[1] Lozier M S, Li F, Bacon S, et al. A sea change in our view of overturning in the subpolar North Atlantic [J]. Science, 2019, 363(6426): 516-521. doi: 10.1126/science.aau6592
[2] Cléroux C, Cortijo E, Anand P, et al. Mg/Ca and Sr/Ca ratios in planktonic foraminifera: Proxies for upper water column temperature reconstruction [J]. Paleoceanography and Paleoclimatology, 2008, 23(3): PA3214.
[3] Holliday N P, Bersch M, Berx B, et al. Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic [J]. Nature Communications, 2020, 11: 585. doi: 10.1038/s41467-020-14474-y
[4] Bagniewski W, Meissner K J, Menviel L. Exploring the oxygen isotope fingerprint of Dansgaard-Oeschger variability and Heinrich events [J]. Quaternary Science Reviews, 2017, 159: 1-14. doi: 10.1016/j.quascirev.2017.01.007
[5] Zhang X, Prange M. Stability of the Atlantic overturning circulation under intermediate (MIS3) and full glacial (LGM) conditions and its relationship with Dansgaard-Oeschger climate variability [J]. Quaternary Science Reviews, 2020, 242: 106443. doi: 10.1016/j.quascirev.2020.106443
[6] Dansgaard W, Johnsen S J, Clausen H B, et al. Evidence for general instability of past climate from a 250-kyr ice-core record [J]. Nature, 1993, 364(6434): 218-220. doi: 10.1038/364218a0
[7] Rasmussen S O, Bigler M, Blockley S P, et al. A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy [J]. Quaternary Science Reviews, 2014, 106: 14-28. doi: 10.1016/j.quascirev.2014.09.007
[8] Bond G C, Heinrich H, Broecker W S, et al. Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period [J]. Nature, 1992, 360(6401): 245-249. doi: 10.1038/360245a0
[9] Voelker A H L. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database [J]. Quaternary Science Reviews, 2002, 21(10): 1185-1212. doi: 10.1016/S0277-3791(01)00139-1
[10] Heinrich H. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130, 000 years [J]. Quaternary Research, 1988, 29(2): 142-152. doi: 10.1016/0033-5894(88)90057-9
[11] Hemming S R. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint [J]. Reviews of Geophysics, 2004, 42(1): RG1005.
[12] Broecker W. Massive iceberg discharges as triggers for global climate change [J]. Nature, 1994, 372(6505): 421-424. doi: 10.1038/372421a0
[13] Guo C C, Nisancioglu K H, Bentsen M, et al. Equilibrium simulations of Marine Isotope Stage 3 climate [J]. Climate of the Past, 2019, 15(3): 1133-1151. doi: 10.5194/cp-15-1133-2019
[14] Tolderlund D S, Be A W H. Seasonal distribution of planktonic foraminifera in the western North Atlantic [J]. Micropaleontology, 1971, 17(3): 297-329. doi: 10.2307/1485143
[15] Schiebel R, Hemleben C. Classification and taxonomy of extant planktic foraminifers[C]//Planktic Foraminifers in the Modern Ocean. Berlin: Springer, 2017: 11-110.
[16] McIntyre A, Kipp N G, Bé A W H, et al. Glacial North Atlantic 18, 000 years ago: A CLIMAP reconstruction[M]//Cline R M, Hays D J. Investigation of Late Quaternary Paleoceanography and Paleoclimatology. Boulder, Colorado: Geological Society of America, 1976: 43-76.
[17] CLIMAP Project Members. The surface of the ice-age earth [J]. Science, 1976, 191(4232): 1131-1137. doi: 10.1126/science.191.4232.1131
[18] Ruddiman W F, McIntyre A. The mode and mechanism of the last deglaciation: Oceanic evidence [J]. Quaternary Research, 1981, 16(2): 125-134. doi: 10.1016/0033-5894(81)90040-5
[19] Ruddiman W F, Raymo M E, Martinson D G, et al. Pleistocene evolution: northern hemisphere ice sheets and North Atlantic Ocean [J]. Paleoceanography and Paleoclimatology, 1989, 4(4): 353-412.
