[J]. Nature, 1979, 281:531-534.
    [74] Suess E, Bohrmann G, von Huene R, et al. Fluid venting in the eastern Aleutian subduction zone[J]. Journal of Geophysical Research, 1998, 103:2597-2614.
    [75] Roberts H H, Carney R S. Evidence of episodic fluid, gas, and sediment venting on the northern Gulf of Mexico continental slope[J]. Economic Geology, 1997, 92:863-879.
    [76] Feng D, Roberts H H. Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico continental slope[J]. Earth and Planetary Science Letters, 2011, 309:89-99.
    [77] Torres M E, Bohrmann G, Suess E.Authigenic barites and fluxes of barium associated with fluid seeps in the Peru subduction zone[J]. Earth and Planetary Science Letters, 1996, 144:469-481.
    [78] Aquilina L, Dia A N, Boulegue J, et al. Massive barite deposits in the convergent margin off Peru:implications for fluid circulation within subduction zones[J]. Geochimica et Cosmochimica Acta, 1997, 61:1233-1245.
    [79] Torres M E, Brumsack H J, Bohrmann G, et al. Barite fronts in continental margin sediments:a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts[J]. Chemical Geology, 1996, 127:125-139.
    [80] Naehr T H, Stakes D S, Moore W S. Mass wasting, ephemeral fluid flow, and barite deposition on the California continental margin[J]. Geology, 2000, 28:315-318.
    [81] Greinert J, Bollwerk S M, Derkachev A, et al. Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk:precipitation processes at cold seep sites[J]. Earth and Planetary Science Letters, 2002, 203:165-180.
    [82] Kasten S, Nöthen K, Hensen C, et al. Gas hydrate decomposition recorded by authigenic barite at pockmark sites of the northern Congo Fan[J]. Geo-Marine Letters, 2012, 32:515-524.
    [83] Ritger S, Carson B, Suess E. Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin[J]. Geological Society of America Bulletin, 1987, 98:147-156.
    [84] Dickens G R. Sulfate profiles and barium fronts in sediment on the Blake Ridge:present and past methane fluxes through a large gas hydrate reservoir[J]. Geochimica et Cosmochimica Acta, 2001, 65:529-543.
    [85] Riedinger N, Kasten S, Gröger J, et al. Active and buried authigenic barite fronts in sediments from the Eastern Cape Basin[J]. Earth and Planetary Science Letters, 2006, 241:876-887.
    [86] 王家生, Suess E, Rickert D. 东北太平洋天然气水合物伴生沉积物中自生石膏矿物[J]. 中国科学:地球科学, 2003, 33(5), 433-441.

    [WANG Jiasheng, Suess E, Rickert D. Authigenic gypsum found in gas hydrate-associated sediments from Hydrate Ridge, the eastern North Pacific[J]. Science China Earth Sciences, 2004, 47(3):280-288.]
    [87] Jørgensen N O. Gypsum formation in Recent submarine sediments from Kattegat, Denmark[J]. Chemical Geology, 1980, 28:349-353.
    [88] Briskin M, Schreiber B C. Authigenic gypsum in marine sediments[J]. Marine Geology, 1978, 28:37-49.
    [89] Guptha M V S. Authigenic gypsum in a deep sea core from southeastern Arabian Sea[J]. Journal Geological Society of India, 1980, 21:568-571.
    [90] Suess E, Torres M, Bohrmann G, et al. Gas hydrate destabilization:enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin[J]. Earth and Planetary Science Letters, 1999, 170:1-15.
    [91] Bohannon J. Weighing the climate risks of an untapped fossil fuel[J]. Science, 2008, 319:1753.
    [92] Mascarelli A L. A sleeping giant[J]. Nature Reports Climate Change, 2009, 3:46-49.
    [93] Lelieveld J, Crutzen P, Dentener F. Changing concentration, lifetime and climate forcing of atmospheric methane[J]. Tellus B, 1998, 50:128-150.
    [94] Intergovernmental Panel on Climate Change. Climate Change 2001:The Scientific Basis[M]. New York:Cambridge University Press, 2001.
    [95] Intergovernmental Panel on Climate Change. Climate Change 2007:The Physical Basis[M]. New York:Cambridge University Press, 2007.
    [96] Maslin M, Owen M, Betts R, et al. Gas hydrate:past and future geohazard[J]. Philosophical Transactions of The Royal Society A, 2010, 368:2369-2393.
    [97] Dickens G R, Castillo M M, Walker J G C. A blast of gas in the latest Paleocene:simulating first-order effects of massive dissociation of oceanic methane hydrate[J]. Geology, 1997, 25(3):259-262.
    [98] Katz M E, Pak D K, Dickens G R, et al. The source and fate of massive carbon input during the Latest Paleocene Thermal Maximum[J]. Science, 1999, 286:1531-1533.
    [99] Dickens G R, O'neil J R, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene[J]. Paleoceanography, 1995, 10:965-971.
    [100] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292:686-693.
    [101] Zachos J, Rohl U, Schellenberg S, et al. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum[J]. Science, 2005, 308:1611-1615.
    [102] Sharke A, Ruppel C, Kodis M, et al. Widespread methane leakage from the sea floor on the northern US Atlantic margin[J]. Nature Geoscience, 2014, 7:657-661.
    [103] Naudts L, Greinert J, Artemov Y, et al. Geological and morphological setting of 2778 methane seeps in the Dnepr paleo-delta, northwestern Black Sea[J]. Marine Geology, 2006, 227:177-199.
    [104] Denman K L, Brasseur G, Chithaison A, et al. Climate change 2007:the physical science basis[M]//In:Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L (eds), Contribution of Working Group 1 to the Fourth Assessment Report of the IntergovernmentalPanel on Climate Change. Cambridge:Cambridge University Press, 2007:499-588.
    [105] Solomon E A, Kastner M, MacDonald I A, et al. Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico[J]. Nature Geoscience, 2009, 2:561-565.
    [106] Frye M. Preliminary evaluation of in-place gas hydrate resources:gulf of mexico outer continental shelf[R]. US Department of Interior, Minerals Management Service, 2008.
    [107] Hovland M, Judd A G, Burke R A. The global flux of methane from shallow submarine sediments[J]. Chemosphere, 1993, 26:559-578.
    [108] Shakhova N, Semiletov I, Leifer I, et al. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf[J]. Nature Geoscience, 2014, 7:64-70.
    [109] Vanneste M, Sultan N, Garziglia S, et al. Seafloor instabilities and sediment deformation processes:The need for integrated, multi-disciplinary investigations[J]. Marine Geology, 2014, 352:183-214.
    [110] Maslin M A, Owen M, Day S, et al. Linking continental slope failure to climate change:testing the clathrate gun hypothesis[J]. Geology, 2004, 32:53-56.
    [111] Bugge T, Befring S, Belderson R H, et al. A giant three-stage submarine slide off Norway[J]. Geo-Marine Letters, 1987, 7:191-198.
    [112] Harbitz C B. Model simulations of tsunamis generated by the Storegga slide[J]. Marine Geology, 1992, 105:1-21.
    [113] Field M E. Submarine landslide associated with shallow seafloor gas and gas hydrates off northern California[J]. AAPG Bulletin, 1990, 74(6):971-972.
    [114] Soh W. Computed tomography scan analysis of Site 941 cores, western mass-transport deposit, Amazon Fan[M]//In:Proceedings of the Ocean Drilling Program, Scientific Results, 1997, 155:465-475.
    [115] Weaver P P E, Wynn R B, Kenyon N H, et al. Continental margin sedimentation with special reference to the Northeast Atlantic margin[J]. Sedimentology, 2000, 47:239-256.
    [116] 史斗, 郑军卫. 世界天然气水合物研究开发现状和前景[J]. 地球科学进展, 1999, 14(4):330-339.

    [SHI Dou, ZHENG Junwei. The status and prospects of research and exploitation of natural gas hydrate in the world[J]. Advance in Earth Sciences, 1999, 14(4):330-339.]
    [117] Sassen R, Roberts H H, Aharon P, et al. Chemosynthetic bacterial mats at cold hydrocarbon seeps, Gulf of Mexico continental slope[J]. Organic Geochemistry, 1993, 20:77-89.
    [118] Barry J P, Kochevar R E, Baxter C H. The influence of pore-water chemistry and physiology in the distribution of vesicomyid clams at cold seeps in Monterey Bay:implications for patterns of chemosynthetic community organization[J]. Limnology and Oceanography, 1997, 42:318-328.
    [119] Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironmentsand paleontology:past developments and future research directions[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2006, 232:362-407.
    [120] Girnth A C, Grünke S, Lichtschlag A, et al. Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea)[J].Environmental Microbiology, 2011, 13:495-505.
    [121] Ritt B, Pierre C, Gauthier O, et al. Diversity and distribution of cold-seep fauna associated with different geological and environmental settings at mud volcanoes and pockmarks of the Nile Deep-Sea Fan[J]. Marine Biology, 2011, 158:1187-1210.
    [122] Felden J, Lichtschlag A, Wenzhöfer F, et al. Limitations of microbial hydrocarbondegradation at the Amon Mud Volcano (Nile Deep Sea Fan)[J].Biogeosciences, 2013, 10:335-370.
    [123] 蒋干清, 史晓颖, 张世红. 甲烷渗漏构造、水合物分解释放与新元古代冰后期盖帽碳酸盐岩[J]. 科学通报, 2006, 51(10):1121-1138.