[20] Pflaumann U, Duprat J, Pujol C, et al. SIMMAX: A modern analog technique to deduce Atlantic sea surface temperatures from planktonic foraminifera in deep-sea sediments [J]. Paleoceanography and Paleoclimatology, 1996, 11(1): 15-35.
[21] Sarnthein M, Pflaumann U, Weinelt M. Past extent of sea ice in the northern North Atlantic inferred from foraminiferal paleotemperature estimates [J]. Paleoceanography and Paleoclimatology, 2003, 18(2): 1047.
[22] Rashid H, Boyle E A. Mixed-layer deepening during Heinrich events: a multi-planktonic foraminiferal δ18O approach [J]. Science, 2007, 318(5849): 439-441. doi: 10.1126/science.1146138
[23] Rashid H, Boyle E A. Response to comment on “Mixed-layer deepening during Heinrich events: a multi-planktonic foraminiferal δ18O approach” [J]. Science, 2008, 320(5880): 1161.
[24] Kohfeld K E, Fairbanks R G, Smith S L, et al. Neogloboquadrina pachyderma (sinistral coiling) as paleoceanographic tracers in polar oceans: evidence from northeast water polynya plankton tows, sediment traps, and surface sediments [J]. Paleoceanography and Paleoclimatology, 1996, 11(6): 679-699.
[25] Brummer G J A, Metcalfe B, Feldmeijer W, et al. Modal shift in North Atlantic seasonality during the last deglaciation [J]. Climate of the Past, 2020, 16(1): 265-282. doi: 10.5194/cp-16-265-2020
[26] Ruddiman W F. Late Quaternary deposition of ice-rafted sand in the subpolar North Atlantic (lat 40° to 65°N) [J]. GSA Bulletin, 1977, 88(12): 1813-1827. doi: 10.1130/0016-7606(1977)88<1813:LQDOIS>2.0.CO;2
[27] Scott D B, Baki V, Younger C D, et al. Empirical method for measuring seasonality in deep-sea cores [J]. Geology, 1986, 14(8): 643-646. doi: 10.1130/0091-7613(1986)14<643:EMFMSI>2.0.CO;2
[28] Grousset F E, Labeyrie L, Sinko J A, et al. Patterns of ice-rafted detritus in the glacial north Atlantic (40-55°N) [J]. Paleoceanography and Paleoclimatology, 1993, 8(2): 175-192.
[29] Van Kreveld S, Sarnthein M, Erlenkeuser H, et al. Potential links between surging ice sheets, circulation changes, and the Dansgaard-Oeschger cycles in the Irminger Sea, 60-18 kyr [J]. Paleoceanography and Paleoclimatology, 2000, 15(4): 425-442.
[30] Jonkers L, Moros M, Prins M A, et al. A reconstruction of sea surface warming in the northern North Atlantic during MIS 3 ice-rafting events [J]. Quaternary Science Reviews, 2010, 29(15-16): 1791-1800. doi: 10.1016/j.quascirev.2010.03.014
[31] Chapman M R, Shackleton N J, Duplessy J C. Sea surface temperature variability during the last glacial-interglacial cycle: assessing the magnitude and pattern of climate change in the North Atlantic [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 157(1-2): 1-25. doi: 10.1016/S0031-0182(99)00168-6
[32] Rashid H, Piper D J W, Drapeau J, et al. Sedimentology and history of sediment sources to the NW Labrador Sea during the past glacial cycle [J]. Quaternary Science Reviews, 2019, 221: 105880. doi: 10.1016/j.quascirev.2019.105880
[33] Lougheed B C, Obrochta S P. A rapid, deterministic age-depth modeling routine for geological sequences with inherent depth uncertainty [J]. Paleoceanography and Paleoclimatology, 2009, 34(1): 122-133.
[34] Heaton T J, Köhler P, Butzin M, et al. Marine20-the marine radiocarbon age calibration curve (0-55,000 cal BP) [J]. Radiocarbon, 2020, 62(4): 779-820. doi: 10.1017/RDC.2020.68
[35] Seierstad I K, Abbott P M, Bigler M, et al. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint [J]. Quaternary Science Reviews, 2014, 106: 29-46. doi: 10.1016/j.quascirev.2014.10.032
[36] Bond G, Broecker W, Johnsen S, et al. Correlations between climate records from North Atlantic sediments and Greenland ice [J]. Nature, 1993, 365(6442): 143-147. doi: 10.1038/365143a0
[37] Obrochta S P, Miyahara H, Yokoyama Y, et al. A re-examination of evidence for the North Atlantic “1500-year cycle” at site 609 [J]. Quaternary Science Reviews, 2012, 55: 23-33. doi: 10.1016/j.quascirev.2012.08.008
[38] Griem L, Voelker A H L, Berben S M P, et al. Insolation and glacial meltwater influence on sea-ice and circulation variability in the northeastern Labrador Sea during the last glacial period [J]. Paleoceanography and Paleoclimatology, 2019, 34(11): 1689-1709. doi: 10.1029/2019PA003605
[39] Lisiecki L E, Stern J V. Regional and global benthic δ18O stacks for the last glacial cycle [J]. Paleoceanography and Paleoclimatology, 2016, 31(10): 1368-1394.
[40] Came R E, Oppo D W, McManus J F. Amplitude and timing of temperature and salinity variability in the subpolar North Atlantic over the past 10 k.y. [J]. Geology, 2007, 35(4): 315-318. doi: 10.1130/G23455A.1
[41] Clark P U, Dyke A S, Shakun J D, et al. The last glacial maximum [J]. Science, 2009, 325(5941): 710-714.
[42] Cortijo E, Labeyrie L, Vidal L, et al. Changes in sea surface hydrology associated with Heinrich event 4 in the North Atlantic Ocean between 40° and 60°N [J]. Earth and Planetary Science Letters, 1997, 146(1-2): 29-45. doi: 10.1016/S0012-821X(96)00217-8
[43] Bond G C, Lotti R. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation [J]. Science, 1995, 267(5200): 1005-1010. doi: 10.1126/science.267.5200.1005
[44] Xiao W S, Wang R J, Polyak L, et al. Stable oxygen and carbon isotopes in planktonic foraminifera Neogloboquadrina pachyderma in the Arctic Ocean: an overview of published and new surface-sediment data [J]. Marine Geology, 2014, 352: 397-408. doi: 10.1016/j.margeo.2014.03.024
[45] Missiaen L, Pichat S, Waelbroeck C, et al. Downcore variations of sedimentary detrital (238U/232Th) ratio: implications on the use of 230Thxs and 231Paxs to reconstruct sediment flux and ocean circulation [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(8): 2560-2573. doi: 10.1029/2017GC007410
[46] Govin A, Braconnot P, Capron E, et al. Persistent influence of ice sheet melting on high northern latitude climate during the early Last Interglacial [J]. Climate of the Past, 2012, 8(2): 483-507. doi: 10.5194/cp-8-483-2012
[47] Zaric S, Donner B, Fischer G, et al. Sensitivity of planktic foraminifera to sea surface temperature and export production as derived from sediment trap data [J]. Marine Micropaleontology, 2005, 55(1-2): 75-105. doi: 10.1016/j.marmicro.2005.01.002
[48] Ottens J J. Planktic foraminifera as North Atlantic water mass indicators [J]. Oceanologica Acta, 1991, 14(2): 123-140.