    [JIANG Ganqing, SHI Xiaoying, ZHANG Shihong. Methane seeps, methane hydrate destabilization, and the late Neoproterozoic postglacial cap carbonates[J]. Chinese Science Bulletin, 2006, 51(10):1152-1173.]
    [124] MacDonald I R, Sassen R, Brooks J M, et al. Gas hydrate that breaches the sea floor on the continental slope of the Gulf of Mexico[J]. Geology, 1994, 22:699-702.
    [125] Takeuchi A, Zhang J, Tsunogai U, et al. Word largest outcrop of pure hydrate on the seafloor[J]. JAMSTEC Report of Research and Development, 2007, 5:61-63.
  • [1] 孙治雷, 印萍, 徐思南, 曹红, 徐翠玲, 张喜林, 耿威, 孙伟香, 吴能友, 张栋, 翟滨, 吕泰衡, 周渝程, 曹又文, 陈烨.  现代海洋甲烷循环过程观测及研究进展 . 海洋地质与第四纪地质, 2022, 42(6): 67-81. doi: 10.16562/j.cnki.0256-1492.2022042801
    [2] 赵金环, 刘昌岭, 邹长春, 陈强, 孟庆国, 刘洋, 卜庆涛.  基于ERT技术的含水合物沉积物可视化探测模拟实验 . 海洋地质与第四纪地质, 2021, 41(6): 206-212. doi: 10.16562/j.cnki.0256-1492.2021060901
    [3] 谢瑞, 邬黛黛, 孙甜甜, 杨飞, 杨睿, 刘丽华, 吴能友.  南海北部神狐海域水合物赋存层位古环境和古生产率 . 海洋地质与第四纪地质, 2019, 39(2): 134-145. doi: 10.16562/j.cnki.0256-1492.2018060702
    [4] 李进, 王淑红, 颜文.  海底泥火山及其与油气和天然气水合物的关系 . 海洋地质与第四纪地质, 2017, 37(6): 204-214. doi: 10.16562/j.cnki.0256-1492.2017.06.022
    [5] 李晶, 贺行良, 刘昌岭, 孟庆国, 宁伏龙, 陈宇峰.  海底多组分水合物分解气好氧氧化实验研究 . 海洋地质与第四纪地质, 2017, 37(5): 204-216. doi: 10.16562/j.cnki.0256-1492.2017.05.021
    [6] 张家政, 李胜利, 王明君, 赵广珍, 庞守吉, 张帅, 吴纪修.  南祁连盆地木里冻土区天然气水合物气源分析 . 海洋地质与第四纪地质, 2017, 37(5): 90-101. doi: 10.16562/j.cnki.0256-1492.2017.05.009
    [7] 吴能友, 黄丽, 胡高伟, 李彦龙, 陈强, 刘昌岭.  海域天然气水合物开采的地质控制因素和科学挑战 . 海洋地质与第四纪地质, 2017, 37(5): 1-11. doi: 10.16562/j.cnki.0256-1492.2017.05.001
    [8] 张现荣, 孙治雷, 魏合龙, 张喜林, 王利波.  自生黄铁矿的微生物成矿机理及对冷泉泄漏的指示意义 . 海洋地质与第四纪地质, 2017, 37(2): 25-32. doi: 10.16562/j.cnki.0256-1492.2017.02.003
    [9] 张辉, 杨睿, 匡增桂, 黄丽, 阎贫.  海底沉积物中天然气水合物形成过程数值模拟:以深部流体向上供给甲烷为背景 . 海洋地质与第四纪地质, 2017, 37(1): 107-116. doi: 10.16562/j.cnki.0256-1492.2017.01.013
    [10] 王力峰, 尚久靖, 梁金强, 徐行, 沙志彬, 陆敬安, 王静丽.  南海东北部陆坡水合物钻探区海底表层热导率分布特征 . 海洋地质与第四纪地质, 2016, 36(2): 29-37. doi: 10.16562/j.cnki.0256-1492.2016.02.004
    [11] 蔡骥, 李予国.  时间域可控源电磁法探测海底天然气水合物可行性分析 . 海洋地质与第四纪地质, 2016, 36(1): 159-163. doi: 10.3724/SP.J.1140.2016.01016
    [12] 张光学, 徐华宁, 刘学伟, 张明, 伍忠良, 梁金强.  海底高频地震仪在南海北部天然气水合物探测中的应用 . 海洋地质与第四纪地质, 2015, 35(1): 185-192. doi: 10.3724/SP.J.1140.2015.01185
    [13] 叶鸿, 杨涛, 朱国荣, 蒋少涌.  海底天然气水合物生长的数值模拟研究及进展 . 海洋地质与第四纪地质, 2013, 33(2): 143-152. doi: 10.3724/SP.J.1140.2013.02143
    [14] 李艳菊, 史建南, 朱利东, 付修根, 杨文光, 杨若羿.  羌塘盆地双湖地区冷泉碳酸盐岩的发现及其天然气水合物成藏地质意义 . 海洋地质与第四纪地质, 2013, 33(2): 105-110. doi: 10.3724/SP.J.1140.2013.02105
    [15] 杨木壮, 潘安定, 沙志彬.  陆缘地区天然气水合物成藏地质模式 . 海洋地质与第四纪地质, 2010, 30(6): 85-90. doi: 10.3724/SP.J.1140.2010.06085
    [16] 吴庐山, 邓希光, 梁金强, 付少英.  南极陆缘天然气水合物特征及资源前景 . 海洋地质与第四纪地质, 2010, 30(1): 95-107. doi: 10.3724/SP.J.1140.2010.01095
    [17] 葛倩, 初凤友, 方银霞, 孟宪伟.  天然气水合物释放甲烷对晚第四纪气候影响的古环境记录 . 海洋地质与第四纪地质, 2010, 30(1): 87-94. doi: 10.3724/SP.J.1140.2010.01087
    [18] 胡高伟, 张剑, 业渝光, 刁少波, 王家生.  天然气水合物的声学探测模拟实验 . 海洋地质与第四纪地质, 2008, 28(1): 135-141.
    [19] 龚跃华, 吴时国, 张光学, 王宏斌, 梁金强, 郭依群, 沙志彬.  南海东沙海域天然气水合物与地质构造的关系 . 海洋地质与第四纪地质, 2008, 28(1): 99-104.
    [20] 张海生, 潘建明, 陈建芳, 陈荣华, 卢冰, 薛斌.  楚科奇海和白令海沉积物中的生物标志物及其生态环境响应 . 海洋地质与第四纪地质, 2007, 27(2): 41-49.
  • 加载中
计量
  • 文章访问数:  2006
  • HTML全文浏览量:  235
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-16
  • 修回日期:  2015-11-16

天然气水合物系统的环境效应

doi: 10.16562/j.cnki.0256-1492.2016.01.001
    作者简介:

    魏合龙(1964-),男,研究员,主要从事海洋地质学与环境地质学研究,Email:Weihelong@hotmail.com

基金项目:

中科院战略先导性科技专项子课题(XDB06020204);国家重点基础研究计划项目(2013CB429703);国家自然科学基金项目(41376077);中国地质调查局海洋地质调查计划项目(GZH201300601)

  • 中图分类号: P744.4

摘要: 环境效应是天然气水合物科学体系中重要一环,同时,有关该领域的调查研究也是人类安全、环保、经济、科学地利用水合物资源的可靠保证。海底天然气水合物所孕育的独特的生态系统、与之关联的重大地学、环境问题以及资源的勘探开发均是充满魅力而又富有挑战的科学新领域。梳理了当前全球范围内有关水合物环境效应的大部分研究工作,综述了与天然气水合物环境有关的生物效应、化学效应和物理效应的研究现状及内容,着重强调了与该领域相关的基础问题和焦点问题,展望了该领域未来发展的趋势,希望藉此为我国的水合物环境效应调查与评价工作向纵深推进提供参考依据,并能引起广大研究者的兴趣与重视。

English Abstract

参考文献 (125)

目录

    /

    返回文章
    返回