[49] Morley A, Babila T L, Wright J, et al. Environmental controls on Mg/Ca in Neogloboquadrina incompta: A core-top study from the subpolar North Atlantic [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(12): 4276-4298. doi: 10.1002/2017GC007111
[50] Irvali N, Galaasen E V, Ninnemann U S, et al. A low climate threshold for south Greenland Ice Sheet demise during the Late Pleistocene [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(1): 190-195. doi: 10.1073/pnas.1911902116
[51] Villanueva J, Grimalt J O, Cortijo E, et al. Assessment of sea surface temperature variations in the central North Atlantic using the alkenone unsaturation index (U37k’) [J]. Geochimica et Cosmochimica Acta, 1998, 62(14): 2421-2427. doi: 10.1016/S0016-7037(98)00180-X
[52] Madureira L A S, Van Kreveld S A, Eglinton G, et al. Late Quaternary high-resolution biomarker and other sedimentary climate proxies in a Northeast Atlantic Core [J]. Paleoceanography and Paleoclimatology, 1997, 12(2): 255-269.
[53] Eynaud F, De Abreu L, Voelker A, et al. Position of the polar front along the western Iberian margin during key cold episodes of the last 45 ka [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(7): Q07U05.
[54] Marchitto T M, Curry W B, Lynch-Stieglitz J, et al. Improved oxygen isotope temperature calibrations for cosmopolitan benthic foraminifera [J]. Geochimica et Cosmochimica Acta, 2014, 130: 1-11. doi: 10.1016/j.gca.2013.12.034
[55] Curry W B, Oppo D W. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic ocean [J]. Paleoceanography and Paleoclimatology, 2005, 20(1): PA1017.
[56] Keigwin L D, Boyle E A. Late quaternary paleochemistry of high-latitude surface waters [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1989, 73(1-2): 85-106. doi: 10.1016/0031-0182(89)90047-3
[57] Mook W G, Bommerson J C, Staverman W H. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide [J]. Earth and Planetary Science Letters, 1974, 22(2): 169-176. doi: 10.1016/0012-821X(74)90078-8
[58] Zhan R, Winn K, Sarnthein M. Benthic foraminiferal δ13C and accumulation rates of organic carbon: Uvigerina Peregrina group and Cibicidoides Wuellerstorfi [J]. Paleoceanography and Paleoclimatology, 1986, 1(1): 27-42.
[59] Lynch-Stieglitz J, Fairbanks R G, Charles C D. Glacial-interglacial history of Antarctic intermediate water: relative strengths of Antarctic versus Indian Ocean sources [J]. Paleoceanography and Paleoclimatology, 1994, 9(1): 7-29.
[60] Polyak L, Curry W B, Darby D A, et al. Contrasting glacial/interglacial regimes in the western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 203(1-2): 73-93. doi: 10.1016/S0031-0182(03)00661-8
[61] 李铁刚, 孙荣涛, 张德玉, 等. 晚第四纪对马暖流的演化和变动: 浮游有孔虫和氧碳同位素证据[J]. 中国科学 D辑: 地球科学, 2007, 50(5):725-735 doi: 10.1007/s11430-007-0003-2

LI Tiegang, SUN Rongtao, ZHANG Deyu, et al. Evolution and variation of the Tsushima warm current during the late quaternary: Evidence from planktonic foraminifera, oxygen and carbon isotopes [J]. Science in China Series D: Earth Sciences, 2007, 50(5): 725-735. doi: 10.1007/s11430-007-0003-2
[62] Elderfield H, Vautravers M, Cooper M. The relationship between shell size and Mg/Ca, Sr/Ca, δ18O, and δ13C of species of planktonic foraminifera [J]. Geochemistry, Geophysics, Geosystems, 2002, 3(8): 1-13.
[63] Donner B, Wefer G. Flux and stable isotope composition of Neogloboquadrina pachyderma and other planktonic foraminifers in the southern ocean (Atlantic sector) [J]. Deep Sea Research Part I: Oceanographic Research Papers, 1994, 41(11-12): 1733-1743. doi: 10.1016/0967-0637(94)90070-1